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Abstract. In this paper, we prove that there does not exist a set of 8 poly-
nomials (not all constant) with coefficients in an algebraically closed field of
characteristic 0 with the property that the product of any two of its distinct
elements plus 1 is a perfect square.

1. INTRODUCTION

Diophantus of Alexandria [1] first studied the problem of finding sets with the
property that the product of any two of its distinct elements increased by one is a
perfect square. Such a set consisting of m elements is therefore called a Diophan-
tine m-tuple. The first Diophantine quadruple of rational numbers

{
1
16 , 33

16 , 17
4 , 105

16

}
was found by Diophantus himself, while the first Diophantine quadruple of inte-
gers {1, 3, 8, 120} was found by Fermat. In the case of rational numbers, the first
Diophantine quintuple was found by Euler and a few Diophantine sextuples were
recently found by Gibbs [10] (see also [11, 3]), but no upper bound for the size of
such sets is known. Recently, the first author [2] showed that there does not exist a
Diophantine sextuple and there are only finitely many Diophantine quintuples over
the integers.

Many generalizations of this problem were considered since then, for example by
adding a fixed integer n instead of 1, looking at kth powers instead of squares or
considering the problem over other domains than Z or Q. So we define:

Definition 1. Let m ≥ 2, k ≥ 2 and R be a commutative ring with 1. A kth power
Diophantine m-tuple in R is a set {a1, ..., am} consisting of m different nonzero
elements from R such that aiaj + 1 is a kth power of an element of R for 1 ≤ i <
j ≤ m. Moreover, a set {a1, ..., am} of m different nonzero elements from R is
called a pure power Diophantine m-tuple if aiaj + 1 is a kth power of an element
of R for some k ≥ 2 and all 1 ≤ i < j ≤ m.

In case of R a polynomial ring, it is usually assumed that not all polynomials
a1, . . . , am are constant. The first polynomial variant of the above problem was
studied by Jones [13, 14] and it was for the case R = Z[X] and k = 2. For this case,
Dujella and Fuchs [5] proved that there does not exist a second power Diophan-
tine 5-tuple. Moreover, they proved that all second power Diophantine quadruples
{a, b, c, d} in Z[X] are regular i.e. they satisfy (a + b− c− d)2 = 4(ab + 1)(cd + 1),
which is not true in C[X] as we will show in this paper. For other variants of the
case R = Z[X] and k = 2 see [4, 7, 8].
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Dujella and Luca considered the case k ≥ 3 and R = K[X], where K is an al-
gebraically closed field of characteristic 0. They proved [9] that m ≤ 5 for k = 3,
m ≤ 4 for k = 4, m ≤ 3 for k ≥ 5 and m ≤ 2 for k ≥ 5 and k is even. Using
many results from [9], Dujella, Fuchs and Luca [6] proved that there does not ex-
ist a second power Diophantine 11-tuple in K[X], i.e. m ≤ 10 for k = 2. They
also proved [6, Theorem 2] that there does not exist a pure power Diophantine
quintuple where all perfect powers which appear are ≥ 7. As a combination of
the previous results for fixed exponent and Ramsey theory [12], the same authors
proved [6, Theorem 3] that m ≤ 2 · 109 for a pure power Diophantine m-tuple in
K[X]. Thus, they established an unconditional analogue of the result of Luca [15]
for the positive integers, obtained under the assumption of the ABC-conjecture.
Let us note that in the case R = K[X] the assumption that not all the polynomials
in a kth power Diophantine m-tuple {a1, ..., am} are constant is very natural, since
in an algebraically closed field K, any m-tuple of constant polynomials is a kth
power Diophantine m-tuple for any k ≥ 2. We will also assume this for the rest
of this paper. It follows [9, Lemma 1] that at most one of the polynomials ai for
i = 1, ..., m is constant. The same conclusion is true, with little modification of the
proof, for pure power Diophantine m-tuple in K[X].

The first goal of this paper is to improve the upper bound [6, Theorem 1] for
the size of a second power Diophantine m-tuple in K[X]. We have the following
theorem:

Theorem 1. There does not exist a second power Diophantine 8-tuple in K[X],
i.e.

m ≤ 7 for k = 2.

We will prove Theorem 1 under the assumption that K is an algebraically closed
field of characteristic 0. However, this will immediately imply that the statement
of Theorem 1 is true for any field K of characteristic 0. For the proof of Theorem
1, we combine a gap principle with an upper bound for the degrees of the elements
of a second power Diophantine quadruple in K[X]. The mentioned upper bound
[6, Proposition 1] is obtained by reducing the problem to a system of Pellian equa-
tions. The solutions to these Pellian equations lie in finitely many binary recurrent
sequences so the problem is reduced to finding the intersections of these sequences.
Here, we also follow that approach and we use many results from [9]. The gap
principle we obtain is an improvement of the one [6, Lemma 2] used in the proof
of [6, Theorem 1]. It follows from a careful analysis of the elements of the binary
recurrence sequences with small indices. An interesting result of that analysis is
that we discovered the existence of irregular second power Diophantine quadruples
in K[X]. For any choice of the root

√−3 of X2 + 3 in K, the set

Dp =
{√−3

2
,−2

√−3
3

(p2 − 1),
−3 +

√−3
3

p2 +
2
√−3
3

,
3 +

√−3
3

p2 +
2
√−3
3

}
,

with p ∈ K[X] a nonconstant polynomial, is an irregular polynomial Diophantine
quadruple (see Proposition 1).

As a consequence of Theorem 1, we get as a second result an improvement of an
upper bound [6, Theorem 3] for the size of a set with the property that the product
of any two elements plus 1 is a pure power. We prove:
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Theorem 2. If {a1, ..., am} is a pure power Diophantine m-tuple in K[X], then
m < 2 · 107.

The proof of this theorem runs along the same line as the proof of [6, Theorem
3]. As an upper bound, we get the Ramsey number R(8, 6, 4, 5; 2). The parame-
ters in this Ramsey number come from the cases k = 2, 3, 5 and from [6, Theorem 2].

In Section 4, we prove Theorem 1 and Theorem 2. This part is an improvement
of the corresponding parts of [6], due to new gap principles developed in Section 3.
These gap principles follow from the analysis of the elements of binary recurrence
sequences. We start this analysis in Section 2 by studying the intersections of the
above mentioned sequences. Here, we follow the strategy used in [2] in the integer
case.

2. RELATIONS BETWEEN m AND n

Before we start our analysis we recall the method of how the problem of extending
a second power Diophantine triple {a, b, c} in K[X] to a second power Diophantine
quadruple {a, b, c, d} is reduced to the resolution of a system of Pellian equations.
For brevity, instead of second power Diophantine m-tuple in K[X] we shall refer
to a polynomial Diophantine m-tuple. In what follows, let a, b, c, d be polynomials
in K[X]. Denote by α, β, γ, δ the degrees of a, b, c, d, respectively, and assume that
α ≤ β ≤ γ ≤ δ.

Let

(1) ab + 1 = r2, ac + 1 = s2, bc + 1 = t2

and ad + 1 = x2, bd + 1 = y2, cd + 1 = z2. Eliminating d, we get

az2 − cx2 = a− c,(2)
bz2 − cy2 = b− c.(3)

By [9, Lemma 4], there exist a nonnegative integer m and a solution (Z0, X0) of
(2) such that deg(Z0) ≤ 3γ−α

4 , deg(X0) ≤ α+γ
4 and

z
√

a + x
√

c = (Z0

√
a + X0

√
c)(s +

√
ac)m.

Also, there exist a nonnegative integer n and a solution (Z1, Y1) of (3) such that
deg(Z1) ≤ 3γ−β

4 , deg(Y1) ≤ β+γ
4 and

z
√

b + y
√

c = (Z1

√
b + Y1

√
c)(t +

√
bc)n.

Hence, z = Vm = Wn, where the sequences (Vm)m≥0 and (Wn)n≥0 are defined by

V0 = Z0, V1 = sZ0 + cX0, Vm+2 = 2sVm+1 − Vm,(4)
W0 = Z1, W1 = tZ1 + cY1, Wn+2 = 2tWn+1 −Wn.(5)

By [9, Lemma 5], it follows that

(6) deg(Vm) = (m− 1)
α + γ

2
+ deg(V1)

for m ≥ 1 and

(7)
γ

2
≤ deg(V1) ≤ α + 5γ

4
.
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Similarly,

(8) deg(Wn) = (n− 1)
β + γ

2
+ deg(W1)

for n ≥ 1 and

(9)
γ

2
≤ deg(W1) ≤ β + 5γ

4
.

In the rest of the paper, we will use several lemmas from [9] and [6] which
illustrate the properties of the sequences (Vm)m≥0 and (Wn)n≥0. In this section,
we prove an unconditional relationship between m and n, when Vm = Wn.

Lemma 1. If Vm = Wn, then n− 1 ≤ m ≤ 2n + 1.

Proof. From (6)–(9), we obtain

(10) (m− 1)
α + γ

2
+

γ

2
≤ deg(Vm) ≤ (m− 1)

α + γ

2
+

α + 5γ

4
for all m ≥ 1 and

(11) (n− 1)
β + γ

2
+

γ

2
≤ deg(Wn) ≤ (n− 1)

β + γ

2
+

β + 5γ

4
for all n ≥ 1. Since deg(Vm) = deg(Wn), it follows from (10) and (11) that

(m− 1)
α + γ

2
+

γ

2
≤ (n− 1)

β + γ

2
+

β + 5γ

4
.

Since α ≥ 0 and β ≤ γ, this implies that (m− 1)γ
2 ≤ nγ and finally

m ≤ 2n + 1.

Likewise, from (10) and (11) we obtain

(n− 1)
β + γ

2
+

γ

2
≤ (m− 1)

α + γ

2
+

α + 5γ

4
.

Since α ≤ β < 3β, this implies that (n− 1)β+γ
2 < (m− 1)β+γ

2 + 3
4 (β + γ), and we

get
m ≥ n− 1.

¤

3. GAP PRINCIPLES

In this section, we prove a gap principle which is an improvement of the one
established in [2, Lemma 2] and which is used in the proof of Theorem 1. First we
develop a gap principle which comes from studying the equality Vm = Wn for small
values of m and n. For this, we need two lemmas and the definition of a regular
polynomial Diophantine quadruple.

Lemma 2. Let {a, b, c} be a polynomial Diophantine triple. Denote by d+ the
polynomial with larger degree and by d− the polynomial with smaller degree among
the polynomials

a + b + c + 2abc± 2rst,

where r, s and t are polynomials for which (1) holds. Then deg(d−) < γ.
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Proof. Using (1), we conclude that deg(d+) = α + β + γ. From

d+ · d− = a2 + b2 + c2 − 2ab− 2ac− 2bc− 4,

it follows that deg(d−) < γ. ¤

Definition 2. A polynomial Diophantine quadruple {a, b, c, d} is called regular if

(a + b− c− d)2 = 4(ab + 1)(cd + 1),

or, equivalently, if either d = d+ or d = d−.

It holds

ad± + 1 = u2, bd± + 1 = v2, cd± + 1 = w2,(12)

where u = at± rs, v = bs± rt, w = cr ± st. Moreover, we have that

c = a + b + d± + 2(abd± ± ruv).(13)

For d− = 0, by (13), we have c = a + b ± 2r. If d− 6= 0, then from [6, Lemma 1],
it follows that deg(d−) = 0. The existence of d± implies that Vm = Wn has non-
trivial solutions. Since d− has degree < γ and deg(Vm),deg(Wn) ≥ γ for m, n ≥ 2
it must arise from Vm = Wn with m,n ∈ {0, 1}.

The following lemma is a more precise version of [6, Lemma 4], where only a
suitable version for their application was proved.

Lemma 3.
1) If V2m = W2n, then Z0 = Z1.
2) If V2m+1 = W2n, then either (Z0, Z1) = (±1,±s) or (Z0, Z1) = (±s,±1) or
Z1 = sZ0 + cX0 or Z1 = sZ0 − cX0.
3) If V2m = W2n+1, then either (Z0, Z1) = (±t,±1) or Z0 = tZ1 + cY1 or
Z0 = tZ1 − cY1.
4) If V2m+1 = W2n+1, then either (Z0, Z1) = (±1,±cr ± st) or (Z0, Z1) = (±cr ±
st,±1) or sZ0 + cX0 = tZ1 ± cY1 or sZ0 − cX0 = tZ1 ± cY1.

Proof.
1) From [6, Lemma 3], we have Z0 ≡ Z1 (mod c). Since deg(Z0) < γ and

deg(Z1) < γ, we conclude that Z0 = Z1.
2) From [6, Lemma 3], we have Z1 ≡ sZ0 (mod c). Assume that Z0 = ±1.

Hence,

(14) Z1 ≡ ±s (mod c).

If α < γ, then Z1 = ±s. If α = β = γ, then from [6, Lemma 1] it follows that
c = a + b ± 2r and we have ±s ≡ ±t (mod c). Multiplying this congruence by s,
we obtain ±1 ≡ ±st (mod c). Now, multiplying (14) by t we get

(15) tZ1 ± cY1 ≡ ±1 (mod c).

If Z1 = ±1 then, by (3), Y1 = ±1 and from (5) it follows that deg(W1) ≤ γ.
Similarly, deg(V1) ≤ γ. From (6)–(9), it follows that 2m + 1 = 2n, which is not
possible. We conclude that Z1 6= ±1. Now, from [9, Lemma 5], deg(Z1) ≥ γ

2 and
deg(Y1) ≥ β

2 . Hence, Y1 is not constant. Since

(cY1 + tZ1)(cY1 − tZ1) = c2 − bc− Z2
1 ,(16)
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we conclude that one of the polynomials cY1 ± tZ1 has degree less than γ. For
that polynomial, (15) becomes an equation. Notice that deg(Z1) ≤ 3γ−β

4 = γ
2 , so

deg(Z1) = γ
2 . From [9, Lemma 4], it follows that deg(W0) = deg(Z1) ≤ deg(tZ1 ±

cY1), so we have a contradiction.
Assume now that Z0 6= ±1. By [9, Lemma 5], we have deg(Z0) ≥ γ

2 and

deg(X0) ≥ α
2 . Let α = 0 and X0 be constant. Denote e := (X2

0−1)
a . Then {a, e, c}

is a Diophantine triple and [9, Lemma 1] implies that a = e. Now, X2
0 = a2 + 1,

and by (2) we obtain Z0 = ±s. Hence, Z1 ≡ ±1 (mod c) and we have Z1 = ±1.
Assume now that X0 is not constant. Since

(cX0 + sZ0)(cX0 − sZ0) = c2 − ac− Z2
0 ,(17)

we conclude that one of the polynomials cX0± sZ0 has degree less that γ and they
are both congruent to Z1 modulo c. Hence, one of these polynomials is equal to
Z1.

3) This case is completely analogous to case 2), except that β cannot be equal
to 0.

4) From [6, Lemma 3], we have sZ0 ≡ tZ1 (mod c). If X0 and Y1 are not constant,
then one of the polynomials cX0 ± sZ0 and one of the polynomials cY1 ± tZ1 have
degrees less than γ. These two polynomials are congruent modulo c, thus, they
have to be equal.

If Z0 = ±1, then ±s ≡ tZ1 (mod c). Multiplying this congruence by t we obtain
±st± cr ≡ Z1 (mod c). Since

(±st− cr)(±st + cr) = ac + bc + 1− c2,

one of the polynomials ±st ± cr has degree less then γ and the other has degree
equal to γ + α+β

2 . Hence, ±st ± cr = Z1 and deg(Z1) ≤ γ − α+β
2 . Also, notice

that we have cd− + 1 = Z2
1 . If deg(Z1) < γ − α+β

2 , it must be that β = γ so now
deg(Z1) < γ

2 − α
2 . If α = β = γ we obtain a contradiction deg(Z1) < 0. If α < β, it

follows that deg(Z1) < γ
2 and we get d− = 0, Z1 = ±1. If deg(Z1) = γ− α+β

2 , from
deg(Z1) ≤ 3γ−β

4 it follows that γ ≤ β + 2α. If β = γ and α > 0, then deg(Z1) < γ
2

so d− = 0 and Z1 = ±1. If β = γ and α = 0, then deg(Z1) = γ
2 . Now we have

deg(d−) = 0 so d− = a and Z1 = ±s.
Assume now that Z0 6= ±1 and X0 is constant. As above, Z0 = ±s and

we have ±1 ≡ tZ1 (mod c). Multiplying this congruence by t, it follows that
±t ≡ Z1 (mod c). If β < γ, then Z1 = ±t and Y 2

1 = b2 + 1, a contradiction. Let
β = γ. Notice that ±1 ≡ tZ1 ± cY1 (mod c). If deg(Z1) ≥ γ

2 , then by [9, Lemma
5], deg(Y1) ≥ β

2 and Y1 is not constant. As above, we obtain a contradiction. Con-
sider now the general case α ≤ β ≤ γ and Z1 = ±1. Multiplying the congruence
sZ0 ≡ tZ1 (mod c) by s, we obtain Z0 ≡ ±st (mod c) so, as above, Z0 = ±st± cr

and deg(Z0) ≤ γ − α+β
2 . Here, we have Z0 = ±s. When β = γ we can also have

Z0 = ±1. ¤

In the proof od Lemma 3, we obtained the following result which will be used
several times in the proof of Proposition 1.

Lemma 4. If α = 0 and X0 is constant, then X2
0 = a2 + 1 and Z0 = ±s.

Now we are ready to examine the equation Vm = Wn for small indices m and n.
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Proposition 1. Let S = {a, b, c} be a polynomial Diophantine triple. Assume

that Vm = Wn and define d =
V 2

m − 1
c

. If {0, 1, 2} ∩ {m,n} 6= ∅, then ei-

ther deg(d) < γ or d = d+ or d =
3 +

√−3
3

p2 +
2
√−3
3

, in the special case

S =
{√−3

2
,−2

√−3
3

(p2 − 1),
−3 +

√−3
3

p2 +
2
√−3
3

}
with p ∈ K[X] a noncon-

stant polynomial.

Proof. From Lemma 1 and the condition {0, 1, 2} ∩ {m,n} 6= ∅ it follows that

(m,n) ∈ {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 1), (3, 1), (2, 2),
(2, 3), (3, 2), (4, 2), (5, 2)}.

1) If 0 ∈ {m,n}, then from (4) or (5) we have z = Z0 or z = Z1. Since
deg(Z0) < γ and deg(Z1) < γ, from cd + 1 = z2 we obtain

deg(d) < γ.

2) If (m, n) = (1, 1), then z = V1 = W1. From (4) and (5) we have

z = sZ0 + cX0 = tZ1 + cY1.(18)

Assume first that X0 and Y1 are not constants. By Lemma 3, we have the equation

sZ0 ± cX0 = tZ1 ± cY1.

We consider the four possibilities. If

sZ0 + cX0 = tZ1 + cY1,

then from (18) we obtain deg(z) < γ. As in the case 0 ∈ {m,n}, we conclude that
deg(d) < γ. If

sZ0 + cX0 = tZ1 − cY1,

then combining this with (18) we obtain 2cY1 = 0, a contradiction. If

sZ0 − cX0 = tZ1 + cY1,

then combining this with (18) we obtain 2cX0 = 0, again a contradiction. The last
possibility is

sZ0 − cX0 = tZ1 − cY1.

This equation together with (18) yields sZ0 = tZ1 and X0 = Y1. Inserting this into
(2) and (3), we obtain

(b− a)s2 = (bZ2
1 − aZ2

0 )s2 = Z2
1 (abc + b− abc− a) = Z2

1 (b− a).

Therefore, Z1 = ±s, Z0 = ±t and X0 = Y1 = ±r. Hence, z = V1 = ±st± cr, and

d =
z2 − 1

c
=

abc2 + ac + bc + 1± 2stcr + abc2 + c2 − 1
c

= a + b + c + 2abc± 2rst.

From Lemma 2, we conclude that either d = d+ or deg(d) < γ.

Assume that (Z0, Z1) = (±1,±cr ± st). From (2), we have X0 = ±1 and from
(18) it follows that

z = ±s± c = tZ1 + cY1,

so deg(z) ≤ γ. If deg(z) < γ, then deg(d) < γ. Let deg(z) = deg(tZ1 + cY1) = γ.
Then Y1 must be a constant. Let us note that cd− + 1 = Z2

1 and, from (3), we
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have bd− + 1 = Y 2
1 . Now we conclude that d− = 0, Y1 = ±1 and Z1 = ±1. From

[6, Lemma 1], it follows that c = a + b± 2r, so we have c = ±s± t. Also, by (18),
±s± c = ±t± c. If ±s± t = 0, then from (1) we obtain a = b, a contradiction. If
±s± t = ±2c, then combining this relation with c = ±s± t we obtain c = 0 or c|s,
again a contradiction.

Assume now that (Z0, Z1) = (±cr ± st,±1). From (3), we have Y1 = ±1 and
from (18) it follows that

z = sZ0 + cX0 = ±t± c,

so deg(z) ≤ γ. If deg(z) < γ then deg(d) < γ, so we only deal with deg(z) =
deg(sZ0 + cX0) = γ. Here, X0 is a constant. Observe that cd− + 1 = Z2

0 and by
(2) ad−+1 = X2

0 . If a is not a constant, we have a contradiction as above. If a is a
constant, then from Lemma 4 it follows that X2

0 = a2 + 1 and Z0 = ±s. Moreover,
β = γ and α = 0. From s(±cr ± st) + cX0 = ±t± c, we obtain

c(±at± rs)± t + cX0 = ±t± c,

where ad− + 1 = (±at ± rs)2. Hence, we have 2cX0 = ±c so X0 = ± 1
2 and

a = ±
√−3

2 . By squaring the equation

±s = ±cr ± st

and using (1) we obtain c(b − c ± 2rs) = 0, so c = b ± 2rs. Squaring the last
equation, we get

b2 + bc + c2 = ±2
√−3(b + c) + 4.

(
c +

1 +
√−3
2

b

)(
c−

(
1 +

√−3
2

)2

b

)
= ±2

√−3(b + c) + 4.(19)

Observe that one of the factors on the left side of (19) has to be constant. Assume
first that e := c + 1+

√−3
2 b is a constant. From (19), we get

e2 −√−3be = ±2
√−3e + 4± b(

√−3 + 3),

where on the both sides we have polynomials of the form g1b+g2, with constants g1

and g2. By comparing the coefficients, we obtain e = ±(−1+
√−3), where the signs

± are the same as the signs of a. Hence, e = ±2( 1+
√−3
2 )2. Denote u2 := 1+

√−3
2 and

notice that u4−u2 +1 = 0. Now, we have c = −u2b± 2u4 and, by (1), t = bu4± 1.
Applying [6, Lemma 1] to the polynomial Diophantine triple {b, c, d}, we obtain
d = b + c± 2t. Let d = b + c + 2t, hence d = bu4 ± 2u2. From this, it follows that
ad + 1 = r2u4. Moreover, bd + 1 = (bu2 ± 1)2 and cd + 1 = −u6(b∓ u(2u2 − 1))2.
Now we conclude that for every nonconstant polynomial p ∈ K[X] there exists the
polynomial Diophantine quadruple

Dp =
{√−3

2
,−2

√−3
3

(p2 − 1),
−3 +

√−3
3

p2 +
2
√−3
3

,
3 +

√−3
3

p2 +
2
√−3
3

}
.

When d = b+ c−2t, in analogous way we obtain ad+1 = −3u4r2 +u2(3+
√−3)−

2 − 2
√−3, a contradiction. Assume now that e := c − (1+

√−3
2 )2b is a constant.

From (19), it follows that

e2 +
√−3be = ±2

√−3e + 4± (−3 +
√−3)b.

From the above relation, we obtain e = ±(1 +
√−3). Hence, e = ±2u2. We get

c = bu4 ± 2u2 and t = bu2 ± 1. If d = b + c + 2t, then ad + 1 = 3u2r2 + u2(−3 +
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√−3)+1+
√−3, a contradiction. But, for d = b+c−2t = −bu2±2u4, we obtain a

polynomial Diophantine quadruple Dp again. Notice that Dp is not a regular Dio-
phantine quadruple because we have deg(d+) = 2γ, deg(d−) = 0 and deg(d) = γ.

3) Assume that (m,n) = (2, 1). Then z = V2 = W1. By (4) and (5) we have

z = Z0 + 2c(aZ0 + sX0) = tZ1 + cY1.(20)

By Lemma 3, if Z1 = ±1, then Z0 = ±t. Now, by (2), X0 = ±r and, by (3),
Y1 = ±1. Hence, z = ±t± c and deg(z) ≤ γ. From (4) and [9, Lemma 5], it follows
that deg(V2) ≥ γ + α+β

2 > γ, so we obtain a contradiction.

If Z1 6= ±1, then by Lemma 3, one of the polynomials tZ1 ± cY1 has degree less
than γ and is equal to Z0. If

Z0 = tZ1 + cY1,

then from (20) it follows that deg(d) < γ. If

Z0 = tZ1 − cY1,

then from (20) we obtain that aZ0 + sX0 = Y1. Combining the last two equations,

we get Z0 =
tZ1 − scX0

s2
and Y1 =

sX0 + atZ1

s2
. Inserting this into (2) and (3), we

obtain
Z2

1 (b− a) = s2(b− a).

We get that Z1 = ±s and, by (3), Y1 = ±r. Hence, z = W1 = ±st±cr. Analogously
to the case (m,n) = (1, 1), we conclude that

d = a + b + c + 2abc± 2rst.

From Lemma 2, it follows that either d = d+ or deg(d) < γ.

4) Let (m,n) = (1, 2). Then z = V1 = W2. From (4) and (5) we have

z = sZ0 + cX0 = Z1 + 2c(bZ1 + tY1).

Analogously to the case (m,n) = (2, 1), if Z0 = ±1, then X0 = ±1 and we obtain
a contradiction.

If Z0 6= ±1 and X0 is a constant then, by Lemma 3, Z0 = ±s and we have

z = ±ac± 1 + cX0.

Hence, deg(z) ≤ γ. As in the case (m,n) = (2, 1), we obtain the contradiction
deg(z) > γ.

If Z0 6= ±1 and X0 is not a constant, analogously to the case (m, n) = (2, 1), we
obtain that either d = d+ or deg(d) < γ.

5) Assume now that (m,n) = (2, 2). Then z = V2 = W2. From (4) and (5) we
have

z = Z0 + 2c(aZ0 + sX0) = Z1 + 2c(bZ1 + tY1).(21)

From Lemma 3, it follows that Z0 = Z1. Inserting this into (21), we get

sX0 − tY1 = (b− a)Z0.(22)
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Combining (2) and (3) we obtain

(b− a)Z2
0 = b− a + cY 2

1 − cX2
0 .(23)

Now, from (22) and (23) we have

(b− a)2 + (b− a)(cY 2
1 − cX2

0 ) = (sX0 − tY1)2

= acX2
0 + X2

0 − 2stX0Y1 + bcY 2
1 + Y 2

1

= t2X2
0 − 2stX0Y1 + s2Y 2

1 + (b− a)(cY 2
1 − cX2

0 ).

Therefore, we conclude that

tX0 − sY1 = ±(b− a).(24)

Furthermore, from (2) and (3) we obtain

s2(bX2
0 + a− b) = as2Y 2

1 ,(25)

and from (24) it follows that

as2Y 2
1 = a(tX0 ∓ (b− a))2.(26)

Hence, from (25) and (26) we have

(ac + 1)(bX2
0 + a− b) = a(bcX2

0 + X2
0 ∓ 2tX0(b− a) + (b− a)2),

from which we conclude that

(b− a)(X2
0 ± 2atX0 + a2t2) = (b− a)(ab + 1)(ac + 1)
(b− a)(X0 ± at)2 = (b− a)r2s2.

Therefore, X0 = ±rs ∓ at and, by (2), Z0 = ±st ∓ cr. Now, we obtain V2 =
±st∓ cr + 2c(±ast∓ acr ± rs2 ∓ ats) = ±st± cr and

d = a + b + c + 2abc± 2rst.

From Lemma 2, we conclude that either d = d+ or deg(d) < γ.

6) Let (m,n) = (3, 1). Then z = V3 = W1. From (4) and (5) we have

z = sZ0 + c(4asZ0 + 3X0) + 4ac2X0 = tZ1 + cY1.(27)

Now from (6)-(9), it follows that γ ≤ β − 4α ≤ β, so β = γ and α = 0. Assume
first that X0 and Y1 are not constants. By Lemma 3, we have four possibilities to
consider. Let us start with

sZ0 + cX0 = tZ1 + cY1,(28)

where both sides have degrees less than γ. Now, from (27), we conclude that
deg(W1) < γ. Hence, deg(V3) < γ. Combining (27) and (28) we obtain

V3 = tZ1 + cY1 + c(4asZ0 + 2X0 + 4acX0).

Therefore, deg(V3) ≥ γ, unless 4asZ0 + 2X0 + 4acX0 = 0. So, we have 4a(sZ0 +
cX0) = −2X0 and deg(sZ0 + cX0) ≤ γ

4
. But, now from (17), it follows that

deg(sZ0 − cX0) ≥ 7
4γ, which is a contradiction. If

sZ0 − cX0 = tZ1 + cY1,

we obtain the same contradiction as for (28). If we have

sZ0 + cX0 = tZ1 − cY1,(29)
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where both sides have degrees less than γ, then from (27) we obtain that

−2Y1 + 2X0 = −4a(sZ0 + cX0).

Hence, deg(sZ0 + cX0) ≤ γ

2
. But, now from (17) it follows that deg(sZ0 − cX0) ≥

3
2γ, again a contradiction. The last possibility

sZ0 − cX0 = tZ1 − cY1

yields a contradiction analogously as for (29).

Let (Z0, Z1) = (±1,±cr ± st). From Lemma 3, it follows that either Z1 = ±1
or Z1 = ±s. If Z1 = ±1, we get from (3) that Y1 = ±1 so by (27) we have
z = ±t ± c and deg(z) ≤ γ. If deg(z) < γ, then deg(d) < γ. Consider the case
deg(z) = γ. By (2), X0 = ±1 and from (27) it follows that deg(z) = deg(V3) = 2γ,
a contradiction. If Z1 = ±s, then by (3), Y1 = ±r. Now z = W1 = ±st ± cr,

where deg(±st ± cr) = γ + α+β
2 or deg(±st ± cr) ≤ γ − α+β

2 . From the equation
deg(V3) = deg(W1), we get a contradiction for both possibilities.

Assume now that (Z0, Z1) = (±cr ± st,±1). By (3), Y1 = ±1 and from (27) we
see that z = ±t± c. Hence, deg(z) ≤ γ. If deg(z) < γ, then deg(d) < γ. Consider
the case deg(z) = γ. From [9, Lemma 5, iv], we obtain that deg(V3) = γ + deg(V1)
so deg(V1) = 0, which is a contradiction by [9, Lemma 5, iii].

7) Let (m,n) = (2, 3). Then z = V2 = W3. From (4) and (5) we have

z = Z0 + 2c(aZ0 + sX0) = tZ1 + c(4btZ1 + 3Y1) + 4bc2Y1.(30)

From Lemma 3, it follows that if Z1 = ±1, then Z0 = ±t. By (2), X0 = ±r, and
by (3), Y1 = ±1. Comparing the degrees, from Z0 = ±t we obtain that 2β +α ≤ γ,
from which it follows

β < γ.

Now, from (30) we have

V2 = ±t + 2c(±at± sr),
W3 = ±t + c(±4bt± 3)± 4bc2.

We conclude that deg(W3) = deg(4bc2) = β + 2γ, so deg(V2) = β + 2γ. Therefore,
deg(±at± sr) = β + γ. Now we have β + γ ≤ max(deg(±at), deg(±rs)) = α + β+γ

2
so γ ≤ 2α− β. But, from 2β + α ≤ γ, we get β < α, a contradiction.

If Z1 6= ±1, from Lemma 3, it follows that

Z0 = tZ1 ± cY1,

where the degree of the right-hand side is < γ. First we assume that

Z0 = tZ1 − cY1.

Inserting this into (30), we obtain

aZ0 + sX0 = 2b(tZ1 + cY1) + 2Y1.(31)

Since one of the polynomials tZ1 ± cY 1 has the degree equal to γ + deg(Y1) and
the degree of Z0 is less than γ, this must be the polynomial tZ1 + cY1. Now from
(31) we conclude that deg(aZ0 + sX0) = β + γ + deg(Y1). But, deg(aZ0 + sX0) ≤
max(deg(aZ0),deg(sX0)) ≤ 3α+3γ

4 , so we have γ ≤ −3β, a contradiction. Let

Z0 = tZ1 + cY1.(32)
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If we put (32) into (30), we obtain

aZ0 + sX0 = Y1 + 2bZ0.(33)

From (32), it follows that Z0 = W1. By [9, Lemma 5] we conclude that Z0 6= ±1
and deg(Z0) ≥ γ

2 , deg(X0) ≥ α
2 . If α = 0 and X0 is a constant, from Lemma 4

we have X2
0 = a2 + 1 and Z0 = ±s. Hence, deg(tZ1 + cY 1) = γ

2 . From (6)-(9), it
follows that 4β ≤ γ +3α so β < γ. From (16), it now follows that γ−deg(Y1) = γ

2 ,
so γ

2 = deg(Y1) ≤ β+γ
4 . This yields the contradiction γ ≤ β. Hence, X0 cannot be

a constant. Since

(aZ0 + sX0)(aZ0 − sX0) = a2 − ac−X2
0 ,(34)

from (1) and (2) it follows that one of the polynomials aZ0± sX0 has degree equal
to α+γ

2 + deg(X0), and the other has degree less than that. By [9, Lemma 5], we
have that deg(V2) = β + γ + deg(Z0). Now, from (30) we conclude that

deg(aZ0 + sX0) = β + deg(Z0).(35)

Hence, the polynomial aZ0 + sX0 must have the degree equal to α+γ
2 + deg(X0).

Now, from (35) and (2), we conclude that α = β. If we transform (33) into

sX0 − aZ0 = Y1 + 2(b− a)Z0,(36)

we conclude that

deg(Y1 + 2Z0(b− a)) ≤ α + γ

2
− deg(X0).(37)

If deg(b− a) > 0, then from (37) we obtain that deg(X0) < α
2 , a contradiction. If

deg(b−a) = 0, then from (37) we conclude that deg(Z0) = γ
2 . Hence, deg(X0) = α

2 .
We now transform (36) to the equation

sX0 − Y1 − bZ0 = (b− a)Z0,(38)

where the degree of the right-hand side is γ
2 . By (32) and (1), we have sX0 − Y1 −

bZ0 = sX0 − t(bZ1 + tY1), so

deg(sX0 − t(bZ1 + tY 1)) =
γ

2
.(39)

Let 0 < α = β < γ. From (1) and (3), we conclude that one of the polynomials
bZ1 ± tY 1 has the degree equal to β + deg(Z1). Since

(bZ1 + tY 1)(bZ1 − tY 1) = b2 − bc− Y 2
1 ,(40)

the degree of the other polynomial is equal to γ − deg(Z1). But, for neither one
of these possibilities the equation (39) holds. Now, let 0 < α = β = γ. We have
deg(X0) = deg(Z0) = γ

2 and deg(Z1) = deg(Y1) = γ
2 . Moreover, by [6, Lemma 2],

it follows that c = a + b ± 2r. Now, let b − a be a constant k. From (1), we have
a2 + ka + 1 = r2. If we denote the leading coefficients of the polynomials a and r
by a1 and r1, it follows that a1 = ±r1. Moreover, we can transform the previous
equation into (a± 1)2 ∓ 2a + ka = r2, from which we conclude that

a(k ∓ 2) = (r − a∓ 1)(r + a± 1).

Hence, it follows that either a|(r − a ∓ 1) or a|(r + a ± 1). If a|(r − a ∓ 1), then
a|(r ∓ 1), so (a + k)|(r ± 1). We have r ∓ 1 = m1a, r ± 1 = m2(a + k), where
m1,m2 ∈ K \ {0}. Considering the leading coefficients in these to equations, we
obtain m1 = m2 = ±1 and k = ±2. The possibility a|(r +a± 1) leads to analogous
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conclusion. Now we have r = ±a± 1, c = 4a± 4, s = ±2a± 1 and t = ±2a± 3. If
we insert this into (38), and use (39), it follows that

deg((±2a± 3)(X0 − (bZ1 + tY1))∓ 2X0) =
γ

2
.

If this holds, then X0 = bZ1 + tY1. But, then it follows that ∓2X0 = (b − a)Z0.
Hence, X0 = ±Z0 and, by (2), X0 = Z0 = ±1. Therefore, γ = 0, which is a
contradiction.

8) Assume now that (m,n) = (3, 2). Then z = V3 = W2. From (4) and (5) we
obtain

z = sZ0 + c(4asZ0 + 3X0) + 4ac2X0 = Z1 + 2c(bZ1 + tY1).(41)

Suppose that Z0 = ±1. From Lemma 3, we have that Z1 = ±s. Then, by (2),
X0 = ±1 and, by (3), Y1 = ±r. Let us notice that α+γ

2 = deg(Z1) ≤ 3γ−β
4 , so

γ ≥ β + 2α.

Hence, γ > α and α = 0 if β = γ. Now from (41) it follows that

V3 = ±s + c(±4as± 3)± 4ac2,(42)
W2 = ±s + 2c(±bs± tr).(43)

We conclude that deg(W2) = γ+deg(±bs±tr) and deg(V3) = deg(±4ac2) = 2γ+α.
It follows that deg(V3) = deg(W2), so it must be the case that

deg(±bs± tr) = α + γ.(44)

Since

(±bs + tr)(±bs− tr) = b2 − ab− bc− 1,(45)

using (1), we conclude that one of the polynomials ±bs ± tr has degree equal to
β + α+γ

2 and the other one has degree ≤ γ−α
2 . Hence, in (44), we must have

β + α+γ
2 = α + γ, from which it follows that

β =
α + γ

2
,(46)

and we conclude that we cannot have β = γ, α = 0. So, we get that β < γ. Since
V3 = W2, from (42) and (43) we obtain that

2(±bs± tr) = ±4as± 4s2 ∓ 1.(47)

Notice that, by (47), we also have

2(±tr ∓ bs) ≡ ∓1 (mod s),(48)

where both sides of the congruence relation have degree less than deg(s). Therefore,
in (48), we can replace ≡ with =. Moreover, we conclude that α = γ, which is a
contradiction. We are left to check the possibility α = 0. Now, by (46), we have
that γ = 2β, and by (44),

deg(±bs± tr) = 2β.

Also, we have deg(±bs∓ tr) = β, so deg(2(±tr ∓ bs)± 1) = β. From (1) and (45),
we conclude that the polynomials ±s and 2a(±tr ∓ bs)± a have the same leading
coefficient, so, by (48), it follows that

2a(±tr ∓ bs) = ±s∓ a.(49)
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From (47) and (49), we obtain that

±s = ±b∓ a± 1
4a

.(50)

Now, from (49), using (1) and (50) we obtain that

∓b∓ 1
4a

≡ 0 (mod r),

so we conclude that r2 divides b2 + b
2a + 1

16a2 = (ab + 1)( b
a − 1

2a2 ) + 9
16a2 . Hence,

r2 divides the constant 9
16a2 and we have β = 0, a contradiction.

Suppose that Z0 6= ±1. From [9, Lemma 5], it follows that deg(Z0) ≥ γ
2 and

deg(X0) ≥ α
2 . Let us first consider the possibility that α = 0 and X0 is a constant.

By Lemma 4, we have that X2
0 = a2 + 1, Z0 = ±s and Z1 = ±1 (Z0 and Z1 have

the same signs). By (3), Y1 = ±1, so from (41) we obtain that

V3 = ±s2 + c(±4as2 + 3X0) + 4ac2X0,(51)
W2 = ±1 + 2c(±b± t).(52)

We conclude that deg(V3) = deg(±4acs2 +4ac2X0) ≤ 2γ. Suppose that this degree
is less then 2γ. If we denote the leading coefficient of the polynomial c with c1, we
have ±4a2c2

1 + 4ac2
1X0 = 0 and X0 = ±a, a contradiction. Hence, deg(V3) = 2γ

and now from (52) it follows that deg(±b± t) = γ. Therefore, β = γ.
Let us consider the polynomial Diophantine triple {a, b, c}. Have already noted

that if d− 6= 0, then deg(d−) = 0. Considering (1) and (12), we conclude that in
the case d− 6= 0, the only possibility is d− = a. Suppose first that d− = 0 and
denote by b1, c1, t1 the leading coefficients of the polynomials b, c, t, respectively.
We notice that b1 = c1 and t1 = ±b1. Moreover, from (51) and (52), we obtain that

±1 = ±a2 + aX0,(53)

where the signs ± are the same in both sides of the equality. If both signs are
positive, it follows that X0 = 2a and a2 = 1

3 . Now, from the equation V3 = W2,
using (51) and (52) we get that 15a = ∓6r, which is a contradiction because the
degree of the left-hand side is equal to 0, and the degree of the right-hand side is
equal to γ

2 . If both signs in (53) are negative, we obtain X0 = −2a, a2 = 1
3 . As

above, we obtain a contradiction. If d− = a, from (12) we have that u = ±X0,
v = ±r and by (13) it follows that c = b + 2r2(a±X0). Using (1), we obtain that
s2 = r2(a±X0)2, so c = b±2rs. From the above relation, using (1) again, it follows
that s2 = r2 ± 2ars. Denoting e := s

r , we obtain a quadratic equation

e2 ∓ 2ae− 1 = 0(54)

whose solutions are constants e1,2 = ±a±X0. Using (1), we obtain that c = e2b±2e
and t = ±(eb± 1). Now, from V3 = W2, by (51) and (52) it follows that

±2b± 2t = ±5a + 3X0 + 4ac(X0 ± a).(55)

Inserting the above expressions for c and t into (55), in both sides of the equation
we get polynomials of the form g1b+g2, where g1 and g2 are constants. Comparing
the coefficients, we obtain two polynomial equations in unknowns a, X0 and e. We
take (54) for the third and X2

0 = a2 +m for the fourth equation in a system of four
equations with unknowns a, X0, e and m. By changing the signs ±, we obtain 32
different systems of equations. But neither of them gives the solution m = 1, so
conclude that d− cannot be equal to a.
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Now we are left with the possibility when Z0 6= ±1 and X0 is not a constant.
By Lemma 3, Z1 = sZ0 ± cX0. Assume first that

Z1 = sZ0 − cX0.

Inserting this into (41), we get

bZ1 + tY1 = 2X0 + 2a(sZ0 + cX0).(56)

By (1) and (2), one of the polynomials sZ0 ± cX0 has the degree equal to γ +
deg(X0). Since deg(Z1) < γ, we have deg(sZ0 + cX0) = γ + deg(X0). From (56),
it follows that deg(bZ1 + tY 1) = α + γ + deg(X0). Moreover, deg(bZ1 + tY 1) ≤
max(deg(bZ1),deg(tY 1)) = 3β+3γ

4 , so we have

α + γ + deg(X0) ≤ 3β + 3γ

4
.(57)

From the case (m,n) = (2, 3) we know that one of the polynomials bZ1 ± tY 1 has
degree equal to β+deg(Z1) and the other one has degree less or equal to γ−deg(Z1).
Suppose first that

α + γ + deg(X0) ≤ γ − deg(Z1).(58)

By [9, Lemma 5], deg(X0) ≥ α
2 , so from (58) we get that deg(Z1) ≤ − 3

2α, which is
a contradiction unless α = 0 and deg(Z1) = 0. But then from (17), it follows that
deg(X0) = γ, a contradiction. Therefore,

α + γ + deg(X0) = β + deg(Z1).

If α < γ, by (17), we have that deg(Z1) = γ − deg(X0), so we get that deg(X0) =
β−α

2 . Now (57) gives us that γ ≤ β − 2α, which is true only if α = 0 and β = γ.
But then γ

2 = deg(X0) ≤ α+γ
4 . Thus, 2γ ≤ γ, which is a contradiction. If α = γ,

from (57) we have 2γ ≤ 3
2γ, a contradiction. It remains to consider the possibility

Z1 = sZ0 + cX0.

From (41), we obtain

bZ1 + tY1 = X0 + 2aZ1.(59)

Notice that Z1 = V1, so from [9, Lemma 5] it follows that deg(V3) = α+γ+deg(Z1).
Therefore, deg(W2) = γ +deg(bZ1 + tY 1) = α+γ +deg(Z1) and deg(bZ1 + tY 1) =
α + deg(Z1). Recall that the degree of the polynomial bZ1 + tY1 is either equal
to β + deg(Z1), or is less than or equal to γ − deg(Z1). If α < β, then we have
α + deg(Z1) ≤ γ − deg(Z1), so deg(Z1) ≤ γ−α

2 . From (17), using the fact that
deg(sZ0 − cX0) = γ + deg(X0) ≤ α+5γ

4 , we obtain 2γ ≤ 7γ−α
4 , a contradiction.

Therefore, α = β. We now transform (59) into

tY1 − bZ1 = X0 + 2Z1(a− b).(60)

The degree of the polynomial bZ1 + tY 1 is equal to β+γ
2 +deg(Y1). Thus, from (40)

and (60), it follows that

deg(X0 + 2Z1(a− b)) ≤ β + γ

2
− deg(Y1).

In the same manner as in the case (m,n) = (2, 3) (see (37)), we obtain a contra-
diction.



16 ANDREJ DUJELLA AND ANA JURASIĆ

9) Let (m,n) = (4, 2). Then z = V4 = W2. Moreover, from (4) and (5), we have

z = Z0 + 4c(2aZ0 + sX0) + 8ac2(aZ0 + sX0)
= Z1 + 2c(bZ1 + tY1).(61)

By Lemma 3, Z0 = Z1, so from (61) it follows that

2aZ0 + 2(aZ0 + sX0) + 4ac(aZ0 + sX0) = bZ1 + tY1,

and that

α + γ + deg(aZ0 + sX0) = deg(bZ1 + tY 1).(62)

Recall from the case (m, n) = (3, 2) that one of the polynomials bZ1±tY1 has degree
equal to β + deg(Z1), while the other one has degree less or equal to γ − deg(Z1).
From (6)–(9), it now follows that γ > α. If X0 is not a constant, from (34) we
conclude that deg(aZ0 + sX0) cannot be equal to 0. Hence, degree of the left hand
side of (62) is larger than γ so the right hand side has degree equal to β + deg(Z1).
Also, from (62), it follows that deg(Z1) > 0 so Z1 6= ±1. Therefore, by [9, Lemma
5], it follows that deg(Z1) ≥ γ

2 . If deg(aZ0 + sX0) = α + deg(Z0), from (62)
we get 2α = β − γ, which is possible only for α = 0 and β = γ. But, then
deg(Z1) ≤ 3γ−β

4 = γ
2 . Hence, deg(Z1) = γ

2 , and then deg(X0) = α
2 = 0, which

is a contradiction. If deg(aZ0 + sX0) = γ − deg(Z0), from (62), it follows that
deg(Z1) = α−β+2γ

2 . But then we have γ ≤ β − 2α. Again, this is possible only for
α = 0 and β = γ, so as above we get a contradiction. Hence, X0 is a constant. By
Lemma 4, X2

0 = a2 + 1 and Z0 = ±s. Then, Z1 = ±s and from (3) we have that
Y1 = ±r. Notice that α = 0, which implies that deg(Z1) = γ

2 . Now, from (62), it
follows that deg(aZ0 +sX0) = β− γ

2 . But, deg(aZ0 +sX0) = deg(s(±a+X0)) = γ
2

so β = γ. As in the case (m,n) = (3, 2), we conclude that d− = 0 or d− = a. If
d− = 0, then c = a + b ± 2r. Let b1, r1, s1, t1 denote the leading coefficients of
the polynomials b, r, s, t, respectively, then c1 = b1. Also, r1 = ±s1 and t1 = ±b1.
If we equate the leading coefficients of the polynomials on the both sides of the
equation V4 = W2, from (61) we obtain

2a(X0 ± a) = ±1,(63)

where the signs ± on both sides of the equation must be the same. If they are both
positive, then from (63), we get X0 = 3a and a2 = 1

8 . Similarly, for the negative
signs, from (63) we get X0 = −3a and a2 = 1

8 . Now, for the positive signs in (63),
from (61) we obtain that

bs± tr = 10as + 2cs.(64)

Eliminating the polynomials whose degree is equal to 3β
2 on both sides of (64), we

obtain polynomials with degree equal to β. We get

ab1 ± ab1 = 2ab1 ± 4ab1,

which is a contradiction for all combinations of the signs. For the negative signs in
(63), from (61) it follows

−bs± tr = −10as− 2cs.

As above, this implies a contradiction. Therefore, d− cannot be equal to 0. Assume
now that d− = a. From the case (m,n) = (3, 2), we know that c = b ± 2rs and
±s = r(a±X0). We also have relation (54) as well as c = e2b± 2e, t = ±(eb± 1).
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We insert these equations into (61). First we consider s with the positive sign.
After dividing by r, from (61), we get

±2eb± 1 = ±2e(2a + X0)± 4ae(e2b± 2e)(a + X0),(65)

where both sides of the above equation have the form g1b + g2, with g1 and g2

constants. Comparing the coefficients from both sides of (65), we obtain the equa-
tions 2e = 4ae3(a + X0) and ±1 = 2e(2a + X0) ± 8ae2(a + X0). These equations
together with (54) and the equation X2

0 = a2 + m form a system of four equations
in unknowns a, X0, e and m. Considering all possible combinations of the signs
±, we get 8 different systems of equations. But neither of them gives us a solution
with m = 1, so we conclude that no appropriate a and X0 exist. For the negative
sign with s, the conclusion is completely analogous. Hence, d− cannot be equal to a.

10) Assume finally that (m,n) = (5, 2) and z = V5 = W2. In this case, by (4)
and (5), we obtain

z = sZ0 + c(12asZ0 + 5X0) + 4c2(5aX0 + 4a2sZ0) + 16a2c3X0

= Z1 + 2c(bZ1 + tY1).(66)

From (6)–(9), it follows that 3γ ≤ 3β − 8α, so we have α = 0, γ = β. If Z0 = ±1,
by Lemma 3, Z1 = ±s (Z0 and Z1 have the same signs). From (2), we obtain
X0 = ±1 and from (3) Y1 = ±r. Inserting this into (66), we have

V5 = ±s + c(±12as± 5) + 4c2(±5a± 4a2s)± 16a2c3,(67)
W2 = ±s + 2c(±bs± tr).(68)

From (67), we notice that deg(V5) = deg(±16a2c3) = 3γ, so from (68) it follows
that

deg(±bs± tr) = 2γ.

But deg(±bs± tr) ≤ max(deg(±bs),deg(±tr)) = 3γ
2 , and we get a contradiction.

Hence, Z0 6= ±1. Suppose first that X0 is a constant. By Lemma 4, X2
0 = a2 +1,

Z0 = ±s and Z1 = ±1 so from (3) we have Y1 = ±r. Inserting that into (66), we
obtain

V5 = ±s2 + c(±12as2 + 5X0) + 4c2(5aX0 ± 4a2s2) + 16a2c3X0,(69)
W2 = ±1 + 2c(±b± t).(70)

From (69), we see that deg(V5) = deg(±16a2c2s2 + 16a2c3X0) ≤ 3γ and from (70)
we see that deg(W2) = γ + deg(±b ± t) ≤ 2γ. Let us denote by c1 the leading
coefficient of the polynomial c and suppose that deg(V5) < 3γ. It must be the case
that ±16a2c2

1ac1 + 16a2c3
1X0 = 0, so X0 = ±a, but this contradicts the fact that

X2
0 = a2 + 1.

Assume now that Z0 6= ±1 and X0 is not a constant. By Lemma 3, we have

Z1 = sZ0 ± cX0,

so it follows that

deg(sZ0 ± cX0) ≤ γ

2
.(71)

As in the case (m,n) = (1, 1), we can conclude that, if X0 is not a constant, then
one of the polynomials sZ0±cX0 has the maximal degree γ+deg(X0). By (17), the
degree of the other polynomial must be equal to γ−deg(X0). But γ−deg(X0) ≥ 3γ

4 ,
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so neither of the polynomials sZ0 ± cX0 satisfy the inequality (71). ¤

Now we can prove the following gap principle, which we will use in the proof of
Theorem 1.

Lemma 5. Let {a, b, c, d} be a polynomial Diophantine quadruple. Denote by α,
β, γ, δ the degrees of a, b, c, d, respectively, and assume that α ≤ β ≤ γ ≤ δ. Then

either δ ≥ 3β + 5γ

2
or d = d+ or {a, b, c, d} = Dp, where p ∈ K[X] is a nonconstant

polynomial.

Proof. Let ad + 1 = x2, bd + 1 = y2 and cd + 1 = z2. Then there exist integers
m,n ≥ 0 for which z = Vm = Wn, where (Vm) and (Wn) are the sequences defined
by (4) and (5). By Proposition 1, it follows that if {a, b, c, d} is not regular and if
it is not equal to Dp for some nonconstant p ∈ K[X], then m ≥ 3 and n ≥ 3.

Assume that n ≥ 3. From cd + 1 = z2, we have

deg(d) = 2deg(Wn)− γ.(72)

Furthermore, from [9, Lemma 5], it follows that

deg(d) ≥ 2(2deg(t) + deg(W1))− γ

= 2(β + γ + deg(tZ1 + cY 1))− γ.(73)

If β < γ, from (16) and the estimate deg(tZ1± cY 1) ≤ max(deg(tZ1), deg(cY 1)) =
β+5γ

4 , it follows that deg(tZ1 + cY 1) ≥ 3γ−β
4 . Hence, from (73), we obtain

deg(d) ≥ 3β + 5γ

2
.

If β = γ, by [9, Lemma 5] it follows that deg(W1) ≥ γ
2 , so from (73), we have

deg(d) ≥ 4γ. ¤

4. PROOFS OF THEOREM 1 AND THEOREM 2

Now we can prove our first theorem by combining the gap principle from Lemma
5 with the upper bound from [6, Proposition 1]. This proposition asserts that if
β > α and γ > 4β−α, then δ < 3γ, where α, β, γ, δ are the degrees of a, b, c, d with
α ≤ β ≤ γ ≤ δ, respectively, and {a, b, c, d} is a polynomial Diophantine quadruple.

PROOF OF THEOREM 1.
Assume that {a1, a2, ..., a8} is a polynomial Diophantine 8-tuple. Denote by αi the
degree of ai for i = 1, ..., 8. Assume that α1 ≤ α2 ≤ ... ≤ α8.

Notice that {a5, a6, a7, a8} is a polynomial Diophantine quadruple to which we

can apply Lemma 5. Since α5 > 0, it is either regular or α8 ≥ 5α7 + 3α6

2
. The set

{a4, a6, a7, a8} is also a polynomial Diophantine quadruple. Since α4 > 0, Lemma

5 also implies that a8 = d+ (for the triple {a4, a6, a7}) or α8 ≥ 5α7 + 3α6

2
. If

{a4, a6, a7, a8} and {a5, a6, a7, a8} are both regular Diophantine quadruples, then
for {a6, a7, a8} we have a4 = d+ or a4 = d−, and a5 = d+ or a5 = d−. By Lemma
2, deg(d+) = α6 + α7 + α8, which is larger than α4 and α5. Hence, a4 = a5 = d−,
which is a contradiction. Therefore, at least one of a4 and a5 is different from d−.
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We conclude that at least one of the quadruples {a4, a6, a7, a8} and {a5, a6, a7, a8}
is irregular. If we apply Lemma 5 to that irregular quadruple, we get

α8 ≥ 5α7 + 3α6

2
≥ 5α6 + 3α6

2
> 3α6.(74)

Consider now the set {a1, a4, a6, a8}. If α1 = 0, then α4 > α1. If α1 > 0, by [6,
Lemma 2], it follows that α4 ≥ α3+α2 > α1, so the first condition of [6, Proposition
1] is satisfied. We will show that the second condition is satisfied too. Consider
the polynomial Diophantine quadruple {a3, a4, a5, a6}. Since α3 > 0, by Lemma 5,

it is either regular or α6 ≥ 5α5 + 3α4

2
. The set {a2, a4, a5, a6} is also a polynomial

Diophantine quadruple. Since α2 > 0, by Lemma 5, we also have that it is either

regular or α6 ≥ 5α5 + 3α4

2
. As above, we obtain

α6 ≥ 5α5 + 3α4

2
.(75)

Applying [6, Lemma 2] to the set {a2, a3, a4, a5}, from (75), we obtain

α6 ≥ 4α4 +
5
2
α3 > 4α4 ≥ 4α4 − α1.

Therefore, the second condition of [6, Proposition 1] is satisfied too and we conclude
that

α8 < 3α6,

which contradicts (74). ¤

Now we can improve the upper bound from [6, Theorem 3].

PROOF OF THEOREM 2.
The proof is completely analogous to the proof of [6, Theorem 3]. For the upper
bound of m, we estimate the Ramsey number R(8, 6, 4, 5; 2) using the recurrence

R(n1, n2, ..., nt; 2) ≤ 2− t +
t∑

i=1

R(n1, ..., ni−1, ni − 1, ni+1, ..., nt; 2).

We also use a list of upper bounds for Ramsey numbers R(n1, n2; 2) and some other
known upper bounds e.g. R(3, 3, 3, 3; 2) ≤ 62, R(3, 3, 4; 2) ≤ 31, which are smaller
than the upper bounds obtained by the above recurrence. Using all these results
which can be found in [16] and some well known properties of Ramsey numbers
from [12], we obtain

m ≤ R(4, 5, 6, 8; 2)
≤ −2 + R(3, 5, 6, 8; 2) + R(4, 4, 6, 8; 2) + R(4, 5, 5, 8; 2) + R(4, 5, 6, 7; 2)
≤ ... ≤ 9800216 + 74786R(3, 5) + 119653R(3, 3, 4; 2) + 27420R(3, 3, 3, 3; 2)
≤ ... ≤ 16256503 < 2 · 107.
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