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1 Introduction 
 

The forecasting of each phase of telecommunications services for the business planning 
purposes has become more and more important in the last ten years, especially for 
telecommunications equipment manufacturers and operators. The long-lasting period of 
stable and predictable development of dominant fixed voice telephone service has been 
replaced by a period of intensive development of a whole spectrum of numerous 
telecommunications services. The forecasting is becoming increasingly important because 
of the high turbulence in telecommunications market, which is the result of rapid 
technological development and liberalisation. Telecommunications and their participation 
in the development of society as well as global and national economies require a research 
and development of specific forecasting methods. 

By understanding quantitative regularities during a telecommunications services life-cycle, 
a telecommunications operator gains the ability of optimal business planning of: capacities, 
investments, resources (human potentials, equipment, numeration, space, etc.), marketing 
and sales. However, typical practitioner's problem: how to bridge the gap between known 
data and anticipated value in the future is still dominant and pending due to the lack of 
reliable input data for forecasting and adequate model. 

The forecasting is a permanent process in which all new information and changes on 
market contribute to the business planning and the improvement of business performance. 
Nowadays, timely implementation of newly acquired knowledge in business processes 
represents one of the extremely rare competitive advantages. 

Scope of this Thesis is the research and development of the analytical method for 
forecasting of telecommunications service life-cycle quantitative factors with focus on 
developing of new growth models that are able to accept explanatory marketing variables 
which enable synergy of qualitative and quantitative forecasting methods. To meet 
forecasting needs during the process of business planning, the proposed analytical method, 
besides growth models, includes modules of revenue modelling and forecasting. 

 

Thesis is organised as follows: 

In Chapter 2, starting from general Methodology tree for forecasting, an introduction to 
forecasting in telecommunications is given through its scope and description of commonly 
used forecasting methods. Chapter 3 presents a review of existing methods for modelling 
and forecasting of techno-economic indicators in telecommunications business. Based on 
the analysis of the existing growth models, in Chapter 4 adaptation of existing and 
development of new growth models are presented. Models are divided according to their 
application into certain parts of telecommunications service life-cycle. In addition, Chapter 
4 brings experiences from telecommunications operations. In Chapter 5, revenue 
forecasting chain is examined by appropriate models for market share modelling, pricing 
models and average revenue per user (ARPU) forecasting. Integration of the Analytical 
method is presented in Chapter 6. 
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2 Forecasting in Telecommunications 
 

The fundamental definition of forecasting is that it is the process of estimation in unknown 
situations. Usage can differ between areas of application. For example, at the last 28th 
International Symposium on Forecasting held in June 2008, there were more than 70 
different sessions that were dealing with different areas and application of forecasting: 

Applied Portfolio Construction and Management; Bankruptcy Predictions and 
Macroeconomic Developments; Big Data Sets; Business Surveys; Climate and 
Environment; Climate Forecasting and Public Policy; Climate Forecasting; 
Combined Forecasts; Consensus Forecasts; Count Data; Crime; Data Stream 
Approaches Applied to Forecasting; Demography; Dynamic Factor Models; 
Dynamic forecasting with VAR models; Economic Cycles; Economic Modelling; 
Electricity Load Forecasting; Electricity Markets; Electricity Prices; Empirical 
Evaluation of Neural Networks; Energy; Exponential Smoothing; Finance; 
Financial Modelling; Financial time series; Flash Estimates; Forecast Performance 
Measures; Forecasting Elections in Europe; Forecasting Electricity Load Demand 
and Price; Forecasting Financial Markets; Forecasting Financial Risk; Forecasting 
French Elections; Forecasting Macroeconomic Variables with Factor Models; 
Forecasting Methods; Forecasting Systems; Forecasting with Real Time Data and 
Revisions; Healthcare; ICT Forecasting; Intermittent Demand; Judgmental and 
Scenario Forecasting; Macroeconomic Forecasting; Marketing; Modelling for 
energy and weather derivatives; Monetary Policy; Network Effects and Critical 
Mass; Neural Nets in Finance; Neural Networks for Energy; Neural Networks 
Forecasting Competition; Non-Linear Models; Non-Parametric Methods; 
Nowcasting; Oil Prices; Portfolio Optimisation and Load Forecasting; Portfolios; 
Prices; Product Forecasting; Seasonality; Short-Term Forecasting Tools for 
Economic Growth; Software; State Space Models; Supply Chain; Technology 
Forecasting; Telecom Forecasting; Theory and Applications of Neural Networks; 
Theory of Neural Networks in Forecasting; Time Series Analysis; Tourism 
Forecasting Competition; Transportation and Tourism; Wind Power Forecasting. 

Research in forecasting spans from judgmental bias elimination in horse races, weather 
forecasting as input for power generation facilities portfolio optimisation to forecasting of 
FTTH rollout in broadband telecommunications. 

 

2.1 Methodology Tree for Forecasting 
The Methodology tree for forecasting was developed by J. S. Armstrong and it is 
continuously updated according to appearance of new forecasting methods. [1],[2] The 
Methodology tree classifies all possible types of forecasting methods into categories and 
shows how they relate to one another. Dotted lines represent possible relationships. [3] 
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Figure 2.1: Methodology tree for forecasting [1], [2], [3] 

Each forecasting method presented in Figure 2.1 as well as classification branches are 
described in alphabetical order in continuation: 

Causal models 

Theory, prior research and expert domain knowledge are used to specify 
relationships between a variable to be forecast and explanatory variables. In the case 
of econometric methods, regression analysis is commonly used to estimate model 
coefficients such that they are consistent with prior knowledge. System dynamics 
models relationships using stocks and flows, often with an emphasis on feedback 
loops. Causal models aided by the use of econometrics have been found to improve 
accuracy. The use of system dynamics has not. [2] 

Classification 

If the problem is composed of groups that act in different ways in response to a 
change, one can study each group separately, and then add across segments. For 
example, in the airline industry, price has different effects on the business and 
pleasure markets. [2] 

Conjoint analysis 

Elicit preferences from consumers (or other actors) for various offerings (e.g. for 
alternative computer designs or for different political platforms) by using 
combinations of features (e.g. power and weight for a laptop computer.) Regression-
like analyses are then used to predict the most desirable design. [2] 
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Data mining 

Letting the data speak for themselves. In general, theory is not considered. Despite 
its widespread use and many claims of accuracy, we have been unable to find 
evidence that data mining provides forecasts that are more accurate than those 
resulting from alternative methods. [2] 

Data-based 

Experience and prior research are not available and so one must try to infer 
relationships from the data. [2] 

Decomposition 

The problem is addressed in parts. The parts may either be multiplicative (e.g., to 
forecast a brand's sales, one could estimate total market sales and market share) or 
additive (estimates could be made for each type of item when forecasting new 
product sales for a division). [2] 

Expert Forecasting 

Refers to forecasts obtained in a structured way from two or more experts. The most 
appropriate method depends on the conditions (e.g., time constraints, dispersal of 
knowledge, access to experts, expert motivation, need for confidentiality). [2] 

Expert systems 

Rules for forecasting are derived from the reasoning experts use when making 
forecasts. Obtain knowledge from diverse sources such as surveys, interviews, 
protocol analysis and research papers. [2] 

Extrapolation 

Use time-series data, or similar cross-sectional data, to predict. For example, 
exponential smoothing is used to extrapolate over time, diffusion models are used for 
innovations. [2] 

Game theory 

An attempt to explain, model and predict behaviour in the social world. To do these 
things, game theorists seek to identify the rules of the situation including the utility to 
each party of possible outcomes. While game theory can provide ex post analysis 
that appears insightful, there is no evidence that the method can provide useful 
forecasts. [2] 

Intentions/expectations 

Survey people about their intentions or expectations regarding their future behaviour 
or those of their organisation. Analyse the survey data to derive forecasts. [2] 

Judgmental bootstrapping 

Derive a model from knowledge of experts’ forecasts and the factors they used to 
make their forecasts using regression analysis. Useful when expert judgments have 
validity but data are scarce and where key factors do not change in the historical data 
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(such as where trying to estimate a price elasticity using time series data with little 
variation in price). [2] 

Judgmental 

Available data are inadequate for quantitative analysis or qualitative information is 
likely to increase accuracy, relevance or acceptability of forecasts. [2] 

Knowledge source 

When reliable objective data are available, they should be used. Still, one might 
benefit also from using subjective methods. [2] 

Multivariate 

Data are available on variables that might affect the behaviour of interest. [2] 

Neural network 

Information paradigms inspired by the way the human brain processes information. 
They can approximate almost any function on a closed and bounded range and are 
thus known as universal function approximators. Neural networks are black-box 
forecasting techniques and practitioners must rely on ad hoc methods in selecting 
models. As a result, it is difficult to understand relationships among the variables in 
the model. [2] 

No role 

Roles are not expected to influence behaviour, or knowledge about the roles is 
lacking, or there are many actors with different roles. [2] 

Others 

Knowledge exists about the expected behaviour of other people or organisations. [2] 

Quantitative analogies 

Experts identify analogous situations for which time-series or cross-sectional data are 
available, and rate the similarity of each analogy to the data-poor target situation. 
These inputs are used to derive a forecast; for example, to forecast demand for 
cinema seats in a new suburb, average data from cinemas in suburbs identified by 
experts as similar to the target could be used. [2] 

Regression 

A statistical procedure for estimating how explanatory variables relate to a dependent 
variable. It can be used to obtain estimates from calibration data by minimising the 
errors in fitting the data. Regression analysis is useful in that it shows relationships 
and it shows the partial effect of each variable (statistically controlling for the other 
variables) in the model. [2] 

Role playing/Simulated interaction 

In role playing, people are expected to think in ways consistent with the role and 
situation described to them. If this involves interacting with people with different 
roles for the purpose of predicting the behaviour of actual protagonists, we call it 
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simulated interaction. That is, people act out prospective interactions in a realistic 
manner. The role-players' decisions are used as forecasts of the actual decision. [2] 

Role 

People's roles influence their behaviour and there is knowledge about these roles. [2] 

Rule-based forecasting 

Expert domain knowledge and statistical techniques are combined using an expert 
system to extrapolate time series. Most series features are identified by automated 
analysis, but experts identify some factors. In particular they identify the causal 
forces acting on trends. [2] 

Segmentation 

When segments are independent, a tree structure is appropriate. When information is 
available on relationships between segments, input-output analysis, system dynamics 
and cluster analysis can be used. Of the dependent segmentation techniques, only 
input-output analysis has been found to improve accuracy. [2] 

Self 

People have valid intentions or expectations about their behaviour. Both are most 
useful when (1) responses can be obtained from a representative sample, (2) 
responses are based on good knowledge, (3) there are no reasons to lie, (4) new 
information is unlikely to change the behaviour. Intentions are more limited than 
expectations in that they are most useful when (5) the event is important, (6) the 
behaviour is planned, and (7) the respondent can fulfil the plan (so, for example, the 
behaviour is not dependent on the agreement of other people. [2] 

Statistical 

Relevant numerical data are available. [2] 

Structured analogies 

An expert lists analogies to a target, describes similarities and differences, rates 
similarity and matches each analogy's decision (or outcome) with a potential target 
situation decision (or outcome). The outcome implied by the top-rated analogy is 
used as a forecast. [2] 

Structured 

Formal methods are used to analyse the information. This means that the rules for 
analysis are written in advance and they are rigorously adhered to. Records should be 
kept of how the procedures were administered. [2] 

Theory-based 

Experience and prior research provide useful information about relationships relevant 
to the forecast. [2] 

Unaided judgment 

Experts think about a situation and predict how people will behave. They might have 
access to data and advice, but their forecasts are not aided by formal forecasting 
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methods. This is the most commonly used method. It is fast, inexpensive when only a 
few forecasts are needed, and can be used in cases where small changes are expected. 
It is most likely to be useful when the forecaster gets good feedback about the 
accuracy of his forecasts (e.g., weather forecasting, betting on sports and bidding in 
bridge games.). [2] 

Univariate 

Historical data are available on the behaviour that is to be predicted (e.g., data on 
automobile sales from 1940-2008). [2] 

Unstructured 

The information is used in an informal manner. [2] 

 

2.2 Scope of Telecommunications Forecasting 
During its life-cycle, every product or service passes through the following phases: 
introduction, growth, saturation and decline. The understanding and forecasting of each 
segment of Service life-cycle (SLC) for the business planning purposes have become more 
and more important in competitive market environment and for products/services resulting 
from emerging technologies, such as telecommunications. Forecasting is important to 
entrepreneurs and governments, but usually suffers from market fluctuation and 
uncertainty. 

Telecommunications services have similar characteristics of SLC to the following 
products/services: diffusion of new technology, consumer durables, allocations of 
restricted resources, i.e. products/services that not include repeat sales. In the rest of the 
text these indicated are called simply services (see discussion regarding used terminology 
in section 3.2). [4] In general, evolution of number of telecommunications users of entire 
set of telecommunications services is presented in Figure 2.2. [5] 

N1

N1+N2

N1+N2+N3

N1+N2+N3+N4

N1+N2+N3+N4+N5

1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000  
Figure 2.2: Evolution of number of telecommunications users  

N1 - number of governmental users, N2 - number of large enterprises, N3 - number of SME + 
‘wealthy’ households, N4 - number of SoHo + households, N5 - number of individuals [5] 
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Next step in the evolution is extending connectivity beyond human beings: machine to 
machine communication. [5] 

However, market adoption of particular service is different. For example, telex service 
observed through number of telex subscribers in Portugal presented in Figure 2.3 is bell-
shaped. SLC passes through phases of introduction (before 1976, not presented in Figure 
2.3), growth, maturity, saturation and decline due to the strong competition of other similar 
but more attractive services (fax and e-mail). [4] 
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Figure 2.3: Number of telex subscribers in Portugal 1976-2003 

Source: ITU World Telecommunication/ICT Indicators database (2005) 

Proper forecast of service market diffusion enables optimal planning of resources, 
investments, revenue, marketing and sales. Therefore, telecommunications service 
providers perform forecasting during planning and budgeting. Similarly, manufactures and 
vendors of telecommunications equipment forecast their development, production cycles, 
sales, etc. Common external factors that should be included in telecommunications 
forecasting are: 

- Competition, 
- Cause-and-effect of similar services (analogy and impact), 
- Technology, 
- Macroeconomics, 
- Regulatory. 

In general, scope of telecommunications forecasting could be defined as set of techno-
economic indicators forecasting necessary for developing business case in 
telecommunications business.  

For telecommunications service provider it usually consists of: 
- User growth forecasting, 
- Market share forecasting, 
- Volume - Pricing forecasting, 
- Average revenue per user (ARPU) forecasting and forecasting of revenue in total. 

In addition, for most business cases, planners should estimate Capital expenditure (CapEx) 
and operative expenditure (OpEx), which sometimes require forecasting procedures, as 
well. 
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2.3 Forecasting Methods in Telecommunications 
According to the available literature, software tools and the general experience in 
telecommunications forecasting, the following methods are used most often: 

- New telecommunications service penetration forecasting by using growth models 
(in most cases, the logistic and the Bass growth model); 

- Forecasting models based on seasonal variations elimination and autoregression (in 
most cases, exponential smoothing and the Box-Jenkins method); 

- Cross-section models for the forecasting based on the relations between different 
services or the relations between equal services in different markets; 

- Scenario methods; 

- Monte Carlo – for revenue, costs and net present value (NPV) forecasting. 

List of Techno-economic indicators in telecommunications business is presented in 
Appendix 1. These indicators are objects of telecommunications forecasting. Indicators can 
be divided into set of basic ones and set of compound ones, which are calculated from the 
basic ones. Usually, telecommunications operators report on their techno-economic 
indicators in quarterly and/or annual reports. National regulatory agencies report on 
techno-economic indicators for whole market of correspondent country, and market 
analysis firms and associations publish techno-economic indicators for different 
markets/countries/regions. 

There is a wide variety of already existing non-specific methods that are used for the 
purpose of forecasting in telecommunications business. These methods can be divided into 
the following categories: Qualitative methods and Quantitative methods. 

 

2.3.1 Qualitative Methods 

Qualitative methods rely exclusively on the intuition of experts, while the statistical 
analysis of available data is not taken into account. The most important among them 
are: 

- Judgmental method – based on the experience of experts who forecast future 
conditions. The results of forecasting can also be numerically expressed, but 
are not an outcome of applying analytical or statistical models. [1], [6] 

- Delphi method – also based on expert knowledge, but with a detailed 
procedure of reconciling independent predictions of future state, with 
consensus as a goal. [7] 

- Scenario method – based on a set of terms that regulate the predicting of 
future events. Changing conditions results with several possible outcomes 
concerning an individual case. Taking it all into account, the experts choose 
the most probable scenario. [8] 
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2.3.2 Quantitative Methods 

Quantitative methods are based on analytical and statistical models of the observed 
phenomenon. It is presumed, for the forecasting purposes, that the developed models 
will also be valid for the phenomenon description in the future. The most important 
methods are: 

- Time series methods – predict the future based on the extrapolation of the 
available past information. [6],[9] 

- Causal methods – recognise the relations between the variables which are to 
be forecasted and the independent variables which can be interpreted. Their 
elements are regression models and various techniques for the evaluation of 
their applicability, as well as the reliability of forecasting results. [1] 

 

Based on the abovementioned categorisation of forecasting methods in 
telecommunications business and the Methodology tree for forecasting presented in section 
2.1, focus of this Thesis will be on the following quantitative methods: Extrapolation 
models, Quantitative analogies, Rule-base forecasting and Causal methods, which are 
marked green on the Methodology tree. 
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3 Review of Quantitative Methods for Modelling and Forecasting 
of Techno-Economic Indicators in Telecommunications 
Business 

 

Many research studies have focused on market forecasting from a perspective of 
technological forecasting. For example, by analysing the underlying technologies, related 
costs of innovation and learning [10]; technological forecasting competitive intelligence 
and the innovation process [11]; the simulation of emerging technologies [12]; technology 
management, technology mapping and innovation indicators [13]; technological progress 
and the technology cycle time indicator [14]; product/service pre-launch forecasting [15], 
etc. Comprehensive overview of models appropriate for technological forecasting and their 
forecasting performance are made in [16] and [17]. 

The pace of technological progress is a construct that has evolved from technological 
change theories. Measuring the pace of technological progress is believed to be important 
for both technology management and technology forecasting. In [14] was developed a new 
objective measure of the pace of technological progress called the technology cycle time 
indicator (TCT). The TCT indicator was used in two comparison analyses: 1) assessing the 
pace of progress of technologies; and 2) assessing the position of various countries 
patenting in a particular technology field. The findings revealed that the TCT provided a 
valid assessment in each situation. In [15] was conducted research for planning the launch 
of a satellite television service, leading to a prelaunch forecast of subscriptions of satellite 
television over a five-year horizon. The forecast was based on the Bass model. They 
derived parameters of the model in part from stated-intentions data from potential 
consumers and in part by guessing by analogy. The forecast of the adoption and diffusion 
of satellite television proved to be quite good in comparison with actual subscriptions over 
the five-year period. 

29 models that the literature suggests are appropriate for technological forecasting were 
identified in [16]. These models are divided into three classes according to the timing of 
the point of inflexion in the innovation or substitution process. Faced with a given data set 
and such a choice, the issue of model selection needs to be addressed. Evidence used to aid 
model selection was drawn from measures of model fit and model stability. An analysis of 
the forecasting performance of these models using simulated data sets showed that it is 
easier to identify a class of possible models rather than the “best” model. This leads to the 
combining of model forecasts. The performance of the combined forecasts appeared 
promising with a tendency to outperform the individual component models. 

The observed patterns of service life-cycles indicate the “stage” concerns. Such concerns 
include stage identification, stage-based strategies and, a new concept of “stage modelling” 
introduced in [18]. Stage modelling is concerned with modelling as well as aggregating 
individual stages in an overall inter-influence manner. Thus, stage modelling not only 
preserves the respective characteristics of the stages but also may be explored for the stage-
related strategies. To date, this issue has not yet been explored in the product life-cycle 
(PLC) / service life-cycle (SLC) literature. In [18] was proposed an approach to modelling 
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PLCs/SLCs by addressing the stage characteristic-preserving aspect. The new service 
diffusion was also demonstrated which was bettered by this new approach. In [19] was 
applied the service life-cycle theory to the issue of service line management with two goals 
in mind: 1) to understand how service line management evolves over the life of an industry 
and 2) to compare modelling approaches which emphasise economies of scale with the 
traditional model of the service life-cycle, which emphasises dominant designs. This 
author found that some models of the service life-cycle theory in combination with the 
concept of service line management provided a better explanation for the evolution of 
competition in the mobile phone industry than the traditional service life-cycle model.  

In order to model the market evolution and the resulting changes, the concept of 
technological paradigms and the concept of technological regimes were integrated in [20] 
into a service life-cycle model. The simulations performed with this model helped to 
understand how the dynamics of market evolution shapes market performance and 
competition. The results of the simulation runs showed a much more differentiated picture 
than economic intuition suggests and therefore give useful hints for companies’ strategies 
and innovation policy. The most striking result of the simulation runs for entrepreneurial 
strategies was that there were markets that were only interesting for firms which wanted to 
enter a market to realise some profits and then exit again, whereas other markets were only 
interesting for companies which wanted to survive in the long-run. 

The service life-cycle theory explains how the high degree of uncertainty, as regards 
service designs and production methods, which is connected to the early stages of the 
service life-cycle, requires a high level of knowledge-intensity. Since uncertainty decreases 
over the service life-cycle, less knowledge is needed in production during later stages of 
the service life-cycle. This implies that knowledge-intensity differs for firms that exit and 
enter in different stages of the service life-cycle. The empirical results found in [21] 
showed that entrants in the early stages of the service life are more knowledge-intensive 
than incumbent companies. These authors have also found that firms exiting in early stages 
of the service life-cycle are more knowledge-intensive than companies exiting in later 
stages. 

The best known model for a full description of the genesis and extensions of new-service 
diffusion is the Bass model. As it is discussed in [17], the basic Bass model has many 
apparent limitations, the most important of which is the calibration of the parameters when 
limited data are available as is the case with new services. Unfortunately, the parameters of 
the Bass diffusion model cannot be estimated, either because there are too few data points 
available or alternatively, unconstrained estimation leads to implausible results. The 
generalised Bass model incorporates marketing or economic variables, such as pricing and 
advertising, expands model usage not only for early phases of SLC, but also for the phases 
when service faces with changes of its market potential [22], [23]. 

 

3.1 Telecommunications Service Life-Cycle 
In general, during its life-cycle, after design phase, every service passes through the 
following phases: introduction, growth, maturity and decline, resembling the profile of the 
technology life-cycle and its associated market-growth profile. The understanding of each 



Review of Quantitative Methods for Modelling and Forecasting of Techno-Economic Indicators in 
Telecommunications Business 

13 

segment of service life-cycle (SLC) for the business planning purposes is especially 
important in highly competitive market environment and for services resulting from 
emerging technologies. For the illustration, in the example of number of payphones in 
Finland (Figure 3.1), market adoption consists of several growth and decline phases. 
Moreover, number of payphones will not fade out soon, although it should be sensible. The 
reason is the universal service regulatory framework for telecommunications. [4] 
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Figure 3.1: Number of public payphones in Finland 1980-2003 

Source: ITU World Telecommunication/ICT Indicators database (2005) 

Therefore, a typical service during its life-cycle passes through the specific phases of 
market adoption, which can be observed through the number of service users. Figure 3.2, 
presents all possible combinations of number of users' growth/decline cycles: growth-
growth, growth-decline, decline-growth and decline-decline with corresponding SLC time 
intervals: T1-T2, T2-T3, T3-T4 and T5-T6: 

T1 - Service is unique and new on the market. Its market capacity M1 is identical to 
the current total market capacity. 

T2 - New market opportunities for that service emerge (economical or technological). 
Its market capacity and current total market capacity are increased to M2 (e.g. 
introduction of pre-paid for telecom services). 

T3 - Service is confronted with the first competition in unchanged market capacity 
(e.g. appearance of the 2nd mobile operator). Number of users N(t) decreases and 
service market capacity declines to M3 level. 

T4 - Counter-attack of observed service provider occurs – certain number of users are 
coming back and/or new users are captured (e.g. in case of service price/tariff 
reduction). Service market capacity is increased to M4. 

T5 and T6 - Further attacks from competitive service(s) lead to the number of users 
N(t) and market capacity M decrease. Competitive service can be identical 
service but offered by other provider(s), or similar, but technologically more 
advanced service(s). The last part of SLC is characterised with service 
obsolesce, substitution by new technology and service disappearance form the 
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market (e.g. NMT analogue mobile network substitution by digital GSM 
network). 
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Figure 3.2: Typical market adoption of service during entire SLC 

N(t) - number of the users, Mi  - market capacities 

Only at the beginning of SLC, simple S shaped growth models can be utilised, such as: 
Logistic growth model, Bass model and Richards model [24]. For later phases of SLC, 
more complex models should be used, e.g. Bi-Logistic growth model [25]. 

 

3.2 Growth Models 
Growth models represent similarities between growth in nature and growth in economy. 
They are widely used in quantitative research in order to understand the forces that 
influence growth in sense of its dynamics, market capacities as well as forecasting of 
growth in future. Particularly, diffusion of innovation and new technology, market 
adoption of consumer durables and subscription services, as well as allocations of 
restricted resources have S-shaped (sigmoidal) growth.  

According to [23], before the Bass model emerged, growth models were associated with 
terms new technology diffusion or innovation diffusion. Bass was the first who used the 
term new product rather than two abovementioned terms. Although the approach to 
modelling the diffusion of a technology or a new consumer durable is very similar, in 
recent years, new product applications in marketing have tended to dominate in the overall 
diffusion literature. [23] 

Being aware of numerous discussions regarding "what is" telecommunications service and 
"what is" telecommunications product, as well as of the domination of term 
telecommunications services in literature related to telecommunications business (as 
mentioned before), in the rest of the text, telecommunications products/services that not 
include repeat sales are denoted simply as services. In addition, cumulative amount/count 
of users that have adopted certain telecommunications service is in this text more often 
denoted as number of users (instead of using specific terms, such as: number of customers, 
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number of subscribers, number of consumers, number of connections, number of active 
SIM cards, number of active lines, etc.). [24] 

 

3.2.1 Growth Indicators 

Change in number of users during time interval (t-Δt, t) consists of new adopters and the 
outflow: 

- Leavers, which stop to use service; and 
- Switchers, which continue to use service, but from another provider. 

Number of users at time t is: 
)()()()()()( tNetAddttNtOutflowtGrossAddttNtN Δ+Δ−=Δ−Δ+Δ−=  (3.1) 

Indicators which are commonly used related to growth are: 
- Growth rate (GR) 
- Compound annual growth rate (CAGR) and 
- Churn rate (CR). 

 

Growth rate 

Growth rate (GR) is a basic indicator of growth which gives percent increase (decrease) per 
unit time: 

%100
)(
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Δ−−=Δ ttN
ttNtNGR t  (3.2) 

where N(t) is the number of adopted services in time point t, and N(t-Δt) is the number of 
adopted services in time point t-Δt. It can be shown that growth with constant growth rate 
has the form of exponential function: 
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Exponential growth is unlimited and does not take into consideration the influence of 
market capacity to diffusion of the observed service. Thus, this model can be used only on 
limited time interval that correspondents to the initial growth of new service. 

If growth rate is given for time period Δτ which is different than Δt, formula for GRΔt can 
be obtained from (3.2) and (3.3), as follows: 
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For example, if growth rate is given on the yearly basis (GRY), growth rate per quarter 
(GRQ) is (Note: the right side approximation is based on the Taylor series for 4 xy = ): 
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On the contrary, yearly growth rate based on quarterly growth rate is: 
4324 4641)1( QQQQQY GRGRGRGRGRGR +++=−+=  

 

Compound annual growth rate 

Compound annual growth rate (CAGR) is commonly used to show average growth rates 
over a range of years. It is calculated as geometric average of annual growth rates: 
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CAGR  (3.5) 

 

According to (3.5), value for CAGR strongly depends on values for number of adopted 
services for year1 and year2. Due to the fact that yearly number of adopted services is 
regularly reported on the end-of-year basis, in the cases when service starts near the end of 
the starting year, N(year1) is relatively low. This has the consequence in extremely high 
value of calculated CAGR. 

 

Churn rate 

For the measurement of relative level of outflows in (3.1), churn rate indicator CR is used 
(3.6): 

)(
)(

tN
tOutflowCR t

Δ=Δ  (3.6) 

Special attention on churn rate is given to high competitive markets such as mobile 
telecommunications. It is worth mentioning that some authors and/or business intelligence 
sources use [ N(t) + N(t-Δt) ]/2 as denominator in (3.6) instead of N(t). 

If churn rate is given for a time period Δτ which is different than Δt, approximation is as 
follows: 

ττ ΔΔ Δ
Δ≈ CRtCR t  

For example, churn rate given on a quarterly basis (CRQ) is approximately three times 
higher than monthly churn rate (CRM). 

 

3.2.2 Determination of Growth Model Parameters 

For time series growth model f (ti ;a1,a2,...,ak) based on k parameters a1,...,ak, at least k 
known data points (ti; N(ti)) are needed for full parameter determination. In cases when 
exactly k data points are available, parameters ai are solution of system of equations (3.7): 

kiaaatftN kii ,...,1,0),...,,;()( 21 ==−  (3.7) 
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System (3.7) is usually nonlinear system, so iterative numerical methods needed to be 
performed for its solution (e.g. Newton's iterative method). 

In cases when k or more data points are available, weighted least squares method can be 
used for parameters determination to adjust the parameters of a model so as to best fit a 
data set. Namely, objective is to minimise sum of squared difference between data points 
and model evaluated points: 

[ ] 2
21

1
),...,,;()( kii

n

i
i aaatftNwS −⋅=∑

=
 (3.8) 

where wi are weights. When weights are equal to 1 (wi = 1), the method is called Ordinary 
least squares method (OLS). 

Minimisation of (3.8) can be done by software tools such as Excel solver. Analytically, 
values of parameters are resulting from solution of system of equations (3.9): 

kj
a
S

j
,...,1,0 ==

∂
∂

 (3.9) 

By the use of least squares method, values obtained for parameters are statistically 
smoothed, i.e. the influence on parameter values is reduced due to particular measurement 
errors (such as unanticipated seasonal variation, uncertain measure, etc.). 

 

3.2.3 Growth Forecasting 

Growth forecasting relies on the basic principle: growth model will be valid in the 
perceivable future, and forecasting result could be obtainable by extrapolation of the 
observed values sequentially through time and supplementary information. In general, this 
principle is valid only for stable markets where internal forces remain the same (e.g. same 
market segment boundaries, competition, cause-and-effect among services, etc.) and 
without change of external influences (e.g. technology, macroeconomics, purchasing 
power, regulatory, etc. changes). This type of forecasting belongs to quantitative time 
series methods. 

For the forecasting purposes, parameter determination is usually focused on the time 
interval near the last observed data point. Thus, weights in equation (3.8) can be set to 
higher value for the most recent data points, than for data points in far history. For 
example, geometric series for weights: 

1,1 >= − q
q

w ini  (3.10) 

leads to the following weights: 1 for (the last known point) tn , 1/q  for tn-1 (the penultimate 
known point), 1/q2  for tn-2, etc. 

In some forecasting cases, model f (ti ;a1,a2,...,ak) is modified to include the fixed value of 
the last data point. Therefore, model has one parameter less, because ak is obtained from 
the equation: 

0),...,,;()( 21 =− knn aaatftN  (3.11) 
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The abovementioned simplification is used only when it is certain that the last data point is 
obtained with negligible measurement error. 

Furthermore, relationships between model parameters and explanatory marketing variables 
can be used for the forecasting purposes, aiming at reduction of number of unknown 
parameters in growth model f (ti ;a1,a2,...,ak), e.g. including information of exact time when 
service introduction starts, time and value of anticipated sales maximum, market capacity, 
service price, advertising expenditures, etc. 

In general, grouping of forecast results for specific market segments (e.g. separate for 
residential segment, for business segment and/or for segments related to specific life-
styles, etc.) yields to better forecasting accuracy than aggregate forecasting performed for 
the whole market. 

Due to measurement errors of input data, associated uncertainties of estimated model 
parameters can be represented by a confidence interval. Consequently, forecasting result 
can be represented by a prediction interval between pessimistic and optimistic values. 
Range depends on a determined confidence level, which is typically 95 %. Besides that, 
sensitivity analysis of parameters and/or explanatory variables should be deployed to 
examine what effect their variations have upon the forecasting result. 

 

3.3 Logistic Growth Model 
The logistic model L(t) describes growth of the number of service users observed over time 
in a closed market, without the impact of any other service. The model is defined with 
three parameters: M – market capacity, a – growth rate parameter and b – time shift 
parameter. To emphasise model dependence of its parameters, it is convenient to indicate 
the model as L(t; M, a, b) [24]: 

)(1
)();( btae

MtLba,M,tL −−+
==  (3.12) 

The logistic model is widely used growth model with many useful properties for 
technological and market development forecasting. The model (3.12) is the solution of 
differential equation (3.13) consisting of exponential growth term and negative feedback 
term. In the beginning, growth of the logistic model is identical to exponential growth, but 
later negative feedback slows the gradient of growth as N(t) is approaching to market 
capacity limit M: 
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Fig. 3.3 shows the effects of change in parameters a, b and M on the form of S-curve: 
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Figure 3.3: Effect of logistic model parameter change on the form of S-curve 
Cases (from top-left to bottom-right): positive and negative growth rate parameter; 50 % 
decrease of growth rate parameter; decrease of time shift parameter by 5 time units (e.g. 

years); and 30 % decrease of market capacity parameter 

 

 

 

3.3.1 Logistic Model through Two Fixed Points 

Modification of model (3.12) which has embedded values of two data points (ts , u·M) and 
(te , v·M) is shown in Figure 3.4: For this case, it is suitable to define new parameters ts, Δt, 
u and v, which have explanatory value instead of a and b in (3.12): time ts when service 
perceivable starts with penetration level u, Δt – period needed for penetration grows to the 
level v, e.g. characteristic duration from service start to service maturity [4]. 
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Figure 3.4: Logistic model of growth defined via parameters M, ts, Δt, u and v 

 

Parameters a and b in (3.12) should be substituted with expressions (3.14) and (3.15), 
which are dependent on input parameters u, v and Δt: 
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Condition that must be satisfied for equations (3.14) and (3.15) is: 0 < u < v < 1. This 
modified model L(t; M, ts, Δt, u, v) needs five parameters against three needed for ordinary 
logistic model, but the reason lies in dependence between Δt and u and v. In the case of 
symmetrical u and v, i.e. u = 1-v, equations become simpler [26]: 
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Therefore, model L(t; M, ts, Δt, u) needs four parameters against three needed for ordinary 
logistic model, because of dependence between Δt and u: 
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Condition that must be satisfied for equation (3.18) is: 0 < u < 1.  
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3.3.2 Local Logistic Model - Logistic Model through One Fixed Point 

Modification which has embedded value of one data point (tp , N(tp)) in model (3.12) is 
called local logistic model LL(t) [27]: 
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The local logistic model is useful for forecasting from the last observed point t > tp. The 
idea is that it is better to start forecasting from a known base rather than to rely on an 
anticipated but un-modelled reversion to a historical trend. 
 

3.4 Bass Model 
The best known model for a full description of the genesis and extensions of new service 
market adoption is the Bass model. In distinction from the Logistic growth model, the Bass 
model B(t) introduces the effect of innovators via coefficient of innovation p, in differential 
equation of growth (3.12) which corrected deficiency of simple logistic growth ("hardly 
starts to grow up" problem and that t for which L(t) = 0 does not exist). The model 
considers a population of M adopters who are both innovators (with a constant propensity 
to purchase) and imitators (whose propensity to purchase is influenced by the amount of 
previous purchasing). [28], [29] 
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(Logistic growth) 
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Solution of differential equation (3.20) gives Bass diffusion model (3.21) defined by four 
parameters: M – market capacity; p – coefficient of innovation, p > 0; q – coefficient of 
imitation, q ≥ 0 and ts – time when service is introduced, B(ts) = 0. To emphasise model 
dependence of its parameters, it is convenient to indicate the model as B(t; M, p, q, ts), 
t ≥ ts: 
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The Bass model has a shape of S-curve, identical to the Logistic growth model, but shifted 
down on y-axis. Figure 3.5 shows the effects of different values of parameters p and q on 
form of S-curve, with fixed values for M and ts: 
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Figure 3.5: Effects of different values of parameters p and q  

Chosen values are explained under the section 4.1.6: Bass model with explanatory 
parameters 

 

3.4.1 Generalisation of Bass Model 

Generalisations of the Bass model incorporate marketing variables, such as pricing and 
advertising, expanding model usage not only for early phases of SLC, but also for the 
phases when service faces changes of its market capacity. 

The well-known Generalised Bass model incorporates the effect of service price and the 
effect of advertising on the likelihood of adoption. Generalised form of the Bass model in 
recursive form is given by [30]: 
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Z(t) is multiplicative factor consisting of: 
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where are: α – coefficient capturing the percentage increase in diffusion speed resulting 
from a percentage decrease in price; P(t) – price in period t; β – coefficient capturing the 
percentage increase in diffusion speed resulting from a percentage increase in advertising, 
A(t) – advertising in period t. It is worth mentioning that helpful software tools exist for 
this model (e.g. GBASS Excel Add-In). 
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Another well-known extension is the Norton-Bass model that describes sales of multiple 
generations of services. The model deals with sales of successive generations of services in 
those cases where adopters continue buying the service at a constant rate and buyers of 
earlier generations gravitate to later generations according to the Bass model cumulative 
distribution. Modelling of each service generation requires determination of four 
parameters.[31] 

 

3.5 Richards Model 
The logistic model has fixed inflexion point I (b, M/2), which is not crucial for the most 
forecasting purposes, but it is solved with the Richards model of growth, which is 
sometimes called the four-parameter logistic model [32]: 
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with parameters: M – market capacity, a – growth rate parameter, b – time shift parameter 
and c – shape parameter which determines position of the inflexion point. R(t) has 
inflexion for t = tI: 
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Minimal value of R(tI)/M arises for c → ∞ and cannot be smaller than e-1 ≈ 0.368 (minimal 
vertical position of an inflexion point). For c = 1 the Richards model is identical to the 
logistic model and R(tI)/M = 0.5 . Maximal value is without restriction, i.e. R(tI)/M → 1 for 
c → 0: 
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3.6 Recursive Growth Models 
In reference [33], a full description of the genesis and extensions of new-product diffusion 
models is given and summarised in general form of growth model as differential equation: 

[ ])()()( tNMtg
dt

tdN −⋅=  (3.26) 

where N(t) is number of users who have adopted a new product/service, M is market 
capacity and g(t) is function which gives different forms of the S-shaped adoption process. 
Based on this representation, the original Bass model has g(t) defined as: 
g(t) ≡ p + q⋅N(t)/M  

For small time intervals Δt expression (3.26) gives general recursive form of growth 
models: 

[ ])()()()( tNMtgttNttN −⋅⋅Δ+=Δ+  (3.27) 
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Different choices of function g(t) that is assumed to characterise the typical adoption 
process for different types of services and market segments. The main disadvantage of 
recursive growth models is that they usually have not got a correspondent explicit form. 

 

3.7 Bi-Logistic Growth Model 
In reference [25], the standard 3-parameter form of the logistic growth model is multiplied 
in a way to model several periods (segments of SLC) of growth. In the case of two well-
defined serial logistic growth pulses, it is possible to split the time-series data set in two 
and model each set with a separate 3-parameter logistic function. This method is limited 
because it is often unclear exactly where to split the data set. Cases where one process ends 
entirely before the second begins appear rarely. Problems arise in assigning values from 
the "overlap" period to the first or second pulse. The Bi-logistic growth is proposed for 
time-series data modelling [25], [34]: 
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where Δti is characteristic duration, Mi is market capacity, and ti is mid-point of logistic 
model (point of inflexion). Based on this model, the same authors developed software tool 
Loglet-Lab which is capable to decompose growth into three separate logistic curves [34]. 

 

   
Figure 3.6: Decomposition of complex growth on auxiliary S-shaped curves 

by Loglet-Lab Software tool [35] 
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4 Developing of New Growth Models for Service Life-Cycle 
Segments 

 

The principles described below are followed during developing of new growth models for 
service life-cycle segments for the forecasting purposes: 

1. Existing models, based on quantitative time series forecasting, are modified in a 
way to be able to accept external variables as model parameters: explanatory 
marketing variables, business operations information and environmental variables. 
Moreover, auxiliary parameters are introduced in models to enable adjusting of 
model to the specific practical requirements. The result is an optimal combination 
of qualitative and quantitative methods. 

2. Existing models are modified to be suitable for forecasting purposes. Namely, 
usage of one model is different if the objective is to fit historical data or if the 
objective is to extrapolate (forecast) values in future. Based on that requirement, the 
existing models are reparametrised to treat the last known data point as the fixed 
point in model. 

3. New models are developed by generalisation and/or synergy of the existing ones 
which enhance their usability. New models follow principles 1 and 2, as well. 

4. Weighted least squares method is preferred for model parameter determination 
where weights are set to the higher value for the most recent data points, than for 
data points in far history. 

5. It is assumed that growth/decline of each segment of service life-cycle is S shaped. 

 

The above described principles are illustrated in Figure 4.1. 
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Figure 4.1: Flowchart for developing of new growth models for the forecasting purposes 
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The above described growth model, that combines qualitative and quantitative forecasting 
approach, should have the following general form: 

N(t) = f (t; {αi}, {βi}, {γi}) 
where are: 

{αi} Set of model parameters - resulting from fit of time series history:  
ti, N(ti), i = 1,...,n;  

{βi} Set of explanatory parameters - resulting from qualitative/judgmental 
forecasting; for example: ts – time of launch; te, N (te) – target point in the 
future; M – (local) market capacity of service; tps – time of peak of sales, etc. 

{γi} Set of auxiliary parameters in model which allows forecasting practitioner to 
adapt model to her/his specific needs. 

By this concept, environmental variables (obtainable from public databases, agencies & 
associations, market research companies, company information, investment banks, etc.) 
such as: 

- User perspective, 
- Competition, 
- Cause-and-effect of similar services (analogy & impact), 
- Technology, 
- Macroeconomics, 
- Regulation; 

as well as business operations information (obtainable from internal knowledge sources 
and management) such as: 

- Time of service launch, 
- Capability of deployment, 
- Capability of sales; 

can be included in the growth model. 

 

4.1 Developing of New Growth Models for the First Segment of 
Service Life-Cycle 

In the following sections, the logistic model, the Bass model and the Richards model are 
analysed in detail, and the main task is to find possibilities for environmental variables 
incorporation. Principles stated in the introduction of Chapter 4 were used for the existing 
logistic model improvement and development of new models that are based on the Bass 
model and the Richards model: principle of local model (which modifies model for 
practical forecasting purposes) and principle of model through two fixed points (which is 
suitable for pre-launch forecasting). New models include explanatory marketing variables 
and exploit in a new, more efficient way the synergy of qualitative and quantitative 
forecasting methods and are suitable for growth forecasting related to the first segment of 
telecommunications service life-cycle. 

In addition, the analysis of growth models that are commonly used for the forecasting 
purposes will define the minimum and sufficient set of input data for market adoption 
forecasting in the first segment of service life-cycle. [23], [24] 
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4.1.1 Analysis of Logistic Model of Growth 

 

From (3.13) follows the discrete recursive form of logistic growth, which is useful 
approximation of (3.12) for small time intervals Δt: 

0)(1)()()( →Δ⇔⎟
⎠
⎞

⎜
⎝
⎛ Δ−−⋅Δ−⋅Δ⋅+Δ−= t

M
ttLttLtattLtL  (4.1) 

First derivative of L(t) is given in (4): 
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Contrary to S-shaped cumulative adoption L(t), adoption per period (sales) is bell-shaped 
curve (see Figure 4.2), and it is proportional to the first derivative L'(t) of cumulative 
adoption: 
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Figure 4.2: Characteristic values and points of logistic model of growth 

 

Maximum of L'(t), as well as the time point when L(t) has inflexion, is obtained from the 
solution of equation L''(t) = 0, where L''(t) is the second derivative of L(t): 
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From (4.4) follows that L(t) has inflexion for t = b, which is for a > 0 the maximum of 
L'(t), too (see Figure 4.2): 
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4
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Value of logistic model at point of inflexion is (see Figure 4.2) L(b) = M/2. 



Developing of New Growth Models for Service Life-Cycle Segments 

28 

Accordingly, maximum of sales occurs at t = b when penetration is 50 %. For t1 and t2 near 
b, from (4.3) follows that sales in time interval [t1 , t2] can be approximated by: 

4
)(),( 1221

aMttttSales ⋅−≈  (4.6) 

Similarly, for t1 and t2 near b, logistic model can be approximated with straight line: 

4
2)()( MbtaMtL +−≈  

Logistic model is centro-symmetric regarding inflexion point I (b, M/2): 
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With substitution t = b+Δt in (4.7), follows expression which directly gives the value for 
L(t) at centro-symmetric time point: 

);2();( ba,M,tbLMba,M,tL −−=  

In addition, logistic model with negative a is line-symmetric regarding axis y = M/2 to the 
one with positive a (see Figure 3.3, top-left graph): 
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Asymptotes of logistic growth for positive and negative parameter a, can be summarised in 
(4.9): 
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Growth rate GR for time interval Δt is according to (3.2): 
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For positive a, growth rate is always positive and maximum of growth rate is when t → -∞ 
(see Figure 4.2): 
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When t = b, growth rate is half of its maximum value: 
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The above described characteristics of logistic model of growth with its explanatory 
attributes can be used as helpful input for estimation or assessment of model parameters for 
the forecasting purposes. 
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4.1.1.1 Logistic Model through Two Points for Forecasting of New Services 
Adoption Prior to Launch 

 

Logistic model through two fixed points is described in section 3.3.1. Used simplification 
gives a framework for the forecasting of new service adoption when little or no data are 
available. Table 4.1 presents resulting models for typical values of characteristic duration 
Δt for services, service families and basic technologies according to equation (3.18, but 
uniformed on the same natural logarithm base e. 

Table 4.1: Framework for forecasting of new services adoption prior to launch [4] 

 u = 5 %, v = 95 % u = 10 %, v = 90 % 

Δt = 2 years )1(9442 s1
)( -tt.e

MtN −−+
=  )1(1972 s1

)( −−−+
= tt.e

MtN  

Δt = 5 years )52(1781 s1
)( .tt.e

MtN −−−+
=  )52(8790 s1

)( .tt.e
MtN −−−+

=  

Δt = 10 years )5(5890 s1
)( −−−+

= tt.e
MtN  )5(4390 s1

)( −−−+
= tt.e

MtN  

Δt = 15 years )57(3930 s1
)( .tt.e

MtN −−−+
=  )57(2930 s1

)( .tt.e
MtN −−−+

=  

Characteristic duration Δt according to [36] can be assumed as follows: services consist of 
units sold that have typical life-cycle of 6 to 10 quarters; service families consist of related 
services that have a typical business cycle of 5 years and basic technologies consist of a set 
of related service families that have a typical cycle of 10 to 15 years. 

 

4.1.1.2 Logistic Model through Three Points 

 

The logistic model L(t; M, a, b) is fully defined with three data points, (ti, N(ti)), i = 1, 2, 3 
which make possible the determination of parameters M, a and b from the system of three 
non-linear equations: 
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In general, the above system has no exact analytical solution and iterative numerical 
method should be used. The Newton iterative method for finding approximations to the 
root of a real-valued function F regarding parameter M will be applied to the equation 
(4.13) derived from (4.12): 
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Parameters a and b can be obtained directly from (4.15) and (4.16) depending on assumed 
value for M. According to the Newton method, next approximation for M is: 
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Procedure for finding parameters a, b and M: 

1. Assume the initial value for M, Mn = max{N(t1), N(t2), N(t3)}, n = 1 

2. Calculate the approximation for parameters a and b using value for M = Mn 
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3. Calculate next approximation for M, Mn+1 according to (4.14) 
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4. Repeat steps 2 and 3 using value for M = Mn+1 until satisfactory accuracy ε for M 
is obtained, i.e.: 

 ε≤−+ nn MM 1  

 

Special case - equidistant time intervals 

For equidistant ti, i.e. t2 - t1 = t3 - t2 = Δt, from system of equations (4.12), analytical 
expressions for M, a and b can be derived: 
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According to the requirement that argument of logarithm must be greater than zero, 
equations (4.18) and (4.19) give the following conditions that have to be satisfied: 
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Condition (4.20) is satisfied for data points that have monotone growth or monotone 
decline, and condition (4.21) puts limits on growth / decline gradient. It can be shown, that 
condition (4.21) is satisfied for growth which has a smaller gradient than exponential 
growth N(t)=A·B t. In other words, data points originated from exponential growth have no 
embedded information about growth saturation and cannot be modelled by the logistic 
model because M → ∞. In such cases, the described procedure for finding model 
parameters diverges. 

 

4.1.2 Uncertainty of Forecasted Service Market Capacity Obtained by 
Logistic Model 

One of the main challenges for forecasters is determination of service market capacity. In 
case of quantitative methods, accuracy of forecasted market capacity is directly dependent 
on quality of known time-series data. Quality of input data usually decreases due to: errors 
in measurement, effect of unexpected/unrecognised market sub-segment growth/decline, 
effect marketing & sales push, uncorrected seasonal deviation, etc. In [37] uncertainties 
and the associated confidence levels are given as a function of the uncertainty on the input 
data points and the length of the historical period. This study is based on some 35,000 S-
curve fits on simulated data covering a variety of conditions. Resulting uncertainties for 
obtained parameters in [37] are given in tables and graphs but without explicit (analytical) 
expressions. 

Based on principles used in [37] and analytical form of the logistic model through three 
points (see section 4.1.1.2), uncertainty of forecasted new service market capacity will be 
analysed in this section. According to that, the new procedure for direct analytical 
determination of uncertainty intervals for forecasted service market capacity is developed, 
enabling assessment of logistic model sensitivity to quality of input data. 

Figure 4.3 brings an example of a new telecom service, where number of users for 2002, 
2005 and 2008 are known but with measurement error of ±5 %. Resulting service market 
capacity without error should be M = 100. Encompassing possible error of measurement, 
market capacity lies is the interval from ML = 76.6 (-23.3 %) to MH = 152.6 (+52.6 %). 
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Figure 4.3: Uncertainty of forecasted new service market capacity [38] 

Example of case when known data points have measurement error of ±5 % 
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Suppose that 3 measures of number of users Y1, Y2 and Y3 on time points t1, t2=t1+Δt, 
t3=t1+2Δt, are available. It is assumed that measurements have relative deviation in 
comparison to the theoretical logistic model of which absolute value is lower than certain 
error level e. [38] 
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where are: Yi - measured number of users, Li - number of users according to (theoretical) 
logistic model, ei - relative error. 

Based on measured data Yi, it is possible to find market capacity MY based on expression 
(4.17): 
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Resulting market capacity MY is only dependent on values for Yi: 

( ))();(),( 321 tYtYtYfMY =  (4.26) 

 

The lowest M, ML is obtained in case when error in ending points is negative (e1 = e3 = -e) 
and in the middle point positive (e2 = e) compared to the values of the logistic model L(t): 

( ))()1(),()1(),()1( 321 tLetLetLefM L −+−=  (4.27) 

Similarly, the highest M, MH is obtained in case when error in ending points is positive 
(e1 = e3 = e) and in the middle point negative (e2 = -e) compared to the values of the 
logistic model L(t): 
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Relative errors of eH and eL:  
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are functions (only) of L(t1), L(t2), L(t3) and e. according to (4.27) and (4.28). Therefore, 
the objective is to find estimations for eH and eL depending on L(t1), L(t2), L(t3) and error 
level e . 

High e can cause that conditions (4.20) and (4.21) are not fulfilled during calculation of MH 
and ML via (4.17). In addition, the obtained ML and MH must satisfy:  
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For growth: HL MMtNtNtN <<<< )()()( 321 ; 

For decline: )()()( 321 tNtNtNMM LH >>>> . 
(4.30) 

Normalisation of measured data values will reduce one dimension in representation of 
results for relative errors eH and eL without reducing the generality. 

Introducing pi (“penetrations”): 
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From (4.12) follows: 
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and together with (4.31), gives the expression for p2: 
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Putting expression for p2 in equations for eH and eL, relative errors depend only on starting 
penetration p1, ending penetration p3 and error level e which is suitable for direct analytical 
estimation as well as contour graphs representation. 
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Contour graph for lower bound in case of error level = 1 % is presented in Figure 4.4, and 
in case of error level = 5 % in Figure 4.5. Contour graph for upper bound in case of error 
level = 1 % is presented in Figure 4.6, and in case of error level = 5 % in Figure 4.7. 

For example, in case when p1= 35 %, p3= 60 %, and error level of measured data e = 1 %, 
lower bound for obtained market capacity is -20 % of M. 

From (4.34) follows that minimum for |eL| is in cases when p1→ 0: 
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In addition, when p3 → 1, eL → -e . 

From (4.35) follows that minimum for eH is in cases when p1→ 0, too: 
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In addition, when p3 → 1, eH → +e . 

In cases when interval of known penetration data [p1, p3] is small (difference p3 - p1 is 
small), conditions (4.30) and (4.21) could not be satisfied. 
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Figure 4.4: Relative error of forecasted market capacity eL for e = 1 % 
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Figure 4.5: Relative error of forecasted Market capacity eL for e = 5 % 
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Figure 4.6: Relative error of forecasted market capacity eH for e = 1 % 
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Figure 4.7: Relative error of forecasted market capacity eH for e = 5 % 

 

Minimal relative error eL of forecasted market capacity (i.e. p1 → 0) based on expression 
(4.36) is presented in Figure 4.8. 
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Figure 4.8: Contour graph of minimal lower bound relative error eL for different error 

levels e and ending penetrations p3 (i.e. p1 → 0) [38]: 
 

Minimal relative error eH of forecasted market capacity (i.e. p1 → 0) based on expression 
(4.37) is presented in Figure 4.9. 
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Figure 4.9: Contour graph of minimal upper bound relative error eH for different error 
levels e and ending penetrations p3 (i.e. p1 → 0) [38] 

 

Presented results have important implications; for example: if required accuracy for the 
market capacity is less than ±10 %, with assumed error level of input data e less than 2 %, 
from Figures 4.8 and 4.9 follow that the last known input data p3 should be greater than 
53 %. 
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Comparison with results of Ordinary least squares method (OLS) on 5 and 7 points 

Direct analytical expressions of forecasted market capacity uncertainty (4.34) and (4.35) 
are obtained for cases of 3 known points. In order to compare results of direct analytical 
procedure with cases when more than 3 known points are available, numerous simulations 
were carried out. Simulation settings were as follows [38]: 

- Starting penetration p1 in range 10 %  to  40 %; 
- Ending penetration p3 in range p1 + 15 %  to  90 %; 
- Data originated from the logistic model are deviated with relative random error E 

which is normally distributed μ = 0; σ = 0.0051; i.e. in 95 % cases in interval (-1 %, 
+1 %) and σ = 0.0255; i.e. in 95 % cases in interval (-5 %, +5 %); 

- Tested with different growth parameters  a  which correspond to the characteristic 
durations: Δt = 2 years, 5 years and 10 years (see Figure 3.4),  Y  for growth from 
10 % of  M  to 90 % of  M (u = 10 %, v = 90 %, equation 3.18). Simulations 
showed that length characteristic duration has no influence on obtained uncertainty. 

- Each experiment was performed on 10 000 samples on 3, 5 and 7 points, 
simultaneously. 

Average and standard deviation are calculated from simulations results of market capacity. 
In case for error level e = 1 % the results are presented in Table 4.2. 

 
Table 4.2: Results of simulations for market capacity in cases of 3 points direct procedure 

and results obtained from OLS for 5 and 7 known points (e = 1 %) [38] 

 

In case when Starting penetration p1 = 10 %, Ending penetration p3 = 40 % and error level 
e = 1 %, simulations results of market capacity are presented on histogram (Figure 4.10). 
Direct assessment of uncertainty gives: eL= -17.6 % (equation 4.34) and eH=+32.4% 
(equation 4.35), which for M = 100 determines interval of resulting values of market 
capacity:  

ML = 82.4 <  M < 132.4 = MH 

Logistic model 
through 3 points OLS on 5 points OLS on 7 points Starting 

penetration 
p1 

Ending 
penetration 

p3 M 
average 

StDev 
of M 

M 
average 

StDev 
of M 

M 
average 

StDev 
of M 

10 % 25 % 111.80 167.80 123.20 698.21 108.68 47.03 

10 % 30 % 103.17 17.53 103.18 17.81 103.05 16.56 

10 % 40 % 100.78 7.35 100.77 7.95 100.65 7.32 

10 % 60 % 100.11 2.50 100.12 3.01 100.15 2.80 

10 % 90 % 100.01 0.77 100.02 0.87 100.01 0.80 
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Simulations showed that: 

- in case of 3 known points, in 99.84 % resulting values of market capacity lie in 
determined interval; 

- in case of 5 known points in 99.88 % resulting values of market capacity lie in 
determined interval; 

- in case of 7 known points in 99.83 % resulting values of market capacity lie in 
determined interval. 
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Figure 4.10: Histogram of simulation results for 3 points direct procedure and results 

obtained from OLS for 5 and 7 points; dashed area shows interval of uncertainty obtained 
by direct procedure 

 

The procedure presented for direct analytical determination of interval of uncertainty for 
forecasted market capacity enables analytical assessment of model sensitivity to errors in 
measurement of input data. 

Simulation results show that forecasted market capacity estimated by 3 points logistic 
model ‘direct procedure’ is comparable with the ones obtained from OLS for 5 and 7 
points. 

Practical implications can be very useful: in cases when ‘direct procedure’ (applied on 
starting, middle and ending point) according to equations (4.34) and (4.35) shows too high 
relative errors eL and eH, it is convenient to use service market capacity forecasted by: 
judgmental methods, market research surveys, benchmarkings or similar in optimistic - 
pessimistic interval. 
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4.1.3 Using Logistic Model of Growth for the Forecasting Purposes 

 

The following seven cases from the forecasting praxis given in this section describe the use 
of the logistic model of growth and its modifications. In general, logistic model is 
commonly used for the forecasting of new service market adoption when interaction with 
other services can be neglected. [24] 

General rules for all cases, when models are used for business forecasting purposes, are: 

- Assess uncertainty of results related to error level of used time series data; use 
optimistic-pessimistic interval in cases of high uncertainty (see section 4.1.2) 

- Model parameters that are obtained via judgmental assumptions should be 
examined in optimistic – pessimistic interval, too. 

Possible cases for using the logistic model of growth for the forecasting purposes are 
presented in sections: 4.1.3.1 - 4.1.3.7. 

Cases are examined on number of broadband fixed connections in Croatia in the period 
from 2003 to 2012. Data for period 2003 - 2008 have been provided from the Croatian 
national regulatory agency [39]. 

 

 

4.1.3.1 Case 1 - Extensive Set of Input Data 

 

Known: n points, n ≥ 5 (ti, N(ti)), i = 1, 2,..., n; ∃ tj, tj > b (among them 
exists at least one point after inflexion) 

Assumed: No need for assumptions. 
Model equation: (3.12) 

Parameter 
determination: 

Ordinary least squares method on logistic model L(t;M,a,b) for a, b 
and M determination  

The fit of the model is usually very strong on the whole part of service life-cycle where 
service is sole on the market and can be measured with correlation coefficient R. Due to 
the fact that extensive set of data has to be known already, this case has low usability for 
practical forecasting purposes. However, it could be useful for an accurate determination of 
market capacity and service adoption dynamics - for forecasting by analogy of a 
subsequent service. 
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Figure 4.11: Logistic model in case of extensive set of input data 

for broadband fixed connections in Croatia 

 

Graphically, results of modelling of broadband fixed connections in Croatia in the period 
from 2003 to 2012 are presented in Figure 4.11; obtained model parameters are: M = 
603 803; a = 1.1081; b = 2006.38. Correlation coefficient is: 0.9979. 

 

 

4.1.3.2 Case 2 - Sufficient Set of Input Data 

 
Known: n points, n ≥ 4 (ti, N(ti)), i = 1, 2,..., n 

Assumed: No need for assumptions. 
Model equation: (3.19) 

Parameter 
determination:

Ordinary least squares method on local logistic model 
LL(t; M,a,tp,N(tp)) for M and a determination 

Suitable for forecasting of new service adoption where market capacity is unknown. The fit 
of the model can be measured with correlation coefficient R. 
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Figure 4.12: Logistic model in case of sufficient set of input data 

for broadband fixed connections in Croatia 

Last known point (for year 2008) is used as fixed point in the model. Graphically, results 
of modelling of broadband fixed connections in Croatia in the period from 2003 to 2012 
are presented in Figure 4.12; obtained model parameters are: M = 619 464; a = 1.0888. 
Correlation coefficient is: 0.9978. 

 

 

4.1.3.3 Case 3 - Sufficient Set of Input Data with Assumed Market Capacity 

 
Known: n points, n ≥ 4 (ti, N(ti)), i = 1, 2,..., n 

Assumed: Market capacity M = Ma (index a stands for assumed). Ma is usually 
estimated by market research and/or market segmentation techniques. 

Model equation: (3.12) 

Parameter 
determination:

Focus is on the time interval near the last observed data point, so the 
weighted least squares method on logistic model L(Ma,a,b;t) for a and 
b determination can be used  

Suitable for wide-ranging forecasting purposes: for new services that are similar to 
previous ones on the same market; for new services which are identical to existing ones on 
comparable markets. The fit of the model can be measured with correlation coefficient R. 
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Figure 4.13: Logistic model in case of sufficient set of input data with assumed market 

capacity for broadband fixed connections in Croatia 

 

Market capacity is assumed to be Ma = 800 000 connections; Ma is used as fixed parameter 
in the model. Graphically, results of modelling of broadband fixed connections in Croatia 
in the period from 2003 to 2012 are presented in Figure 4.13; obtained model parameters 
are: a = 0.8374; b = 2007.11. Correlation coefficient is: 0.9942. 

 

 

4.1.3.4 Case 4 - Minimum Set of Input Data 

 
Known: 3 points, (ti, N(ti)), i = 1, 2, 3 

Assumed: Nothing 

Model equation: 
For time equidistant points: (4.17), (4.18) and (4.19) 
In general case: See section 4.1.1.2 Logistic model through 
three points. 

Parameter 
determination: See section 4.1.1.2 Logistic model through three points. 

Values of the obtained parameters are uncertain (i.e. their confidence cannot be tested, 
correlation coefficient R=1), but can be applied for the forecasting purposes when market 
capacity is difficult to obtain from other sources or for short range forecasting. 
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Figure 4.14a: Logistic model in case of minimum set of input data 

for broadband fixed connections in Croatia 
(last three points are used for modelling) 

 

When the last three points are used for modelling, obtained model parameters are: M = 
795 214; a = 0.7159; b = 2007.07; (correlation coefficient is 1). Graphically, results of 
modelling of broadband fixed connections in Croatia in the period from 2003 to 2012 are 
presented in Figure 4.14a. 
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Figure 4.14b: Logistic model in case of minimum set of input data 

for broadband fixed connections in Croatia 
(middle three points are used for modelling) 

When the middle three points are used for modelling, obtained model parameters are: M = 
558 067; a = 1.4755; b = 2006.13; (correlation coefficient is 1). Graphically, results of 
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modelling of broadband fixed connections in Croatia in the period from 2003 to 2012 are 
presented in Figure 4.14b. 

 

4.1.3.5 Case 5 - Assumed Market Capacity and only Two Known Points 

 
Known: 2 points, (t1 , N(t1)) and (t2 , N(t2)) 

Assumed: Ma market capacity 
Model equation: (4.15) and (4.16) 

Parameter 
determination:

System of two non-linear equations which has an exact analytical 
solution for parameters a and b 

Regularly used for forecasting when little data are available. Values of the obtained 
parameters a and b are uncertain, but the assumed market capacity M = Ma can be 
relatively good estimated from market research and/or market segmentation techniques 
which improves accuracy. 
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Figure 4.15a: Logistic model in case of assumed market capacity and only two known 

points for broadband fixed connections in Croatia 
(Used points: for 2004 and for 2008) 

 

Market capacity is assumed to be Ma = 800 000 connections; Ma is used as fixed parameter 
in the model. When data for 2004 and 2008 are used for modelling, obtained model 
parameters are: a = 1.0412; b = 2007.38. Graphically, results of modelling of broadband 
fixed connections in Croatia in the period from 2003 to 2012 are presented in Figure 4.15a. 
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Figure 4.15b: Logistic model in case of assumed market capacity and only two known 

points for broadband fixed connections in Croatia) 
(Used points: for 2005 and for 2008) 

 

Market capacity is assumed to be Ma = 800 000 connections; Ma is used as fixed parameter 
in the model. When data for 2005 and 2008 are used for modelling, obtained model 
parameters are: a = 0.8064; b = 2007.20. Graphically, results of modelling of broadband 
fixed connections in Croatia in the period from 2003 to 2012 are presented in Figure 4.15b. 

 

4.1.3.6 Case 6 - Assumed Market Capacity and Characteristic Duration 

 

Known: 

ts - time when service has perceptible penetration, level of perceptible 
penetration u is higher than 0 (service introduction on market, start) and 
level of saturation v (service maturity). Values for levels u and v are 
conventional and usually symmetric, i.e. u = 1-v. Generally accepted 
values for u are 5 % or 10 % and for v 95 % or 90 %, respectively. 
Condition that must be satisfied is: 0 < u < v < 1. 

Assumed: 
Ma market capacity and characteristic duration Δt. Characteristic 
duration is the time interval from ts to service maturity time te = ts+Δt, 
see Figure 3.4 

Model equation: (3.18) 

Parameter 
determination: 

In general: equations (3.14) and (3.15); 
For symmetric u and v: equations (3.16) and (3.17) 
Parameters for typical characteristic durations are given in Table 4.1. 

Regularly used for forecasting of new service adoption when little or no data are available. 
In cases of service adoption forecasting prior to service launch, a pair characteristic 
duration - level of saturation for service maturity is assumed by means of analogy with the 
existing services. 
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Figure 4.16: Logistic model in case of assumed market capacity and characteristic duration 

for broadband fixed connections in Croatia) 
 

Market capacity is assumed to be Ma = 800 000 connections; time when service has 
perceptible penetration ts = 2004 is considered as known; characteristic duration Δt - the 
time interval needed for growth from 5 % of M to 95 % of M (i.e. u = 5 %, v = 1- u = 
95 %) is assumed to be 6 years. Graphically, results of modelling of broadband fixed 
connections in Croatia in the period from 2003 to 2012 are presented in Figure 4.16. 
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Figure 4.17: Relationship between characteristic duration Δt and auxiliary parameter u 

(Model is equal for u = 5 % Δt = 6 years and for to u = 1 % Δt = 9.4 years) 

Due to the fact that u is an auxiliary parameter (depending on Δt), the same results will be 
for u = 1 %, (v = 1- u = 99 %) and Δt = 9.4 years. Relationship between characteristic 
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duration Δt and auxiliary parameter u is presented in Figure 4.17, which is derived from 
equation 3.16. In Figure 4.17, 5 % as is taken as a baseline value for u. 

 

4.1.3.7 Case 7 - Deployment of Explanatory Marketing Variables 

 

Known: Various marketing variables obtained from market research surveys, 
market segmentation, BI tools, benchmarking, etc. 

Parameter 
determination: 

Characteristics of the logistic model of growth described in 
expressions: for sales (4.3), for maximum of sales (4.5) and (4.6), 
growth rate (4.10), growth rate at inflexion point (4.11), etc. 

Explanatory marketing variables can be useful for estimation of model parameters and as 
test comparison with ones obtained by other means. 

 

 

4.1.4 Richards Model through One Point 

Based on reparameterisation for the logistic model shown in section 3.3.1, the Richards 
model through two fixed points (ts , u·M) and (ts + Δt , (1-u)·M); with condition that 
0 < u < 1; has the form (see Figure 4.18): 
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Like the logistic model, the Richards model cannot model the time point when service is 
introduced, i.e. when N(t) = 0, because only for t → - ∞,  R(t) approaches 0. 
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Figure 4.18: Richards model for different parameters c and Δt 
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The Richards model through one fixed point (tp , N(tp)) has the following form: 
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and could be called local Richards model due to the similarity with local logistic model. 
The model is useful for forecasting from the last known data point t > tp. 

 

4.1.5 Analysis of Bass Model 

The Bass model has many common characteristics with the logistic growth model. Discrete 
recursive form of the Bass model follows from (3.20), which is useful approximation of 
(3.21) for small time intervals Δt: 
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First derivative of B(t) is given in (4.41): 
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Contrary to the S-shaped cumulative adoption B(t), an adoption per period (sales) is bell-
shaped curve (see Figure 4.19), and it is proportional to the first derivative B'(t) of 
cumulative adoption: 
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Figure 4.19: Characteristic values and points of the Bass model of growth 
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Maximum of B'(t), as well as the time point when B(t) has inflexion, is obtained from the 
solution of equation B''(t) = 0, where B''(t) is the second derivative of B(t): 
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From (4.43) follows that B(t) has inflexion for t = tI: 
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and maximum of B'(t) also occurs for t = tI, when it has value of: 
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Value of the Bass model at point of inflexion is (see Figure 4.19): 

q
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In cases when q < p, inflexion point and maximum of B'(t) occur before the service starts 
(tI < ts), and value of the Bass model at that point is negative according to (4.46), therefore 
interior maximum of B'(t) occurs at t = ts. Similarly, in cases when q = p, inflexion point 
and maximum of B'(t) occur when the service starts (tI = ts). For q > p, sales peak occurs in 
conventional sense of a SLC (tI > ts). The abovementioned is summarised in (4.47): 
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Accordingly, maximum of sales occurs when penetration is (q - p)/2q in cases when q > p, 
(at t = tI) and in cases when q ≤ p, maximum of sales occurs at t = ts when penetration is 0. 

In cases when q > p, for t1 and t2 near tI, from (4.42) follows that sales in time interval 
[t1 , t2] can be approximated by: 
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And in cases when q ≤ p, for t1 and t2 near tI, sales in time interval [t1 , t2] can be 
approximated by: 

pqMpttttSales ≤⇔⋅−≈ )(),( 1221  (4.49) 
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The Bass model is centro-symmetric regarding inflexion point I (tI, M(q - p)/2q), see 
Figure 4.19: 
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Growth rate GR for time interval Δt (see section 3.2. Growth models) is always positive: 
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Due to the fact that the Bass model starts from ts, B(ts) = 0, the growth rate for t → ts goes 
to infinity. 

The above described characteristics of the Bass model with its explanatory attributes can 
be used as helpful input for estimation or assessment of model parameters for the 
forecasting purposes. 

 

4.1.6 Bass Model with Explanatory Parameters 

Parameters M and ts are descriptive and can be easily linked with market conditions, but 
parameters p and q have no explanatory feature. Besides that, p and q are mutually 
dependent while they shape the Bass model S-curve (see Figure 3.5). Namely, value of 
characteristic duration of service is provided only indirectly through values of p and q 
parameters. The idea is to replace p and q with two explanatory parameters: parameter that 
describes vertical shape of S-curve s and Δt - time to reach certain saturation level 
measured from ts. Saturation level is expected penetration v at time point ts + Δt (see 
explanation for Δt and v in the section 3.3.1 Logistic model through two fixed points). 

Shape parameter s is chosen in order to encompass relation between amplitude of positive 
S-curve part and amplitude of negative S-curve part. Asymptotes of the Bass model are: 
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Ratio between negative asymptote and distance of these asymptotes lies in range (0,1] 
which is convenient to choose as the shape parameter s, and which can be measured in 
percents. In fact, according to the value of s, S-curve is stretched in vertical direction (on y 
axis) preserving the total market capacity M. 

Distance between these asymptotes is M·(1 + p/q), so shape parameter s is: 
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/
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pq

p
qpMM

qpMs  (4.51) 

Characteristic values of s are: 

s → 0 negative asymptote → 0, imitation prevails, curve is similar to a simple 
logistic growth model, (q >> p > 0), 

s = 0.5 sales peak occurs at time when service starts (q = p > 0) 



Developing of New Growth Models for Service Life-Cycle Segments 

51 

s = 1 negative asymptote → -∞, innovation prevails; curve is similar to an 
exponential saturation growth model, (q = 0, p > 0). 

From (4.51) follows: 
)1()(;)( sqpqsqpp −⋅+=⋅+=  (4.52) 

Information about saturation point level B(ts+Δt) = vM and (3.21) give (4.53) and (4.54) 
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Expression (4.54) is the reparameterised Bass model with explanatory parameters (instead 
of p and q) where: M – market capacity; ts – time when service is introduced, B(ts) = 0, 
ts ≤ t, Δt –characteristic duration of service, Δt > 0, s – shape parameter, 0 < s ≤ 1; and v –
 penetration at time point ts + Δt, 0 ≤ v < 1. Model from (4.54), B(t; M, ts, Δt, s, v), needs 
four parameters: M, ts Δt and s to be determined. Value of auxiliary parameter v does not 
need to be determined, it just allows forecasting practitioner to choose which level of 
penetration he/she wants to deal with (i.e. 90 %, 95 %, etc.). 

Special cases of (4.54): 

For v = 0, value of model B(t) is zero: 

0),,0,,;( =Δ= sttvsMtB  

For s → 0 Bass model degrades into simple logistic model: 
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where parameters of logistic growth model a and b are: 
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This curve has a shape of the logistic model with double market capacity M but 
vertically shifted down by M. Parameters a and b of this "halved" logistic model 
are: 
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For s = 1 Bass model degrades into an exponential saturation growth model: 
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The following table gives the explanation of chosen values for parameters p and q 
presented in Figure 3.5, that are selected according to shape parameter and characteristic 
duration: 

 

Graph in 
 Figure 3.5 

Shape 
parameter 

s1  

Shape 
parameter 

s2  

Characteristic 
duration to 95 % 

penetration Δt 
Top-left 10 % 90 % 20 years 

Top-right 10 % 90 % 10 years 

Bottom-left   1 % 99 % 20 years 

Bottom-right   1 % 99 % 10 years 

 

Similarly to the framework for forecasting of new services adoption prior to launch 
presented in section 4.1.1.1, model (4.5) can be used in cases when little or no data is 
available by comparison with other similar services histories: 

Table 4.3 - Reparameterised Bass model framework for new services adoption prior to 
launch 

s - shape parameter, Δt - characteristic duration (time to reach penetration level vM  
measured from ts), value for v is chosen for 95 % penetration (v = 95 %) 
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4.1.7 Bass Model Through One Fixed Point 

Similarly to the concept of the local logistic model described in section 3.3.2 Local logistic 
model - logistic model through one fixed point, the Bass model with explanatory 
parameters which has embedded value of one data point (tp , N(tp)) has the following form: 
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and could be called a local Bass model. By default, the local Bass model as well as the 
Bass model, has embedded value of starting point (ts , 0). The local Bass model is useful 
for forecasting from the last known data point t > tp. 

 

 

4.1.8 Using Bass Model for the Forecasting Purposes 

The Bass model is widely used for the long-term forecasting of new service market 
adoption when interaction with other services can be neglected. Similarly to the logistic 
growth model, there are several different cases when and how to use the Bass model, but 
generally there are four cases: Extensive set of input data; Sufficient set of input data - 
deploying local Bass model; Sufficient set of input data - with assumed market capacity 
and when little or no data is available (in cases of service market adoption forecasting prior 
to service launch). [24] 

Similarly to the logistic model, for all cases when the Bass model is used for business 
forecasting purposes, rules are: 

- Assess uncertainty of results related to error level of used time series data; use 
optimistic-pessimistic interval in cases of high uncertainty; 

- Model parameters that are obtained via judgmental assumptions should be 
examined in optimistic – pessimistic interval, too. 

Cases are examined on number of prepaid mobile users in Croatia in period of duopoly on 
market from 1999 to 2005. Data have been provided from WirelessIntelligence on-line 
business intelligence database [40]. 

Possible cases for using the Bass model for the forecasting purposes are presented in 
sections: 4.1.8.1 - 4.1.8.4. 
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4.1.8.1 Case 1 - Extensive Set of Input Data 

 

Known: n points, n ≥ 6 (ti, N(ti)), i = 1, 2,..., n; ∃ tj, tj > b (among them 
exists at least one point after inflexion) 

Assumed: No need for assumptions. 
Model equation: (3.21) 

Parameter 
determination:

Ordinary least squares method on logistic model as B(t; M, p, q, ts),  
for M, p, q and ts determination  

 

Modelling of extensive set of input data is useful for an accurate determination of the Bass 
model parameters for a certain service - and later for forecasting by analogy of a 
subsequent service or for penetration forecasting of an identical service on comparable 
markets. 

The fit of the model is usually very strong on the whole part of service life-cycle where 
service is sole on the market and can be measured with correlation coefficient R. Due to 
the fact that extensive set of data has to be known already, this case has low usability for 
the practical forecasting purposes. However, it could be useful for an accurate 
determination of market capacity and service adoption dynamics - for forecasting by 
analogy of a subsequent service. 
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Figure 4.20: Bass model in case of extensive set of input data 

for prepaid mobile service in Croatia 

Graphically, results of modelling of number of prepaid mobile users in Croatia in the 
period Q1 2000 - Q1 2005 are presented in Figure 4.20; obtained model parameters are: M 
= 2 603 274; p = 0.3068; q = 0.1782; ts = 1998.71. Correlation coefficient is: 0.9994. 
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4.1.8.2 Case 2 - Sufficient Set of Input Data 

 
Known: n points, n ≥ 5 (ti, N(ti)), i = 1, 2,..., n 

Assumed: No need for assumptions. 
Model equation: (4.55) 

Parameter 
determination: 

Ordinary least squares method on the local Bass model 
LB(t; M,ts,s,tp,N(tp)) for M, ts and s determination 

 

Suitable for forecasting of new service adoption where market capacity is unknown. The fit 
of the model can be measured with correlation coefficient R. 
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Figure 4.21: Bass model in case of sufficient set of input data 

for prepaid mobile service in Croatia 

 

Point for year 2004 is used as fixed point in the model. Graphically, results of modelling of 
number of prepaid mobile users in Croatia in the period Q1 2000 - Q1 2005 are presented 
in Figure 4.21; obtained model parameters are: M = 2 713 840; s = 0.5770; ts = 1998.60. 
Correlation coefficient is: 0.9991. 
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4.1.8.3 Case 3 - Sufficient Set of Input Data with Assumed Market Capacity 

 
Known: n points, n ≥ 4 (ti, N(ti)), i = 1, 2,..., n 

Assumed: 
Market capacity M = Ma (index a stands for assumed). Ma is usually 
estimated by market research and/or market segmentation 
techniques. 

Model equation: (4.55) 
Parameter 

determination: 
Ordinary least squares method on local Bass model 
LB(t; M,ts,s,tp,N(tp)) for ts and s determination 

Suitable for forecasting of new service adoption, where market capacity is estimated by 
market research and/or market segmentation techniques. The fit of the model can be 
measured with correlation coefficient R. 
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Figure 4.22: Bass model in case of sufficient set of input data with assumed market 

capacity 
for prepaid mobile service in Croatia 

Point for year 2004 is used as fixed point in the model. Market capacity is assumed to be 
Ma = 2 600 000 users; Ma is used as fixed parameter in the model. Graphically, results of 
modelling of number of prepaid mobile users in Croatia in the period Q1 2000 - Q1 2005 
are presented in Figure 4.22; obtained model parameters are: s = 0.3162; ts = 1998.30. 
Correlation coefficient is: 0.9987. 
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4.1.8.4 Case 4 - Little or no Data is Available 

 

Known: 
ts - time when service is introduced,  
v – penetration at time point ts + Δt, 0 ≤ v <1 (auxiliary 
parameter) 

Assumed: 
Δt –characteristic duration of service, Δt >0 
s – shape parameter, 0 < s ≤ 1 
Ma  – market capacity 

Model equation: (4.54) 
Parameter 

determination: 
Parameters for typical characteristic durations are given in 
Table 4.3. 

In cases of service market adoption forecasting prior to service launch - comparison with 
other similar services histories is needed for s and Δt estimation. Auxiliary parameter v can 
be 90 %, 95 %, 99 %, etc. If p and q are known from comparison with other similar 
services histories, equation (4.51) and (4.53) can be used to obtain values for s and Δt for 
chosen v. 
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Figure 4.23: Bass model in case of market adoption forecasting prior to service launch  

for prepaid mobile service in Croatia 

 

Market capacity is assumed to be Ma = 2 600 000 users; Ma is used as fixed parameter in 
the model. Shape parameter s is taken to be 0.6 (more innovative than imitative). Time 
when service is introduced ts is known (Q3 1999) - its decimal representation is ts = 
1998.75. For auxiliary parameter v is taken 95 % and characteristic duration Δt - the time 
interval needed for growth from introduction to 95 % of M (i.e. to v M ) is assumed to be 7 
years. Graphically, results of modelling of number of prepaid mobile users in Croatia in the 
period Q1 2000 - Q1 2005 are presented in Figure 4.23. 
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4.1.9 Limitations of the Logistic, the Bass and the Richards models 

 

Although the logistic model is widely used for the forecasting purposes, it is not suitable 
for modelling the service adoption when number of users grows fast instantly after the 
service is introduced. The reason is in the shape of logistic growth that "hardly starts to 
grow up". This problem is visible from conditions for equations (3.14) and (3.15), i.e. it is 
not possible to model the time point when service is introduced, and its penetration is 0 
(i.e. u = 0), because equations will give infinity value for parameter a. This deficiency is 
solved with the Bass model. The second deficiency is fixed inflexion point I (b, M/2), 
which is not crucial for the most forecasting purposes, but it is solved with the Richards 
model of growth. 

The Bass model is the most convenient model for market adoption forecasting of new 
service in sense of flexibility vs. number of free parameters that need to be estimated. 
Estimation of parameter values when limited data are available can be improved by 
introducing the Bass model with explanatory parameters. Although several generalisations 
of the Bass model expand model usage for later phases of PLC, numerous supplementary 
parameters demand a large set of known data points, which limits their application for the 
forecasting purposes. 

Like the logistic model, the Richards model cannot model the time point when service is 
introduced, i.e. when N(t) = 0. 

 

4.1.10 Generalisation of Recursive Growth Models 

Differential equations for the logistic (3.13) and the Bass model (3.20): 
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can be rewritten in the following form: 
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qtBpqpM

dt
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Differential equations in forms (4.56) and (4.57) give idea for generalisation of growth 
model G(t) as differential equation: 
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where bi, i = 1,2,...,n are parameters of the model. 
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Illustration of relation between the generalised growth model (4.58) and other well-known 
growth models is given in Table 4.4. Symbol " " in table indicates usage of certain term 
from the generalised growth model (4.58) in specific growth model; and "-" indicates that 
certain term is not present in it. 

 

Table 4.4 Relationship between generalised growth model and specific growth models 

 0b  )(1 tGb  )(2
2 tGb  )(3

3 tGb  
Exponential 
saturation 

model 
  - - 

Logistic model -   - 
Bass model    - 

Richards model -    

Representation in Table 4.4 helps in understanding of specific known growth model 
composition (for example: the Richards and the logistic model have the same deficiency 
because they have not got term b0 ) as well gives scheme for certain model improvement. 

However, solution of differential equation of the generalised growth model becomes more 
complicated when it has many terms. In such cases recursive formula (4.59) for small time 
intervals is good approximation of (4.58) suitable for practical purposes: 
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4.1.10.1 Parameter Determination of Generalised Recursive Growth Model 

For parameter determination of the generalised recursive growth model in recursive form 
(4.59) with n+1 terms, bi, i = 0,1,...,n set of n + 2 known history points is needed. Values 
for bi can be determined from the system of linear equations (4.60) in matrix form: 
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where Ni are known values measured in history: N1- first point at starting time t, N2 - 
second point at time t+Δt, etc. 

The fact that value of G(t) approaches the market capacity M in far future gives condition 
on bi based on (4.59): 
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(4.61) 
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Therefore, in cases when market capacity M is known (or assumed to be known), one 
parameter of bi set can be determined from condition (4.61) which reduces the set of 
needed data points by 1. 

In addition, some models (such as the logistic and the Richards model) have not got 
constant term b0, which additionally reduces the set of needed data points by 1 and system 
(4.60) becomes simpler as well: 
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Summary of the described cases is given in Table 4.5. 

 

Table 4.5 Minimum set of known data points 

 Presence of constant 
term b0 

Needed data points 
if M is unknown 

Needed data points 
if M is known 

Exponential 
saturation model 

(n = 1) 
Yes 3 2 

Logistic model 
(n = 2) No 3 2 

Bass model (n = 2) Yes 4 3 
Richards model 

(n = 3) No 4 3 

General model 
(n = K) Yes K + 2 K + 1 

General model 
(n = K) No K + 1 K 

In cases when more data points are available than minimum set from Table 4.5, weighted 
or ordinary least squares method can be used for parameters determination to adjust the 
parameters of a model so as to best fit the data set, as described in section 3.2.2. 

 

4.1.10.2 Generalised Recursive Growth Model if Market Capacity is known 

Differential equation (4.63), which is based on equation (4.58), is suitable for cases when 
market capacity M is known (or estimated and assumed to be known): 
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where ai, i = 1,2,...,n are parameters of the model and M is the market capacity. 
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Namely, (4.63) simplifies condition (4.61) on model parameters, thus for G(t) approaching 
M, gradient (left side of (4.63)) should be 0, therefore right side of (4.63) transforms into 
(4.64). 
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As a result, condition (4.61), which is inconvenient for practical use, turns into simple 
linear equation (4.65): 

naaaa ++++= K2100  (4.65) 

The generalised growth model in recursive form based on (4.63) is suitable for practical 
purposes in cases of small time intervals Δt: 
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Parameters ai, i = 1,2,...,n of the generalised growth model (4.66) can be determined from 
the system of linear equations in matrix form: 
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where Ni are known history points: N1 - first point at starting time t, N2 - second point at 
time t+Δt, etc. For full parameter set ai, i = 1,2,...,n determination, n+1 history points N1, 
N2, ..., Nn+1 are needed. Value of parameter a0 can be obtained from condition (4.65). 

 

In cases when practical application allows that value for a0 equals 0 in model (4.66) for 
example as it is for the logistic and the Richards model a0 = 0), the system (4.67) becomes 
simpler: 
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because only n history points N1, N2, ..., Nn are needed for full parameter set ai, i = 1,2,...,n-
1 determination. The value of parameter an, can be obtained from (4.65). 
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4.2 Developing of New Growth Models for Successive Segments of 
Service Life-Cycle 

Only at the beginning of the service life-cycle there is no interaction with other services 
regarding market adoption, therefore, its growth may be approximated with simple growth 
models developed in section 4.1. During the whole service life-cycle (SLC), market 
capacity changes in hops and resembles a series of stairs. Immediately after the market 
capacity change occurs, service adoption starts to follow this new circumstance. According 
to that, for the forecasting purposes focus is on a current market SLC segment and a first 
successive segment in the future. Based on the principles stated in the introduction of 
Chapter 4, new S-shaped models are developed that need minimum set of known data time 
series history and with the ability to incorporate judgmentally obtained explanatory 
marketing variables: the logistic spline model and universal model for successive 
segments. The first one is related to consecutive segments with monotone growth or 
decline. The universal model for successive segments covers the general case of modelling 
current market adoption segment and the first future segment.  

In general, interaction between different services mainly occurs through the following two 
types of interactions and/or their combinations: Service competition and Service co-
evolution. Illustrations of these interaction types are presented in Figure 4.24 and 4.25, 
accompanied with expressions that describe interaction types analytically. Expressions are 
based on the presumption that the logistic growth model L(t; M,a,b) models the 
components of service market in satisfactory manner. Namely, particular set of the 
following conditions determines market capacity in a specific time frame: service 
attractiveness, service features, marketing (advertising), service availability (supply), 
technology improvements, purchase power - service pricing relation and interaction 
between services on market. [4] 

 

Service competition 

Both services are competing in market with unchanged total market capacity – see Figure 
4.24: 
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Figure 4.24: Illustration of service competition 
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Ntot(t) = N1(t) + N2(t) = L(t; Mt, at, bt) (4.69) 

N2(t) = L(t; M2, a2, b2) (4.70) 

N1(t) = Ntot(t) - N2(t) = L(t; Mt, at, bt) - L(t; M2, a2, b2) (4.71) 
 

Service co-evolution 

Complementary services change the total market capacity. As a result there is no decrease 
of existing service penetration – see Figure 4.25: 
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Figure 4.25: Illustration of service co-evolution 

 

Ntot(t) = N1(t) + N2(t) (4.72) 

N1(t) = L(t; M1, a1, b1) (4.73) 

N2(t) = L(t; M2, a2, b2) (4.74) 

Service co-evolution phenomenon should not be related strictly with another service 
occurrence. Market adoption of sole service has similarly shaped curve when new market 
opportunities for that service emerge (economical or technological). 

 

4.2.1 Logistic Spline Model 

Composite growth models (e.g. the Multi-logistic model, generalisations of the Bass 
model) that can represent the adoption of service over the whole SLC need extensive sets 
of observations, which make their use for practical forecasting purposes very difficult. 

In addition, forecasting by growth models relies on the assumption that certain internal 
market forces as well as external influences (e.g. technology, macroeconomics, purchasing 
power, regulatory, etc.) remain the same during the forecasting period. In reality, changes 
of conditions occur and can be estimated only by qualitative forecasting methods. In such 
cases, forecasters are confronted with a challenge: how to quantitatively bridge the gap 
between known history and perceivable future, and how to assess results from the 
qualitative forecasting. [4] 
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Analysis of typical market adoption of service during the entire SLC gives the following 
conclusions: 

- Adoption versus time representation consists of a set of sigmoidal sub-curves. Each 
curve models one segment of SLC. 

- Transitions between sub-curves are smooth, i.e. at least the first derivative is 
preserved at sub-curve junction. 

By combining the principle of logistic growth (adoption curve consists of the set of S 
curves) plus similarity with splines gives the idea about interpolation method called 
logistic splines. Regularly, spline functions are used for the interpolation purposes, but 
originally they were strips of elastic material used to draw smooth curves through a given 
set of points. The most common type of interpolation spline is the cubic spline, which is 
formed by joining polynomials of third degree together at fixed points called knots. Cubic 
spline curve fitting ensures that each spline is equal to data points, the 1st derivatives are 
continuous at the knots, and the 2nd derivatives are continuous at the knots. The logistic 
splines need the minimum set of input: 

- The last known data point (ts , N(ts)); 
- The gradient in the last known data point N'(ts); 
- Assumed market capacity M in the observed time interval t ∈ [ts, te]; 
- Assumed number of service users at the end of the observed time interval 

(te , N(te)); 
- During the whole-observed time interval [ts, te], monotone growth (or monotone 

decline) is anticipated (i.e. on the observed interval [ts, te] first derivative is either 
positive or negative). 

The logistic spline smoothly joins the latest (known) data about the number of service 
users N(ts) with the assumed number of service users N(te), and locally has a form of 
logistic law of growth – Figure 4.26 (Growing spline) and Figure 4.27 (Declining spline). 
The logistic spline LS(t) is defined by four parameters: M – service market capacity, a –
 growth rate parameter, b – time shift parameter and c – spline parameter. To emphasise 
model dependence of its parameters, it is convenient to indicate the model as L(t; M, a, b): 

c
e

cMcbaMtLS bta +
+

−= −− )(1
),,,;(  (4.7 ) 

 

4.2.1.1 Using Logistic Spline for the Forecasting Purposes 

Unknown parameters a, b and c can be calculated from conditions: 

- Starting point of the logistic spline is identical to the latest known data (4.76); 

- Last point of the logistic spline is identical to the (given) assumed value N(te) (4.77); 

- The logistic spline smoothly extends the existing data (4.78). 

 

)()( ss tLStN =  (4.76) 

)()( ee tLStN =  (4.77) 

)(')(' ss tLStN =  (4.78) 
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Figure 4.26: Growing logistic spline 
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Figure 4.27: Declining logistic spline 

Derivation N'(ts) cannot be determined analytically, but only by applying numerical 
methods. The expressions for numerical differentiation through two, three and four 
equidistant time points are given below: 
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To avoid influence of input data uncertainty, the condition (4.78) can be modified into 
finding the minimum: 
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From (4.76) and (4.77), expressions (4.81) and (4.82) for a and b can be obtained, with 
parameter c as a dependent variable. Parameter c cannot be achieved analytically; however, 
iterative minimisation of F(c) using golden section is a suitable procedure for obtaining 
parameter c: 
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Procedure is as follows: [4] 

1. Choose the interval where lie possible values for c, cmin ≤ c ≤ cmax (will be discussed 
later, in detail) 

2. Take c1 = cmin and c4 = cmax 

3. Calculate two inside values for c, c2 = c4 – φ(c4 – c1) and c3 = c1 + φ(c4 – c1) 
according to golden section minimisation procedure, where φ is the golden section 
ratio (φ = 0.618...) 

4. Calculate F(ci), i = 1, 2, 3, 4 using the following equations for ai and bi: 
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5. According to the calculated values for F(ci), i = 1, 2, 3, 4 decision is made about 
narrowing interval for c from [c1, c4] to [c1, c3] if c2 < c3 or [c2, c4] if c3 < c2. The 
golden section minimisation procedure is repeated from the 3rd phase to the 5th phase 
until resulting interval for c becomes satisfactory narrow. In practical applications, 
number of iterations is around 40 or less. 

 

As stated before, there are two types of the logistic spline: 

- Growing logistic spline, iff N'(ts) > 0 and N(ts) < N(te) < M (as in Figure 4.26), and 

- Declining logistic spline, iff N'(ts) < 0 and N(ts) > N(te) > M, (as in Figure 4.27). 

The model (4.75) can satisfy conditions (4.76) and (4.77) only if c < N(ts) for the Growing 
spline, and if c > N(ts) for the Declining spline. If the mentioned conditions for c are 
fulfilled, equations (4.81) and (4.82) have solutions. These conditions on c reflect on the 
determination of the interval where should lie possible values for c, cmin ≤ c ≤ cmax in the 
beginning of minimising F(c): 

- Growing spline: initial interval is c∈(–∞, N(ts)) since c < N(ts) < N(te) < M, but 
in practical applications (-10·M, N(ts)) is satisfactory large initial interval for 
c. 
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- Declining spline: initial interval is c∈(N(ts), +∞) since M < N(te) < N(ts) < c, 
but in practical applications (N(ts), +10·M) is satisfactory large initial interval 
for c. 

 

4.2.1.2 Limitations of Logistic Splines Usage - Assessment of Qualitative 
Assumptions 

In ideal set of circumstances, the result of the abovementioned minimisation procedure are 
parameters a, b and c thus LS'(ts) = N'(ts). The logistic splines cannot satisfy the equation 
(4.78) if N'(ts) is too high - for the Growing spline, or too low - for the Declining spline, 
which will be analysed and discussed in this section. 

From equation for LS'(t) it is possible to find interval where its value lies, depending on c, 
N(ts), N(te) and M. The first step is transforming expression for LS'(t) in form without a and 
b parameters: 
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By putting the equation (4.81) for a, expression for LS'(ts) is obtained, depending only on 
c, N(ts), N(te) and M, which is suitable for further analysis: 
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In case of the Growing spline, LS'(ts) lies in range (4.88). It moves towards 0 when c 
approaches N(ts) and moves towards its upper limit for c → –∞. 
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In case of the Declining spline, LS'(ts) lies in range (4.89). It moves towards 0 when c 
approaches N(ts) and moves towards its lower limit for c → +∞. 
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Described restricted ranges for possible values of LS'(ts) have the following consequence 
for the forecasting purposes: depending on known values for N(ts) and N'(ts), and assumed 
values of M and N(te), in case of unfulfilled conditions (4.88), (4.89), the logistic spline 
cannot smoothly bridge the gap between known data and anticipated value in the future. 

Unsmooth join of the logistic spline represents a warning to a forecaster that input 
assumptions are inadequate, such as: 

- Predicted values for M and/or N(te) are wrong. Namely, values for M and N(te) in 
forecasting practice are obtained usually as the result of qualitative forecasting, 
which can now be assessed by logistic spline concept; 

- Interval [ts, te] is consists of more than one sigmoidal curve (example in Figure 
4.28). 

 

The following Figures give examples of unsmooth join (Figure 4.28) and proper (smooth) 
join (Figure 4.29) of the logistic spline (Figures are screen shoots from LOST-A Excel 
tool). 
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Figure 4.28: Example of unsmooth join of 

the logistic spline 
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Figure 4.29: Example of proper (smooth) 

join of the logistic spline 

 

The logistic spline model is suitable for forecasting of service life-cycle segments with 
monotone growth or decline. If this is not the case, the Universal model for successive 
segments of service life-cycle can be used (described in section 4.2.2). For whole service 
life-cycle modelling the multi-logistic growth model can be used (described in section 
4.3.1). 
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4.2.1.3 Link with Bass model 

The logistic spline LS(t) is identical to the Bass model B(t) (3.21) in case of the Growing 
spline and when parameters c < 0 and M > 0. [4] 

The set of equations that establishes full link between the logistic spline LS(t; M, a, b, c) 
and the Bass model B(t; M, p, q, ts) is: 
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The Bass model in form (3.21) requires known coefficient of innovation, p >0 and 
coefficient of imitation, q ≥ 0. This has the consequence that c yielded from the Bass 
model must be c < 0 (4.91). Although the logistic spline model is identical to the Bass 
model, it has no limitation on c and/or M, so spline can be unrestrictedly shifted on y-axis 
depending on the case. 

 

4.2.1.4 Real Case Example for Logistic Spline Application 

Application of the logistic splines is shown on the example of expired analogue mobile 
service in Croatia (NMT-450). The service started in 1991 very slowly because of high 
prices of service and mobile handsets. In the period from 1994 to 1997, it had significant 
growth. In 1998, service was seriously confronted with a new GSM service and went in 
saturation. As a counterattack, NMT operator decreased service price (cost of call per 
minute) on the level of approx. 15 % of GSM service price. This attempt was short-lived 
because GSM operators offered pre-paid system of payment and cheap mobile handsets. 
As a result, number of NMT users continued to decline. In Q2 2005 NMT service 
disappeared from the Croatian market. 

Two different segments of NMT service life-cycle will be examined by the logistic splines 
for the forecasting purposes: growth (Figure 4.26) and decline (Figure 4.27) phase. Given 
information are: number of users of the NMT-450 service from the end of year (EOY) 
1991 till EOY 2004. 

The Growing logistic spline is used in forecast time interval from ts = 1995 to te = 1997. 
Values for N(ts-1Y) and N(ts) are taken as known, and values for M and N(te) are assumed. 
From N(1994) and N(1995), N'(1995) was obtained. Forecasting results were checked with 
real data in the period from 1995 to 1998. Standard statistical measure - MAPE (mean 
absolute percentage error) is used for this purpose (4.92). 
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The Declining logistic spline is used in forecast time interval from ts = 2000 to te = 2004. 
Again, values for N(ts-1Y) and N(ts) are taken as known, and values for M and N(te) are 
assumed. From N(1999) and N(2000), N'(2000) was obtained. Forecasting results were 
checked with real data in this period by MAPE. 
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Figure 4.30: Growth of analogue mobile service in Croatia (Growing logistic spline) 
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Figure 4.31: Expiring analogue mobile service in Croatia (Declining logistic spline) 
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Forecasting results are presented in Table 4.6, and values for calculated parameters are 
shown in Figure 4.30 and 4.31. 

Table 4.6: Forecasting results for Growing logistic spline (G-LS) 
 and Declining logistic spline (D-LS) 

t [year] N(t) G-LS D-LS 
1991 1 669 16 704 93 346 
1992 6 320 16 940 93 342 
1993 11 239 17 914 93 330 
1994 21 664 21 664 93 299 
1995 32 948 32 948 93 208 
1996 51 857 51 428 92 954 
1997 64 189 64 189 92 240 
1998 68 987 68 714 90 274 
1999 85 130 69 916 85 130 
2000 73 292 70 208 73 292 
2001 56 600 70 278 52 570 
2002 27 000 70 295 29 181 
2003 13 400 70 299 12 905 
2004 5 000 70 300 5 000 

 

For the abovementioned calculations, tool developed in MS Excel VBA called LOST 
(LOgistic Spline Trend) is used (Figure 4.32). 
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Figure 4.32: Screen capture of LOST tool [35] 
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4.2.2 Universal Model for Successive Segments of Service Life-Cycle 

Market adoption of service during the entire service life-cycle (SLC) consists of several 
growth/decline segments encompassing interaction between different services or similar 
services offered from different providers/operators. 

Based on the SLC analysis, set of individual S curves is observable. In general, n 
individual S curves give in total 2(n - 2) different forms of service market adoption. 

 

All possible combinations of growth/decline segments of SLC for 2, 3 and 4 individual S-
curve segments are illustrated in Figure 4.33 - Figure 4.35, respectively. [42] 
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Figure 4.33: SLC with 2 individual S-curve segments 
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Figure 4.34: SLC with 3 individual S-curve segments 
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Figure 4.35: SLC with 4 individual S-curve segments 

 

As visible from Figure 4.33 - 4.35 (red shading areas), the logistic spline, which is 
designed for monotone growth-growth and decline-decline segments, cannot model 
connection of: 

- growth - decline and 
- decline - growth 

segments. 

On the other hand, the multi-logistic model, that can model market adoption of service 
during the entire SLC, requires large set of known data points, which limits its application 
for the forecasting purposes. 

However, forecaster practitioner can anticipate one consecutive part of market adoption 
segment in the future. On the other hand, modelling of segments that are completed in far 
history has no value for forecasting purposes. Therefore, the idea is to develop a model for 
the current market adoption segment and the first successive segment in the future. 

Model based on the logistic/Bass model for this purpose has the following form: [42] 
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4.2.2.1 Parameter Determination for Universal Model for Successive 
Segments of Service Life-Cycle 

 

The first component of model (4.93) describes current segment of service life cycle (see 
Figure 4.36). For this component it is necessary to determine the following parameters: M0, 
M1, a, b. In cases when 5 of more data points are known, OLS on time series history should 
be used. Minimal input data set is 4 data points.  

In case when current segment is 1st of segment SLC with highly imitative characteristics, 
M0 can be omitted - this decreases minimal input data set to 3 data points.  

The second component of model (4.93) describes the first successive segment of service 
life cycle in the future. For this component it is necessary to determine the following 
parameters: M2, ts, ΔT. If no data points are known for this segment of SLC, principles of 
Case 6 - Assumed market capacity and characteristic duration (described in section 4.1.3.6) 
should be used. According to that, values for M2, ts, ΔT are estimated judgmentally. 
Auxiliary parameter u is usually 1 % or 5 %. 
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Figure 4.36: Principle of Universal model for successive segments 

 

Time series data about number of ISDN channels in Austria in the period from 1991 to 
2003 are used for determination of model parameters for the current segment of PLC (see 
Table 4.7 and Figure 4.37).  

 



Developing of New Growth Models for Service Life-Cycle Segments 

75 

0

200 000

400 000

600 000

800 000

1 000 000

1 200 000

1 400 000

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

Known data window Forecast window
Data Point tp

 
Figure 4.37: Screen capture of tool for Universal model for successive segments 

Example of ISDN service in Austria 

 

Table 4.7: Universal model for successive segments - forecasting results 
Example of ISDN service in Austria [43] 

 
Year Number of  

ISDN channels 
Modelled number
 of ISDN channels 

1992 0 5 314 
1993 1 808 11 204 
1994 10 418 24 516 
1995 47 766 54 014 
1996 122 560 116 601 
1997 244 200 237 986 
1998 427 400 437 095 
1999 662 000 688 423 
2000 953 720 918 321 
2001 1 091 800 1 073 497 
2002 1 129 000 1 155 948 
2003 1 190 000 1 190 000 
2004 1 213 000 1 193 769 
2005 1 182 000 1 173 399 
2006 1 110 000 1 125 105 
2007 1 043 000 1 038 456 
2008 N/A 903 078 
2009 N/A 721 608 
2010 N/A 520 326 
2011 N/A 338 598 
2012 N/A 202 519 
2013 N/A 114 213 
2014 N/A 62 110 
2015 N/A 33 079 
2016 N/A 17 417 
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Judgmentally estimated values for the first successive segment of service life cycle in the 
future are: M2 = 0 (ISDN service will extinct in the future), ts = 2005 (year when declining 
started to be perceivable), ΔT = 9 years (in 9 years service will fall to u = 5 % level). 

 

4.3 Developing of New Growth Models for whole Service Life-Cycle 
Market adoption of service during the entire SLC consists of several growth/decline phases 
encompassing interaction between different services, and it can be modelled as the sum of 
discrete logistic growth models. Based on a principle of the Bi-Logistic model (3.28), and 
principles stated in the introduction of Chapter 4, the new multi-logistic model is 
developed as a composite model consisting of several logistic curves items with ability to 
include explanatory marketing variables. 

The multi-logistic model should not be misinterpreted as a multiple logistic regression, 
which considers modelling of p independent variables collection, given by the equation: 
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4.3.1 Multi-Logistic Model 

The multi-logistic model requires three parameters Mi, ai, and bi per item (4.94): 

)(
1

)
2

(
2

12
)

1
(

1

1

1
...

11
)(

n
bt

n
a

nn
btabta

e

MM

e

MM

e

MtML −−
−

−−−−
+

−
++

+

−+
+

=  (4.94) 

Market capacities increments Mi - Mi-1 represent effects of service competition in case of 
the negative increment (decline), or effects of service co-evolution in case of the positive 
increment (growth). 
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Figure 4.38: Multi-logistic model consisted of 6 logistic growth models 

N(t) - number of the service users, Mi - Mi-1 market capacities (in increments) 
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Total market capacity for the observed service, according to (4.94) is: 
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For the illustration, adoption of service presented in Figure 3.2 is decomposed into 6 
simple logistic growth models and shown in Figure 4.38. 

 

4.3.1.1 Determination of Model Parameters 

At least 3n known data points (ti; N(ti)) i = 1, 2, ..., 3n are needed for full parameter 
determination, where n is the number of logistic growth items in (4.94). Parameters of the 
multi-logistic growth model are usually obtained by the ordinary least squares method, so 
even more known data points are needed for satisfactory statistical smoothing of results. 
[44] 

 

In praxis, modification MLM(t) of (4.94) is used, where parameters ai and bi are replaced 
with more descriptive ones: tSi - starting times, Δti - characteristic durations, i.e. periods 
needed for adoption grow from u·(Mi - Mi-1) level to (1-u)·(Mi - Mi-1) level, 0 < u < 1: 
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Generally, values accepted for u are 5 % or 10 %, so starting times tSi provide information 
when discrete logistic items have 5 % or 10 % penetration. Similarly, characteristic 
durations Δti provide information about time periods needed for discrete logistic items 
penetration to grow from 5 % to 95 %, or from 10 % to 90 %. 

 

4.3.1.2 Limitations of Multi-Logistic Growth Model 

The multi-logistic model is suitable for real market situations modelling on the whole SLC. 
However, such composite function needs determination of 3n parameters, where n is 
number of discrete logistic items. Therefore, a large set of known data points is needed, 
which limits the application of the Multi-logistic model for the forecasting purposes. 

Although specific software tools exist for multi-logistic growth modelling (e.g. Loglet Lab 
Software), determination of model parameters can be challenging because process of 
minimisation of squared difference between data points and model evaluated points may 
diverge. In addition, resulting auxiliary curves (discrete logistic items) sometimes do not 
have explanatory meaning. 
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4.4 Experiences from Telecommunications Operations 
In this section, statistical regularities resulting from experiences from telecommunications 
operations will be analysed, modelled and used for forecasting purposes. Help in 
determination of values for specific inputs necessary for forecasting can be obtained from 
statistical analysis of available data. Namely, recognition of statistical laws and regularities 
among available data as well as possibilities of their modelling can provide forecasting 
inputs that were not directly accessible. Besides that, analytically modelled data are easier 
for further analysis and examination during business cases evaluation process. 

It is important to point out that all examined S-shaped growth models are based on the 
assumption that there is a balance between market demand for telecommunications 
services and service supply from telecommunications operators. However, in cases when 
demand is much higher than capacity of supply, growth is not S-shaped but usually linear 
per segments or step-like. Therefore, proper business case must encompass not only market 
demand dynamics but also ability of service provisioning in general (deployment dynamics 
of: infrastructure / access network / aggregation network / core network / service platforms 
/ service activation), that depends on available budget, man-power, etc.  

 

4.4.1 Statistical Laws of New Technologies and New Services Roll-Out 

Optimal roll-out for implementation of new services which require investment in network 
technology, mainly in access and aggregation level, can be determined from statistical data 
about present users of existing telecommunications services. For example, one of the 
inputs for ISDN roll-out which started 13 years ago, was statistics about telephone users of 
that time; one of input for ADSL roll-out which started 9 years ago, was statistics about 
heavy dial-up internet users of that time. Nowadays, similar statistics is running for FTTH 
rollout based on current data about xDSL and IP TV users. Introduction of two indicators 
for users of existing telecommunications services showed to be useful for further 
modelling, analysis and processing: Covering of number of users CNU and Covering of 
capacity of users CCU [45], [46] developed for statistics about telephone users for certain 
geographic area or local exchange coverage area. 

 

Covering of number of users CNU(k) 

Indicator CNU(k) is percentage of existing users which will be included in roll-out of new 
service if criterion is to acquire users with existing k or more telephone lines: 
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where f(i) is amount (count) of users that exactly have i telephone line(s) - see Figure 4.39. 
When k = 1, all users will be acquired, so CNU(1) = 100 %. 
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Coverage of capacity of users CCU(k) 
is sum of i·f(i) divided by total sum of i·f(i) 

 
Figure 4.39: Illustration of Covering of number of users (CNU)  

and Covering of capacity of users (CCU) indicators 

 

Covering of capacity of users CCU(k) 

Indicator CCU(k) is percentage of telecommunications capacity required for fulfilling roll-
out of new service if criterion is to acquire users with existing k or more telephone lines - 
see Figure 4.39. When k = 1, all capacity of users will be acquired, so CCU(1) = 100 %. 
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Previous investigations [45] showed that CNU and CCU indicators can be successfully 
modelled with the following models: 

bka
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=  (4.98) 

dkc
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−⋅+
=  (4.99) 

where a, b, c and d are free parameters. In most cases b is near 1, so expression for CNU is 
even simpler. 
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Figure 4.40: Modelling Covering of number of users indicator  

(example of one local exchange in Zagreb) 
 

Modelled CNU and CCU are found to be useful for further analysis and determination of 
optimal criterion k in business cases for new technology and new services roll-out. 
Parameters of model in case which is presented in Figure 4.40 and Figure 4.41, are: 

- for CNU indicator:  a = 17.5918, b = 1 (Correlation coefficient = 0.9999), 

- for CCU indicator: c = 1.9673, d = 0.2950 (Correlation coefficient = 0.9971). 
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Figure 4.41: Modelling Covering of capacity of users indicator  

(example of one local exchange in Zagreb) 
 

Relationship between Covering of number of users (CNU) and Covering of capacity 
(CCU) for the above described example is shown in Figure 4.42. 
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Figure 4.42: Relationship: Covering of number of users / Covering of capacity 

 

Relationship CNU-CCU can be interpreted as: 1.4 % of all existing users on examined area 
utilise 25 % of all installed capacity operating on examined area, 40 % of all existing users 
utilise approx. 52 % of all installed capacity, etc. Marked point in Figure 4.42 (CNU = 
1.4 %; CCU = 25 %) corresponds to the criterion k = 5, that means users with 5 and more 
existing telephone lines.  

With appropriate scaling factors, relationship between existing and new service can be 
established in business case for new service [47]. Based on selected criterion, investment 
needed for roll-out is function of CNU and CCU: network access and aggregation, CPE 
(customer-premises equipment), in-house installation, etc. On the other hand, future 
revenue is only function of CCU (consumed capacity, i.e. traffic). 

 

Models (4.98) and (4.99) were tested in several different geographical areas in Croatia with 
various shares of residential and business users [47]. Obtained correlation coefficients were 
always higher than 0.988. In fact CNU is shifted survival probability function of random 
variable X: 

)Pr()( xXxCNU ≥=  

with associated probability p(x) = Pr(X = x), probability that user has x telephone lines. 
Namely, probabilities p(x) found to be too scattered for modelling, but (shifted) survival 
function has relatively smooth shape because of its cumulative/aggregate feature, therefore 
it is more suitable for modelling - see Figure 4.43. 
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Figure 4.43: Probabilities p(x) and coverage indicator CNU(x)  

in case of probability that user has x telephone lines 
 

Upon successful modelling of coverage indicator CNU, value for probability p(x) for 
chosen x can be obtained from the difference of modelled coverage indicators - see (4.97): 

1)(x-(x))( += CNUCNUxp  (4.100)

The same principle is valid for CCU modelling. To conclude, in case of selected statistical 
data about existing usage of telecommunications services, modelling of coverage 
indicators is more successful than modelling of their probabilities (i.e. single frequencies). 
Based on that, probabilities and frequencies are obtainable indirectly, from a difference of 
modelled coverage indicators. 

 

4.4.2 Statistical Laws of Market Segments 

Statistically processed/analysed attributes of market segments, such as ranking distribution 
(rank-size distribution), regularly have characteristics of power laws e.g. Zipf, Pareto and 
Mandelbrot laws. [48]. Therefore, ranking distributions of market segments attributes can 
be easily modelled and their models can be used for further analysis. For better fitting 
results, available data should be processed in cumulative way as described in section 4.4.1. 
Models that are suitable for cumulative data fitting, according to the abovementioned 
ranking distribution regularities, will be examined in continuation. 

As an example of statistical regularity of market segments attributes, distribution of 
business entities according to the size (number of employees) in Croatia [62] is shown in 
Figure 4.44. 
 

Model for this distribution is similar to models (4.98) and (4.99): 
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where a and b are free parameters; and N(1) is number of business entities with 1 and more 
employees. 
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Figure 4.44: Distribution of business entities according to size 

 

Example of Croatian business entities is presented in Figure 4.44, where model parameters 
are: N(1) = 134 725; a = 0.776 and b = 1.162.  

 

Number of business entities in certain interval of their size can be derived from (4.101). 
Accordingly, number of business entities with number of employees in interval [x,y] is: 
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Based on (4.102), number of business entities with exactly x employees is: 
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4.4.3 Statistical Laws of Usage Segmentation 

Telecommunications service volume usage is often distributed according to heavy-tailed 
distribution [48]. Moreover, users according to volume usage are also often distributed 
according to heavy-tailed distribution. For example, distribution of post-paid mobile users 
in selected VPN (virtual private network) according to minutes of use outside VPN in one 
month has very regular presentation in log-log graph (minutes of use x vs. number of users 
that spent x or more minutes monthly) - Figure 4.45. 
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Figure 4.45: Distribution of users according to mobile voice minutes of use per month [49] 

 

Model for this distribution is similar to models (4.98) and (4.99), but in this case model is 
extended with the auxiliary parameter Q, minimal significant traffic. In previous examples, 
Q was equal 1, because cases with count of certain attributes were analysed (elements of 
natural number set). But traffic can be measured in minutes, seconds, etc. so model should 
be adapted to accept such auxiliary parameter. In other words, should analysis ignore 
traffic less than Q volume units, than this model for number of users N(x) that spent x or 
more minutes, should be used: 
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=  (4.104)

In the abovementioned example of post-paid VPN mobile service, Q = 50 minutes is 
chosen (i.e. users that spent 50 minutes or less during selected month are ignored). Value 
for N(Q) is 2700 users. Obtained parameters a and b are as follows: a = 7.369E-05; 
b = 2.195 with extremely high correlation coefficient: 0.999993. It is worth to mention 
that, depending on values of Q, the obtained a and b differ.  

 

Similar ranking distribution based on the abovementioned example is presented in Figure 
4.46, where users are arranged according to their monthly usage (high users first, low users 
last) in percentage units. For example, 20 % of all users realise 43 % of all traffic. 

This relationship can be modelled by modified Hoerl model on interval 0 ≤ x ≤ 1, with 
fixed points f (0) = 0 and f (1) = 1: 

bx xaxf ⋅= −1)(  (4.105)

where x is percentage of users, f (x) is percentage of realised traffic by that users, a and b 
are free parameters. Values obtained for this case are: a = 0.7339; b = 0.6748 with very 
high correlation coefficient: 0.99992. 
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Figure 4.46: Percentage relationship between number of users and realised traffic 

(minutes of use per month) 

 

Statistical laws and models for market segments and usage segmentation can be used for 
tailoring offer and price for telecommunications services as well as for examination during 
the business cases evaluation process. 
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5 Revenue Modelling and Forecasting 
 

5.1 Introduction to Revenue Forecasting 
 

Revenue forecasting is the integration point of all relevant techno-economic indicators. 
Flow chart is presented in Figure 5.1, where are: 

NTOT i (t) = Number of users in market segment i at time t; for all operators on the 
 market (not only for the observed one) 

msi (t) = Market share of chosen operator in market segment i at time t; 

Volumei(t) = Standard service usage (traffic) in segment i at time t; 

Price (t) = Price at time t of service volume unit. 

The first step in revenue forecasting is determination of user growth dynamics per market 
segments. Inputs are: market capacity, time frame, saturation for whole market. Sub-steps 
are: identification of market segments for the observed service (e.g. business, residential, 
seasonal segments, etc.), estimation of total service market capacity for each segment, 
estimation of market penetration dynamics for each segment by analysing demand for 
services and external influences. Growth models described in Chapter 4 are used for this 
purpose. 

The second step is forecasting of market share by users for the observed operator. 
Estimation of market share dynamics for particular operator should be done by analysing 
environment for the observed service for each segment. Market share models described in 
section 5.2 are used for this purpose. 

The third step is forecasting of monthly volume (traffic) for typical user from segment i. 
Inputs are: user life-style, affordability, etc. Volume dynamics is strongly related to the 
type of service, therefore, there are no general models for volume dynamics modelling and 
forecasting. 

The fourth step is estimation of price of service volume unit. Inputs are: costs, purchasing 
power, benchmarks, etc. Pricing models described in section 5.3 are used for this purpose. 

Output of the fourth step is average revenue per user (ARPU) forecasted by bottom-up 
approach. Alternative is to include ARPU forecasted by top-down approach directly after 
fourth step (red arrow on flowchart - Figure 5.1). ARPU forecasting is described in section 
5.4. 

Revenue forecast is obtained by multiplying average number of users and ARPU for all 
analysed segments,. 

For all the abovementioned steps, environmental variables (external influences) that should 
be taken into consideration are: competition, cause-and-effect of similar services (analogy 
& impact), technology, macroeconomics and regulatory ones. 
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Figure 5.1: Revenue forecasting flow chart [50] 

 

 

 

5.2 Market Share Modelling and Forecasting 
Market share is a portion (share) of the targeted customer base (market) that a service 
provider actually reaches for a particular service. In general, market share can be examined 
not only by services / service providers but also by certain sub-services within the same 
service provider (e.g. prepaid vs. post paid mobile telecommunications service), by 
technologies (e.g. xDSL vs. FTTx in broadband access), and similar. 

Appropriate modelling of market shares is prerequisite for the optimal planning of 
resources and investments for telecommunications operators, equipment 
manufactures/vendors and policy measures for the regulatory bodies. In this section, as a 
method for analysing the pattern of user decision-making in moving from one operator to 
another and consequently for market share modelling, the Markov chains are examined. 
Presented methods for the Markov chain transition probabilities determination enable 
usage of Markov chains for market share forecasting indicating what would happen if 
market forces remain the same over the observed time period. 

New concept of the Markov chains based on diffusion growth model principles (MCDG) is 
developed (section 5.2.3) that provides superb modelling of diffusion of innovation and 
new technology, market adoption of consumer durables or subscription 
(telecommunications) services for the whole SLC. 
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Academic research on market share models has spanned over the last twenty years. The 
modelling approaches have ranged from the use of predicted values of competitive 
behaviour [51] and when competitors' actions are forecast to simulation-based methods 
[52] and attraction models [53]. Other researchers use causal market share models in 
marketing [54], ensured that a system of equations was estimated to allow parameters to 
vary across segments [55]. Reference [56] applies a dynamic state-space demand system 
approach, while others use neural networks and genetic algorithms [57]. 

Reference [51] forecast market share using predicted values of competitive behaviour. 
Reference [56] model structure provides a convenient method of separating the short and 
long-run behaviour of brand market share, thereby allowing a formal analysis of their time 
series properties. In order to reduce high-frequency variation, the market share data are 
treated as time series one and smoothed by moving average techniques [58]. 

Discrete-time Markov process is used as a method for analysing the pattern of customer 
(user) decision-making in moving from one service provider to another and consequently 
for market share modelling [59]. Finally, [53] assesses the forecasting performance of 
market share models. 

 
5.2.1 Market Share Types 

For each telecom service it is possible to identify (at least) 3 different market share types: 
- by service provider/operator, 
- by (sub)service, 
- by technology. 

Each market share type can be measured: 
- by units (no. of users), 
- by generated revenue. 

Specific market share type could be modelled as a time dependent function ms(t) to 
understand the underlying forces and structure that produced the observed data or for the 
forecasting purposes. The resulting market share in the future can be used as an early 
warning for service providers, manufactures, vendors, etc. 

 
5.2.2 Overall Modelling of Market Share by Markov Chains 

A first-order discrete-time Markov process with finite number of states (here: number of 
service providers) is called Markov chain and applies if only the last purchase has an 
influence on the present one [59]. Therefore, the vector showing probabilities ni(t+Δt) that 
user is served by provider/operator i at time t+Δt is determined by: 
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 (5.1) 

where ni(t); 0 ≤ ni(t) ≤ 1; are probabilities that user is served by provider/operator i at time 
t; pij(t), i = 0, 1, ..., k; j = 0, 1, ..., k are transition probabilities valid for time period [t, 
t+Δt], satisfying: 
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kjitpij ,,0,,1)(0 K=≤≤  (5.3) 

 

Probabilities n0(t) & n0(t+Δt) are probabilities that user is not served by any of k service 
providers/operators (i.e. represent probabilities that user is in fact "non-user" of service at 
time t & t+Δt). Time period Δt is usually one month / quarter / year, depending on the type 
of service, data availability and purpose of modelling. 

For case with k = 2 providers/operators, transition graph is shown in Figure 5.2. 
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Figure 5.2: Transition graph for two service providers/operators [50] 

 

Number of users Ni(t) served by provider/operator i at time t is obtained by multiplying 
probabilities ni(t) with market capacity M. Therefore, market share of provider/operator i 
is: 
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(5.4) 

 

In cases when transition probabilities remain the same over the observed time period, i.e., 
pij(t) = pij, t∈[t1, t2], Markov chain is called time-homogeneous Markov chain. This case 
corresponds to the one in which market forces remain the same during the observed time 
period [t1, t2]. Example of time-homogeneous Markov chain data for two service 
providers/operators is shown in Figure 5.3. 

 

Transition matrix of time-homogeneous Markov chain P consisted of transition 
probabilities pij has descriptive features and can be linked with explanatory marketing 
variables [50]. For example, Churn and Churn rate (see section 3.2.1) of service 
provider/operator i at time t for period Δt is: 

( ) kiptNtChurn iiii ,...,1,1)()( =−⋅=  

 
 Ordinary Markov chain model

0 

0.5

1 n0 n1 n2

Time 
 

Figure 5.3: Time-homogeneous Markov chain model for two service providers/operators; 
n1 and n2 are probabilities that user is served by provider/operator 1 and 2, n0 is probability 

that user is still "non-user" of service 

It is interesting that for time-homogeneous Markov chain the resulting Churn rate is 
constant (see Figure 5.4:). 

( ) kiptChurnRate iii ,...,1,1)( =−=  

Similarly, Gross add and Net add are: 

kjkiptNtGrossAdd
ij

jiii ,...,0;,...,1,)()( ==⋅=∑
≠

 

kitttNetAdd iii ,...,1),(Churn)(GrossAdd)( =−=  
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 Ordinary Markov chain model 
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Figure 5.4: Churn rate for 1st service provider/operator based on time-homogeneous 
Markov chain model from Figure 5.3 

 

Long-term behaviour of time-homogeneous Markov chain shows that it can have steady 
(equilibrium) state. For transition matrix P, vector U is called equilibrium or steady state 
vector iff: 

PUU ×=  (5.5) 

 

Values of elements mi; i = 0, 1, ..., k; of vector U are only dependent on values of transition 
probabilities pij (elements of matrix P), and do not depend on initial values for ni. In other 
words, vector U represents the long-range trend of Markov chain indicating what would 
happen if market forces remained the same and therefore the resulting market share in the 
future can be used as an early warning for service providers/operators, manufactures, ven-
dors of equipment / technology and regulatory bodies (e.g. national telecommunications 
regulatory agencies).  

Computing the equilibrium vector of Markov chain is possible by multiple repetition of 
(5.1) or directly by matrix procedure based on eigenvalues of matrix P. 

 

5.2.2.1 Determination of Transition Probabilities 

Determination of transition probabilities of time-homogeneous Markov chain from known 
data sets makes sense for time periods when market forces mainly remain the same. Any 
stronger discontinuity on the observed market, such as entry of new service provider / 
operator, new technology, new regulation, etc. can cause that the obtained model will not 
be suitable for forecasting. Smaller fluctuations resulting from seasonal oscillations or 
particular marketing campaigns can be eliminated knowing extensive set of input data and 
their processing by regression methods. 
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Sufficient set of input data 

Matrix of transition probabilities P from (5.1), has (k+1)2 elements, which require k + 2 
known time points: Ni(tl), i = 0, 1, ..., k; l = 1, 2, ..., k+2. Solution of system of k(k+1) linear 
equations: 
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gives values of k(k+1) transition probabilities pij; i = 0, 1, ..., k; j = 1, ..., k. The rest of k+1 
depending probabilities pi0 can be obtained utilising (5.2): 
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Values for N0(tl), l = 1,2, ...,k+2; are usually unknown and should be calculated from the 
estimated market capacity M: 
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Minimum set of input data 

In cases when market capacity M is unknown or hardly can be estimated, instead of 
probabilities ni(t); i = 0, 1, ..., k; market shares msi(t); i = 1,...,k; are treated as probabilities 
that user is served by provider/operator i at time t. This reduced Markov chain model 
eliminates necessity for determination of n0(t) and 2k+1 transition probabilities pij that have 
zeros in index: p00, p01,..., p0k, and p10,..., pk0 from (5.1). 
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Matrix of transition probabilities R from (5.9), has k2 elements, which require k + 1 known 
time points: msi(tl), i = 1, 2,..., k; l = 1, 2, ..., k+1. Solution of system of k(k-1) linear 
equations: 
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gives values of k(k-1) transition probabilities rij; i = 1, 2, ..., k; j = 2, ..., k. The rest of k 
depending probabilities ri1 can be obtained from: 
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Although this approach gives satisfactory results for the modelling purposes [59], it loses 
information of user decision-making to move from user of certain service / technology to 
being non-user. This deficiency is manifested, for example, during market share modelling 
of fixed-voice telecommunication operators but without taking into consideration strong 
effect of fixed-to-mobile substitution. In addition, this approach loses information about 
Churn, Churn rate, Gross add and Net add explanatory marketing variables. 

 

Extensive set of input data 

In cases when n = k + 3 or more time points are available, the weighted least squares 
method can be used for transition probabilities estimation to adjust the values for pij so as 
to best fit a data set.  

Namely, objective is to minimise sum S of squared difference between the known data 
points and the Markov chain model evaluated points: 

 

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ×−××−⋅= −−

=
∑

T1
1

1
1

2
det l

l
l

l

n

l
lwS PNNPNN  (5.12) 

where T is matrix transpose operator, wl are weights and vectors Nl, l = 1, 2, ..., n are 
known data points (at times t = t1, t2,..., tn) with elements ni(tl) = Ni(tl)/M, i = 0, 1, ..., k; 
l = 1, 2, ..., n. When weights are equal to 1 (wl = 1), the method is called ordinary least 
squares method (OLS). 

Minimisation of S can be done by software tools such as Microsoft Excel Solver. Initial 
values for pij; , i = 0,1, ...,k; j = 0,1,...,k; can be determined from the first k+2 known time 
points by solution of system linear equations described in sub-section Sufficient set of 
known data.  

In general case, transition probabilities pii are greater than pij i ≠ j. If ChurnRatei is known, 
initial values for pii can be calculated from them. Constrains for minimisation process 
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should be set on all pij as stated in (5.2) and (5.3). Adjustable parameters of minimisation 
are k(k+1) transition probabilities pij; i = 0, 1, ..., k; j = 1, ..., k; which, at the end of 
minimisation, achieve optimal values. Rest of (k+1) unknown transition probabilities pi0 
are obtainable from (5.7). 

By the use of the least squares method, values obtained for transition probabilities are 
statistically smoothed, i.e. influence on transition probabilities values due to particular 
measurement errors (such as unanticipated seasonal variation, marketing campaigns, 
uncertain measure, etc.) is reduced. 

 

For the forecasting purposes, estimation of transition probabilities pij is usually focused on 
the time interval near the last observed data point. Thus, weights in equation (5.12) can be 
set to higher value for the most recent data points, than for data points in far history. For 
example, geometric series for weights [24]: 

 

nlq
q

w lnl ,...,2,1;1,1 =>= −  (5.13) 

leads to the following weights: 1 for (the last known point) tn , 1/q for tn-1 (the penultimate 
known point), 1/q2 for tn-2, etc. 

Similar procedure can be used for determination of transition probabilities in case of the 
reduced Markov chain model (sub-section Minimum set of input data) when k+2 or more 
time points are available. 

 

 

5.2.3 Markov Chains Based on Diffusion Growth Model Principles 

As discussed in section 4.2, diffusion of innovation and new technology, market adoption 
of consumer durables or subscription services (for example: telecommunications services) 
number of users / customers at the beginning of service life-cycle (SLC) have sigmoidal 
(S-shaped) growth. Market adoption of service during the entire SLC consists of several 
growth/decline segments encompassing interaction between different services or similar 
services offered from different providers/operators [4], which is not the case with the 
ordinary Markov chain model where curves are, in general, more similar to exponential 
saturation growth than to S-curves. 

 

Widely used S-shaped growth model with many useful properties for technological and 
market development forecasting is the logistic model (see section 4.1.1). Differential 
equation (5.14) defines logistic growth which consists of exponential growth term and 
negative feedback term [24]. In the beginning, growth of logistic model is identical to 
exponential growth, but later negative feedback slows the gradient of growth as L(t) is 
approaching market capacity limit M: 
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Based on this, for small time units Δt > 0, normalised logistic growth can be approximated 
with: 

2

2 )()1()()(
M

tLp
M

tLp
M

ttL −+≈Δ+  (5.15) 

 

where p is a substitution for (1+aΔt) and M is market capacity. 

 

Recursive approximation (5.15) gives a way of representation of logistic growth in a 
matrix form for k different service on the same market which is similar to (5.1): 
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 (5.16) 

 

To preserve consistency of values for ni(t), 0 ≤ ni(t) ≤ 1, pij, as it is the case of the ordinary 
Markov chains, conditions (5.2) and (5.3) should be satisfied. It remains to determine 
constrains for qij. Let us assume that ni(t) approaches 1 (this corresponds to the case when 
Ni(t) approaches M). Then all other nj(t), j ≠ i should approach 0. According to that, 
constrains coincide with the following system of equations: 
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which solutions determine values for elements qij of matrix Q: 
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From (5.2) follows that the sum of each row in matrix P is equal to 1; and from (5.17) and 
(5.2) follows that the sum of each row in matrix Q is equal to 0: 
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Therefore, values for qij are fully defined only via values of pij. In other words, no 
additional parameters need to be determined - still for k service providers/operators (k+1)2 
transition probabilities need to be determined. 

Procedure similar to the described one in sub-section Extensive set of input data can be 
used for determination of transition probabilities of Markov chain based on diffusion 
growth model in cases when k+3 or more time points are available. 

Using the same transition matrix from the example showed in Figure 5.3, the Markov chain 
based on diffusion growth (MCDG) model (5.16) is shown in Figure 5.5. Modelled SLC 
consists of growth/decline S shaped segments opposed to the ordinary Markov chain model 
(Figure 5.3) as it was premised. 

 Markov chain based on diffusion growth 
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n0 n1 n2

Time  
Figure 5.5: Time-homogeneous Markov chain based on diffusion growth model data for 

two service providers/operators; n1 and n2  
(n0 is probability that user is still "non-user" of service) 
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5.2.3.1 Modelling of Diffusion of Technology 

Nowadays, the most intensive investments in fixed telecommunications business are 
investments into broadband access network development. Currently, only future proof 
access technology is the optical based one (FTTx) which offers almost unlimited speeds 
suitable for all known broadband services (VoIP, Internet and IP TV; i.e. N-play in 
general). Business modelling for FTTx technology deployment has extreme importance for 
fixed line telecommunications operators' survival (high CapEx combined with low RoI) 
and consequently reliable modelling / forecasting has the crucial role. Therefore, the 
Markov chain based on diffusion growth (MCDG) model will be examined on fixed 
broadband access example. 

Norway fixed broadband market, where cable modem, xDSL and FTTx technologies are 
present, is chosen for the analysis. Inputs for model are: quarterly number of broadband 
users in period EOY 2000 to Q3 2008 (31 known time points) divided on technology type 
of access [60].  

The following order of data is used in (5.16): i = 0 represents market share of fixed 
broadband non-users; i = 1 market share of cable modem users; i = 2 market share of xDSL 
users and i = 3 represents market share of FTTx users. 
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Figure 5.6: Broadband access technology diffusion in Norway  
(dots = input data; curves = MCDG model) 

 

Market capacity for fixed broadband users (connections) is estimated to 2.25 millions in 
total for residential and business segments [61]. Transition matrices obtained by OLS 
method are: 
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It is worth to mention that transition probability obtained from FTTx state to FTTx state is 
p33 = 100 % which means that FTTx is absorbing state of the Markov chain, and if market 
forces remain the same as they are now, all users will migrate to FTTx technology in the 
future. In other words, once a user has experienced the advantages of FTTx based 
broadband services, she/he remains their user. 

Sum of squared difference (of OLS) between the known data points and the MCDG model 
evaluated points is S = 2.81E-03. The ordinary Markov chain model (5.1) on same data 
gives out S = 6.57E-02, and in case of the reduced Markov chain (5.9) on same data 
S = 5.21E-02. Result obtained for S in case of the MCDG model proofs its superb fit of 
experimental data (from 19 to 23 times less sum of squared difference between the known 
data points and the model evaluated points). 

 

 

5.3 Pricing Models 
During recent years, offer on liberalised telecommunications market has approached or 
became larger than demand. One of the results of this development is appearance of variety 
of pricing models. Their main purpose is to adjust operator's offer to the market laws of 
demand. 

 

As a key for success in customer acquisition, retention and business in general, pricing 
model must encompass the following attributes [49]: 

- Profitable, 
- Billable, 
- Flexible, 
- Ensure large customer base, 
- Easy to understand, 
- Exploit willingness-to-pay, 
- Consistent with regulation, 
- Ensure competitiveness, 
- Influence of other services. 

 

It must be fair in sense of usage, which is described with expression (5.20): 

)()()( 2111 VolumeChargeVolumeChargeVolumeVolumeCharge +≤+  (5.20) 
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Environmental variables that influence Pricing models are illustrated in Figure 5.7. 
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Figure 5.7: Relation of Pricing model and environment [49] 

 

After conception of Pricing model based on the abovementioned principles, its primary 
input variable is volume (traffic) of telecommunications service realised by certain 
user/customer in agreed time period (usually one month). Volume can be measured as one 
or combination of the following: 

- Number of service units (e.g. number of SMS, number of IPTV premium channels, 
etc.); 

- Duration of service usage in time units (e.g. duration of voice calls) 
- Realised traffic in information units (e.g. MB, GB for data service or internet 

usage); 
- Connection speed in data transfer rate units (e.g. Mbit/s for data service or internet 

usage), etc. 

Moreover, pricing models can include additional attributes, such as: 
- Distance (e.g. different tariff for local / long-distance / international voice service; 

or local / long-distance / international data lines); 
- Agreed level of quality of service (QoS), etc.  

 

In continuation of this section, widespread pricing models will be presented and analysed 
where an operator aspect will be used, so Charge for certain telecommunication service 
will be denoted as Revenue. 

Besides pricing model analytical characteristics, their resulting elasticises will be analysed 
through: Price elasticity of volume and Volume elasticity of revenue. 
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Price elasticity of volume EV(p): analogue to Price elasticity of demand Ed(p) this is a 
measure of sensitivity of realised volume V to changes in unit price p; defined as 
percentage change in realised volume per percentage change in unit price: 
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Volume elasticity of revenue ER(V): a measure of sensitivity of revenue (charge) R to 
changes in realised volume; defined as percentage change in revenue (charge) per 
percentage change in realised volume: 
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An operator expects that ER(V) is positive, i.e. that increase of realised volume has the 
effect on increase of revenue. A user expects that EV(p) is negative, i.e. that increase of 
realised volume has the effect on decrease of unit price and vice versa, which is congruent 
with (5.20). 

 

5.3.1 Pricing Model: Linear without Fixed Fee 

Linear without fixed fee pricing model has the following characteristics [49]: 
- Only pricing dimension is a per realised volume fee,  
- No guaranteed revenue, 
- Price/Volume is constant, 
- Linear. 

Pricing model is defined with: 
VolumekVolumeRevenue ⋅=)(  (5.23) 

 

Analytical characteristics of Linear without fixed fee pricing model are: 
- Unit price is constant regarding changes in realised volume = k; 
- Volume elasticity of revenue is constant regarding changes in realised volume = 1; 
- It can be interpreted that demand for volume is perfectly elastic (EV(p) = ±∞); 
- It is fair in sense of usage: 

 

)()()( 2121 VolumeRevenueVolumeRevenueVolumeVolumeRevenue +=+  (5.24) 

 

Figure 5.8 shows Revenue -Volume and Unit price - Volume relationships and Figure 5.9 
Price elasticity of volume - Volume and Volume elasticity of revenue - Volume 
relationships in case of this pricing model. 
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Figure 5.8: Pricing model - Linear without fixed fee 

Revenue -Volume and Unit price - Volume relationships 
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Figure 5.9: Pricing model - Linear without fixed fee 

ER(V) - Volume relationship; EV(p) is not shown EV(p) = ±∞ 

 

5.3.2 Pricing Model: Linear with Fixed Fee 

Linear with fixed fee pricing model has the following characteristics [49]: 
- Fixed monthly (or annual) fee plus linear charge per realised volume, 
- Very flexible, 
- Good differentiation possibilities, 
- Can be customised to address various segments. 
 

Pricing model is defined with: 
0;)( >+⋅= bbVolumeaVolumeRevenue  (5.25) 

Figure 5.10 shows Revenue -Volume and Unit price - Volume relationships and Figure 5.11 
Price elasticity of volume - Volume and Volume elasticity of revenue - Volume 
relationships in case of this pricing model. 
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Figure 5.10: Pricing model - Linear with fixed fee 

Revenue -Volume and Unit price - Volume relationships 
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Figure 5.11: Pricing model - Linear with fixed fee 
ER(V) - Volume and EV(p) - Volume relationships 

 

Analytical characteristics of Linear with fixed fee pricing model are: 
- Unit price decreases when volume increases approaching value of parameter a; 
- Volume elasticity of revenue increases when volume increases approaching 1; 
- Price elasticity of volume decreases when volume increases approaching value  

of: - a⋅Volume / b; 
- It is strictly fair in sense of usage: 

)()()( 2121 VolumeRevenueVolumeRevenueVolumeVolumeRevenue +<+  (5.26) 

 

5.3.3 Pricing Model: Linear with free Trial Period 

Linear with free trial period pricing model is a special case of Linear with fixed fee model, 
defined by (5.27) [49]. 
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Analytical characteristics of Linear with free trial period pricing model are: 
- Unit price increases when volume increases approaching value of parameter a; 
- Volume elasticity of revenue decreases when volume increases approaching 1. 

Price elasticity of volume is positive and increases when volume increases which is 
inconsistent with "fair in sense of usage" condition (5.20): 

)()()( 2121 VolumeRevenueVolumeRevenueVolumeVolumeRevenue +>+  (5.28) 

but model is favourable for users because of trial period. Figure 5.12 shows Revenue -
Volume and Unit price - Volume relationships and Figure 5.13 Price elasticity of volume - 
Volume and Volume elasticity of revenue - Volume relationships in case of this pricing 
model. 
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Figure 5.12: Pricing model - Linear with free trial period 
Revenue -Volume and Unit price - Volume relationships 
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Figure 5.13: Pricing model - Linear with free trial period 

ER(V) - Volume and EV(p) - Volume relationships 



Revenue Modelling and Forecasting 

104 

 

5.3.4 Pricing Model: Flat Rate 

Flat rate pricing model has the following characteristics [49]: 
- Fee paid regardless of realised volume, 
- To be used by operators with utmost care, 
- Addresses heavy users, 
- No differentiation possible, 
- Easy to bill, 
- Easy to communicate, 
- Pricing model is defined with: 

aVolumeRevenue =)(  (5.29) 

 

Analytical characteristics of Flat rate pricing model are: 
- Unit price decreases when volume increases approaching 0; 
- Volume elasticity of revenue is 0, i.e. revenue does not increase while volume 

increases; 
- Price elasticity of volume is -1, i.e. unit (or unitary) elastic; 
- It is strictly fair in sense of usage: 

)()()(
)()(

212

121

VolumeRevenueVolumeRevenueVolumeRevenue
VolumeRevenueVolumeVolumeRevenue

+<=
==+

 (5.30) 

 

Figure 5.14 shows Revenue -Volume and Unit price - Volume relationships and Figure 5.15 
Price elasticity of volume - Volume and Volume elasticity of revenue - Volume 
relationships in case of this pricing model. 
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Figure 5.14: Pricing model - Flat rate 

Revenue -Volume and Unit price - Volume relationships 
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Figure 5.15: Pricing model - Flat rate 

ER(V) - Volume and EV(p) - Volume relationships 

 

5.3.5 Pricing Model: Flat Rate Cap 

Flat rate cap pricing model has the following characteristics [49]: 
- Limits usage volume which is included in flat rate, 
- Beyond cap per-usage fee applies, 
- Limits risks of flat rate, 
- Addresses heavy users, 
- Differentiation through levels of V0, R0. 

Auxiliary curve (resulting from experience learning curve [26]) determines levels of V0, R0 
and slope of tangent (5.31). Auxiliary curve with two different levels for V0, R0 and 
corresponding tangents are shown in Figure 5.16 [62]. 

( ) 10;
0

0 <<= bVolume
V
RVolumerveAuxilaryCu b

b  (5.31) 
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Revenue( Volume   )   
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Volume       V 0

R 0
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V*
0

 
Figure 5.16: Auxiliary curve for pricing model Flat rate cap 
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Pricing model is defined with: 

( )⎪⎩

⎪
⎨
⎧

−⋅+=>

=≤
=

0
0

0
00

00
)( VVolume

V
RbRRevenueVVolume

RRevenueVVolume
VolumeRevenue  (5.32) 

From (5.31) follows that for different value for volume-cap, V'0, corresponding price level 
R'0 should be: 

b

V
VRR ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ′
⋅=′

0

0
00   

Increment of price ΔR per volume unit ΔV in over-cap interval follows from (5.31) and 
(5.32).  

0

0
V
RbVR ⋅⋅Δ=Δ   

Increment of price ΔR is lower if value for volume-cap V0 is higher - see Figure 5.16. For 
example, broadband internet service, chosen b = 0.67 and start package: 

- Volume cap V0 = 2 GB, price R0 = 3 €, additional 1 GB of usage over cap is 1 € 

generates the following additional packages: 

- Volume cap V0 = 5 GB, price R0 = 5.5 €, additional 1 GB of usage over cap is 0.75 €, 

- Volume cap V0 = 15 GB, price R0 = 11.5 €, additional 1 GB of usage over cap is 
0.5 €, etc. 

Figure 5.17 shows Revenue -Volume and Unit price - Volume relationships and Figure 5.18 
Price elasticity of volume - Volume and Volume elasticity of revenue - Volume 
relationships in case of this pricing model. 
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Figure 5.17: Pricing model - Flat rate cap 
Revenue -Volume and Unit price - Volume relationships 
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Figure 5.18: Pricing model - Flat rate cap 

ER(V) - Volume and EV(p) - Volume relationships 
 

Analytical characteristics of Flat rate cap pricing model are: 
- Unit price decreases when volume increases approaching b·R0 / V0 (for 

Volume >> V0); 
- Volume elasticity of revenue in flat rate period (V < V0) is 0, after that period it 

increases when volume increases approaching 1; 
- Price elasticity in flat rate period (V < V0) is -1, after that period it decreases when 

volume increases; 
- It is strictly fair in sense of usage: 

)()()( 2121 VolumeRevenueVolumeRevenueVolumeVolumeRevenue +<+  (5.33) 

 

 

5.3.6 Pricing Model: Cost Oriented 

Cost oriented pricing model has the following characteristics [49]: 
- Based on cost models for telecommunications operators [26] – the most fair for 

users and operators (mutual understanding), 
- Fixed part resulting from operator fixed costs, usage-independent defined via 

coefficient a0, 
- Linear part resulting from linear costs defined via coefficient a1, 
- Non-linear part resulting from experience curve [26] and defined via coefficient a 

and exponent b : 0 < b <1, 

Pricing model is defined with: 

( ) bolumeVaolumeVaaVolumeRevenue ⋅+⋅+= 10  (5.34) 
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Figure 5.19 shows Revenue -Volume and Unit price - Volume relationships and Figure 5.20 
Price elasticity of volume - Volume and Volume elasticity of revenue - Volume 
relationships in case of this pricing model. 
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Figure 5.19: Pricing model - Cost oriented 

Revenue -Volume and Unit price - Volume relationships 
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Figure 5.20: Pricing model - Cost oriented 

ER(V) - Volume and EV(p) - Volume relationships 
 

Analytical characteristics of Cost oriented pricing model are: 
- Unit price decreases when volume increases approaching value of parameter a1; 
- Volume elasticity of revenue increases when volume increases approaching value 

of parameter b; 
- Price elasticity of volume decreases when volume increases to minus infinity; in 

cases when a1 = 0 it is approaching value of 1/(b - 1) which is always less than -1; 
- It is strictly fair in sense of usage: 

)()()( 2121 VolumeRevenueVolumeRevenueVolumeVolumeRevenue +<+  (5.35) 
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5.3.7 Pricing Model: Volume Rounding 

 

To cover fixed costs of production, telecom operators usually apply rounded-up billing of 
realised volume (traffic). Rounding principle can be mathematically noted as: 

⎪⎩

⎪
⎨
⎧

>⎥⎥
⎤

⎢⎢
⎡ −⋅+

≤
=

0
0

0

00

,

,

dV
d

dVdd

dVd
W  (5.36) 

where V is real (realised) volume (traffic), d0 is initial rounding step and d is incremental 
rounding step and W is billed volume (traffic) - see Figure 5.21. In expression (5.36), 
ceiling function is noted as ⎡x⎤. 

 

0
0

W - Billed 
volume/traffic 

d0 d0+d V - Real 
volume/traffic  

Figure 5.21: Rounded-up billing of realised volume (traffic) 

 

For example, in case when pricing model has for d0 = 60 seconds and d = 15 seconds, 
every voice call that lasts between 1 and 60 seconds will be billed as 60 seconds call. Calls 
that last between 61 and 75 seconds will be billed as 75 seconds call, etc. Such rounded 
billing is present not only in voice service, but also in (fixed and mobile) data and internet 
service for volumes in [MB] or [GB]. 

 

For uniformly distributed user generated volume (traffic), percentage difference between V 
and W can be obtained by elementary math: 
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where W and V are average values for billed and real volume, respectively. 

 

Specially, for d0 = 0, approximation for ε is: 

 

0,
212

1
0 =≅

+
−= d

V
d

V
dε  (5.38) 

 

Table 5.1 presents percentage difference calculated by (5.37) for typical 
telecommunications services. Formula (5.37) assumes that distribution of volume (traffic) 
is uniform V∼U( 0 , 2V ), but in real cases it is log-normal V∼Log-N(μ,σ), which median 
is lower than V and consequently influence of rounding-up is higher. Therefore, values for 
percentage difference ε in Table 5.1 can be interpreted as minimal possible (i.e. the best 
case for service users / the worst case for operators). 

 

Table 5.1: Percentage difference between realised traffic and billed traffic 

Service 
Average 

volume / traffic 
V  

Initial rounding 
step d0 

Incremental 
rounding step d 

Percentage 
difference ε 

Fixed voice 180 s 0 s 60 s + 16.3 % 
Fixed voice 180 s 60 s 15 s + 6.0 % 
Fixed voice 180 s 60 s 1 s + 2.7 % 

Mobile voice 90 s 0 s 15 s + 7.7 % 
Mobile voice 90 s 60 s 30 s +21.5 % 
Mobile voice 
free calls with 
call-setup fee 

180 s 60 s 0 s - 66.8 % 

Broadband 
internet 3 GB 2 GB 1 GB + 4.8 % 
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5.4 Average Revenue Per User Forecasting 
 

Average Revenue Per User (ARPU) represents the average revenue generated per each 
user unit (subscriber, customer, user, fixed phone line, DSL line, SIM card, etc.) during the 
specified time period (monthly, quarterly and yearly). On the other side, ARPU equals to 
the charged (realised) volume of average user per specified time period: 

( ) ( )VolumeUnitPriceVolumeVolumeCharge
usersofNumber

RevenueARPU ⋅===  (5.38) 

All possible cases when ARPU increases with examination of revenue, customer base and 
market position are presented in Figure 5.22. 
 

Average no. 
of users Revenue Case / Comment 

  Bad for revenue and customer base 

  Bad for customer base 

  Good 

  Excellent 
 

Unit price Volume Case / Comment 

  Good, but short-term, possible only if 
EV(p) ≅ 0 

  Good, but possible only for targeted 
segments where EV(p) > 0 

  Excellent: pricing model fits to users' 
needs 

  Bad for market share, revenue (charge) 
can rise only if EV(p) ∈ (-1,0) 

  Good for market share, revenue (charge) 
can rise only if EV(p) < -1 

 

Figure 5.22: Possible cases when ARPU increases [49] 

There are two basic approaches in ARPU forecasting: Top-down and Bottom-up approach. 

 

5.4.1 Top-Down Approach 

Top-down forecasting of ARPU can be done directly or indirectly based on revenue 
forecasting and number of users forecasting. 

Direct forecasting of ARPU is possible in cases when historical time series data for ARPU 
have S-shaped segments, so growth models described in Chapter 4 can be used. 

Indirect forecasting of ARPU in time period [t1,t2] can be calculated from (5.39): 

),(
),(),(

21

21
21 ttN

ttRevenuettARPU =
 

(5.39) 

The first step is revenue and number of users modelling and forecasting. 
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After that, average of forecasted number of users during specified time period [t1,t2] should 
be calculated - see Table 5.1. 

 
Table 5.1: Average number of users for different growth 

Red line represents exact average number of uses; 
Grey one is a simple average between N(t1) and N(t2) [49] 

Linear growth 
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In general, ARPU obtained by top-down approach is a useful benchmark for the bottom-up 
approach (sanity check). 

 

5.4.2 Bottom-Up Approach 

ARPU in time period [t1,t2] can be calculated from the forecasts of the lowest-level 
disaggregate forecasts about service usage (volume) for all recognised market segments 
and forecasts about appropriate/affordable pricing models related to recognised market 
segments. Steps in bottom-up ARPU forecasting (Figure 5.23) are: 

- Estimation of typical service usage (volume) for recognised segments according to 
users' life-styles; 

- Determination of appropriate/affordable pricing model; 

- Price trends assumption based on external influences (e.g. price erosion); 

- Obtaining Average Revenue per User. 

Based on Pricing Models described in section 5.3, expression (5.40) can be used for 
bottom-up ARPU calculation. 

∑
=

⎥⎦
⎤

⎢⎣
⎡ +⋅=

n

i
iii

ttttUsagePricefttARPU
1

21
2121 2
),,(),(  (5.40) 

where fi are segments share (5.41), defined via number of users in i-segment Ni:  
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Figure 5.23 Steps in bottom-up ARPU forecasting [49] 

 

Function Price (Usage, Time) in 5.40 is based on pricing models described in section 5.3, 
but it encompasses price trend in the future. Usually, service price erosion could be 
expected in the future due to strong telecommunications equipment price erosion trend and 
competitive conditions on liberalised markets. 

Price drop dynamics can be related with penetration level in future or simply time 
dependent.  

In case of time dependent price erosion, it usually follows declining exponential model 
(5.42): 

( ) ( )( )01Pr YearYearaYearice −−=  (5.42) 

where a is annual rate of decrease, 0 < a < 1. 

 



Integration of Analytical Method 

114 

 

6 Integration of Analytical Method  
 

Integration of all forecasting modules is presented in Tables 6.1 - 6.3. First table presents 
User growth dynamics forecasting module, the second Revenue forecasting module and the 
third module with elements for Improvement of forecasting quality. 

Most right cells represent models and procedures that support specific forecasting needs. 
Numbers in square brackets represent related sections in Thesis. 

Table 6.1: User growth dynamics forecasting module 

Logistic Growth 
Model [3.3] 

Logistic Model 
through Two Fixed 

Points [3.3.1], 
[4.1.1.1] 

Logistic Model 
through One Fixed 

Point [3.3] 

Imitation prevails 
Logistic Growth Model 

based 

Logistic model 
through three points 

[4.1.1.2] 
Bass Model [3.4] 
Bass Model with 

Explanatory 
Parameters [4.1.6] Innovation and imitation 

Bass model based Bass Model Through 
One Fixed Point 

[4.1.7] 
Richards Model [3.5] 

Growth Models for 
the First Segment 
of Service Life-

Cycle 

Imitation prevails with 
flexible inflexion 

Richards Model based 

Richards Model 
through One Point 

[4.1.4] 
Growth Models for 
the First Segment 
and Successive 

Segments of 
Service Life-Cycle 

Generalisation of Recursive Growth Models 
[4.1.10] 

Monotone growth/decline Logistic Spline 
Model [4.2.1] Growth Models for 

Successive 
Segments of 

Service Life-Cycle 
General case of 

successive segments 

Universal Model for 
Successive Segments 
of Service Life-Cycle 

[4.2.2] 

User growth 
dynamics 

forecasting 

Growth Models for 
whole Service Life-

Cycle 

Multi-Logistic Model 
[4.3.1] 
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Table 6.2: Revenue forecasting module 

Overall Modelling of Market Share by Markov 
Chains [5.2.2] Market Share 

Modelling and 
Forecasting Markov Chains Based on Diffusion Growth 

Model Principles [5.2.3] 
Pricing Model: Linear without Fixed Fee 

[5.3.1] 
Pricing Model: Linear with Fixed Fee 

[5.3.2] 
Pricing Model: Linear with free Trial Period 

[5.3.3] 
Pricing Model: Flat Rate 

[5.3.4] 
Pricing Model: Flat Rate Cap 

[5.3.5] 
Pricing Model: Cost Oriented 

[5.3.6] 

Pricing Models 

Pricing Model: Volume Rounding 
[5.3.7] 

Top-Down Approach 
[5.4.1] 

Revenue 
forecasting 

Average Revenue Per 
User Forecasting Bottom-Up Approach 

[5.4.2] 

 

Table 6.3: Module for improvement of forecasting quality 

Uncertainty of 
Forecasted Service 
Market Capacity 

Direct procedure based on Logistic model 
through three points [4.1.2] 

Statistical Laws of New Technologies and New 
Services Roll-Out [4.4.1] 

Statistical Laws of Market Segments [4.4.2] 

Forecasting 
quality 

improvement Experiences from 
Telecommunications 

Operations 

Statistical Laws of Usage Segmentation [4.4.3] 
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7 Conclusions 
According to the forecasting praxis and academic research in a field of forecasting in 
telecommunications business, optimal results can be obtained by combination of 
qualitative and quantitative methods. However, the existing quantitative time series 
forecasting methods are based on analytical models with limited ability to accept results of 
qualitative forecasting as external variables or model parameters.  

Forecasting of service market adoption through growth of users is examined in two ways: 
adoption of a new service in first segment of service life-cycle and adoption of the existing 
service during later segments of service life-cycle.  

In case of new service market adoption (first phase of service life-cycle), an example of 
successful qualitative - quantitative integration is the logistic model through two fixed 
points, but due to limits of the logistic model it has restricted usage. Based on the analysis 
of existing growth models and the abovementioned requirements, the Bass model with 
explanatory parameters was developed, suitable for forecasting prior to service launch or in 
early phases of the service life-cycle. In addition, the Richards model is modified based on 
same principle that was used for the logistic model. The Bass with explanatory parameters 
and the modified Richards model are suitable for forecasting of all conditions for new 
service market adoption. 

In case of existing service market adoption (later phases of service life-cycle) three 
different models were developed depending on forecasting needs and available inputs: 

Logistic spline model 

The Logistic spline model is suitable for forecasting of service life-cycle segments 
with monotone growth or decline. Moreover, the logistic spline can recognise and 
warn that qualitative forecasting inputs (assumptions) are inadequate. 

Universal Model for Successive Segments of service life-cycle 

The Universal model for successive segments has been developed for most often 
case: modelling for current market adoption segment and the first successive segment 
in the future. Namely, a forecaster practitioner can anticipate one consecutive part of 
market adoption segment in the future and has available only limited input data set. 

Multi-logistic model 

The Multi-logistic model can model market adoption of service during the entire 
service life-cycle, but requires large set of known data points, which limits its 
application for the forecasting purposes. 

 

Issue of uncertainty and sensitivity on input data is analysed on case of the logistic model. 
Procedure for direct assessment of logistic model sensitivity to uncertainty of input data 
has been developed. Results show that uncertainty of obtained market capacity only 
depends on measurement error of input data and known penetration range that is covered 
by input data. 
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Based on experience and available data form telecommunications operations statistical 
laws and regularities are recognised and modelled to provide forecasting inputs that were 
not directly accessible. Focus was on new technologies and new services roll-out 
performance and analysis of market (sub)segment values. 

 

Revenue forecasting is given in systematised way incorporating all its elements: market 
share modelling, pricing models and average revenue per user modelling. It is suggested to 
use top-down and bottom-up approach simultaneously which enables mutual sanity check.  

For the overall modelling of market share, the new concept of Markov chains based on 
diffusion growth model principles has been developed. It is suitable for modelling of 
diffusion of new technology and telecommunications services for the whole service life-
cycle where interactions with different operators or technology are evident. The model can 
give early warning for service operators to change their market performance right on time. 

 

Integration of all analysed and developed models and forecasting procedures in analytical 
method has been done with appropriate flow chart depending on specific forecasting needs. 

 

Future work 

 

During preparation of the Thesis, a number of interesting research challenges has been 
identified for the future work. They can be divided into: growth model improvement, 
quality of forecasting improvement and modelling of revenue elements. 

The main challenges in field of growth model improvement are concretisation of 
conditions on the Generalised recursive growth models and finding its explicit forms for 
specific cases. 

The main challenges in field of forecasting quality improvement are further investigations 
of features of the Universal model for successive segments related to enabling warning that 
qualitative forecasting inputs (assumptions) are inadequate. In addition, further research 
regarding analysis of uncertainty and sensitivity on input data for modelling of later phases 
of service life-cycle. 

New concept of the Markov chains based on diffusion growth model gives principles for 
developing of the Markov based model for average revenue per user and its forecasting. 
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Appendix 
List of Techno-economic indicators in telecommunications business 
 

1. Indicators and definitions of WirelessIntelligence on-line business intelligence 
database (https://www.wirelessintelligence.com/index.aspx, visited on 2009-03-29) 

 
CONNECTIONS 

Number of 
Connections 

A SIM, or where SIMs do not 
exist, a unique mobile 
telephone number, which has 
access to the network for any 
purpose (including data only 
usage) except telemetric 
applications 

Total, Contract, Prepaid, cdmaOne, 
CDMA2000 1X, CDMA2000 1xEV-DO, 
GSM, WCDMA, TDMA, PDC, iDEN, 
Analog 

Current rank by 
Connections   

Total (Country), Total (Region), Total 
(World), cdmaOne (Country), cdmaOne 
(Region), cdmaOne (World), CDMA2000 
1X (Country), CDMA2000 1X (Region), 
CDMA2000 1X (World), CDMA2000 
1xEV-DO (Country), CDMA2000 1xEV-DO 
(Region), CDMA2000 1xEV-DO (World), 
GSM (Country), GSM (Region), GSM 
(World), WCDMA (Country), WCDMA 
(Region), WCDMA (World), TDMA 
(Country), TDMA (Region), TDMA 
(World), PDC (Country), PDC (Region), 
PDC (World), iDEN (Country), iDEN 
(Region), iDEN (World), Analog (Country), 
Analog (Region), Analog (World) 

Market Share of 
Connections 

Operator connections divided 
by total connections for the 
country, shown as a 
percentage. 

Total, cdmaOne, CDMA2000 1X, 
CDMA2000 1xEV-DO, GSM, WCDMA, 
TDMA, PDC, iDEN, Analog 

Growth Rate, 
Connections 
(Sequential) 

Connections in current quarter 
divided by connections in 
previous quarter shown as a 
percentage 

Total, cdmaOne, CDMA2000 1X, 
CDMA2000 1xEV-DO, GSM, WCDMA, 
TDMA, PDC, iDEN, Analog 

Growth Rate, 
Connections 
(Year on year) 

Connections in current quarter 
divided by connections in 
relevant quarter a year 
previously shown as a 
percentage 

Total, cdmaOne, CDMA2000 1X, 
CDMA2000 1xEV-DO, GSM, WCDMA, 
TDMA, PDC, iDEN, Analog 

% of 
Connections 

The number of connections in 
the relevant technology 
divided by the total 
connections for the given 

Contract, Prepaid, cdmaOne, CDMA2000 
1X, CDMA2000 1xEV-DO, GSM, 
WCDMA, TDMA, PDC, iDEN, Analog 
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operator, expressed as a 
percentage. 

Market 
Penetration 

Number of connections 
divided by Population Total 

Net Additions 
Connections in this quarter 
minus connections in the 
previous quarter. 

Total, cdmaOne, CDMA2000 1X, 
CDMA2000 1xEV-DO, GSM, WCDMA, 
TDMA, PDC, iDEN, Analog 

Market Share - 
Net Additions 

Operator net adds divided by 
total net adds for the country, 
shown as a percentage 

Total, cdmaOne, CDMA2000 1X, 
CDMA2000 1xEV-DO, GSM, WCDMA, 
TDMA, PDC, iDEN, Analog 

Gross Additions Net additions + 
Disconnections Total 

Disconnections 
Average number of 
connections in the period * 
monthly churn * 3 

Total 

 
OPERATIONAL 

Churn 

Total gross customer disconnections (voluntary or 
involuntary) in the period divided by the average total 
customers in the period. The Figure is expressed monthly, 
whereby if an operator reports annual churn, Wireless 
Intelligence divides this reported number by 12 to get a 
monthly equivalent. 

Total, Contract, 
Prepaid  

Minutes of Use 
per User 

Total minutes used in the period (outgoing calls, incoming 
calls and roaming) divided by the weighted average number 
of customers over the same period, expressed monthly. 

Total, Contract, 
Prepaid  

Minutes Of Use 
Total 

Average number of connections in the period * MoU per user 
per month * 3 Total 

Effective Price 
Per Minute ARPU / Minutes of Use per user per month Total 

ARPU 

Total recurring revenue divided by the weighted average 
number of customers during the same period. The Figure is 
expressed monthly, whereby if an operator reports annual 
ARPU, Wireless Intelligence divides this reported number by 
12 to get a monthly equivalent. 

Total, Contract, 
Prepaid, Voice, 
Non-Voice  

Current rank 
by ARPU   

Total (Country), 
Total (Region). 
Total (World) 

Subscriber 
Acquisition 
Costs per user 

The total of connection fees, trade commissions and 
equipment costs, net of related revenue, relating to new 
customer connections. 

Total, Contract, 
Prepaid  

Total Billed 
SMS events   Total 

SMS Messages 
per User per 
Month 

  Total 
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FINANCIAL 

Total operator reported revenue, includes all recurring and 
non-recurring revenues. Total 

Revenues from generated by the use of the wireless network 
(i.e. excluding handset revenue and connection fees). 
Commonly includes voice, data and messaging and includes 
the traffic generated by the operator’s subscribers and the 
traffic generated by the other operators. 

Recurring 

Recurring revenue attributable to voice transmission and 
any appropriate monthly charges. Voice 

Recurring revenue attributable to non-voice services and 
any appropriate monthly charges. Commonly includes text 
and multimedia messaging, data transmission, downloads, 
Internet browsing and other data services. 

Non-Voice 

Revenue 

All revenue reported that is excluded from recurring 
revenue. Commonly includes revenue from equipment. Non-Recurring 

Current rank by 
Revenue  

Total (Country), 
Total (Region), 
Total (World) 

Operating 
Expenditure Simple measure of Opex: Recurring Revenue - EBITDA Total 

Opex / Revenue - 
Rolling 12 
month 

Rolling 12 month Opex / Rolling 12 month total revenues, 
converted at historic currency. Total 

Operating Free 
Cash Flow Simple measure of Free Cash Flow: EBITDA - Capex Total 

Data as 
Percentage of 
Service Revenue 

Non-voice revenues divided by recurring revenues, 
expressed as a percentage. Total 

CAPEX Capital expenditures in tangible and intangible assets 
excluding licenses. Total 

Capex / Revenue 
- Rolling 12 
month 

Rolling 12 month capex / Rolling 12 month total revenues, 
converted at historic currency. Total 

EBITDA   Total 

EBITDA margin 
Operating profit before depreciation, amortisation, profit or 
loss on disposal of fixed assets and exceptional items 
expressed as a percentage of total turnover. 

Total 
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2. List of definitions and indicators from World Telecommunication/ICT 
Indicators 2008 database (http://www.itu.int/ITU-D/ict visited on 2009-03-29) 

 

1. Basic indicators 

The data for Population are mid-year estimates from national statistical offices or the United 
Nations (UN). Population Density is based on land area data from the UN; the land area does not 
include any overseas dependencies but does include inland waters. The data for Gross Domestic 
Product (GDP) are generally from the IMF. They are current price data in national currency 
converted to United States dollars by the method identified above. Total telephone subscribers 
refer to the sum of main telephone lines and cellular mobile subscribers (see below for definitions). 
Total telephone subscribers per 100 inhabitants is calculated by dividing the total telephone 
subscribers by the population and multiplying by 100. Effective teledensity is the higher value of 
either main telephone lines per 100 inhabitants or mobile cellular subscribers per 100 inhabitants.  

 

2. Main telephone lines 

This table shows the number of Main telephone lines and Main telephone lines per 100 inhabitants 
for the years indicated and corresponding annual growth rates. Main telephone lines refer to 
telephone lines connecting a customer's equipment (e.g., telephone set, facsimile machine) to the 
Public Switched Telephone Network (PSTN) and which have a dedicated port on a telephone 
exchange. Note that for most countries, main lines also include public payphones. Many countries 
also include ISDN channels in main lines (see 9. ISDN and ADSL). Main telephone lines per 100 
inhabitants is calculated by dividing the number of main lines by the population and multiplying by 
100.  

 

3. Waiting list 

The table shows the total number of applications for a connection to a main telephone line that 
have had to be held over owing to a lack of technical availability. It should be noted that the 
waiting list refers to applications received; it does not include figures for those who desire a 
telephone line but have not submitted an application. Total demand is obtained by adding main 
lines in operation and the waiting list. Satisfied demand is obtained by dividing the number of main 
lines by the total demand for main telephone lines (sum of the unmet applications and operating 
main telephone lines). Waiting time shows the approximate number of years applicants must wait 
for a telephone line. It is calculated by dividing the number of applicants on the waiting list by the 
average number of main lines added per year over the past three years.  

 

4. Local telephone network 

Capacity used is obtained by dividing the number of main lines in service by the total number of 
main lines that could be connected to local public switching exchanges. The Automatic per cent is 
calculated by dividing the number of main lines connected to automatic exchanges by the total 
number of main lines. The Digital per cent is calculated by dividing the number of main lines 
connected to digital exchanges by the total number of main lines. The percentage of Residential 
lines refers to the number of main lines serving households (i.e. lines that are not used for 
professional purposes or as public telephone stations) divided by the total number of main lines. 
Faults per 100 main lines per year refer to the number of reported faults per 100 main telephone 
lines for the year indicated. It is calculated by the total number of reported faults for the year 
divided by the number of telephone main lines and multiplied by 100. Some countries report this 
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on a monthly basis, so an annual estimate is made by multiplying by 12. The definition of a fault 
varies among countries: some operators define faults as including malfunctioning customer 
equipment while others include only technical faults.  

 

5. Teleaccessibility 

Total residential main lines refer to the number of main lines used by households. Per 100 
households is obtained by dividing the number of residential main lines by the number of 
households and multiplying by 100. Payphones refers to the total number of all types of public 
telephones including coin- and card-operated ones. Some countries include public phones installed 
in private places. No distinction is made between operational and non-operational payphones. Per 
1000 inhabitants is obtained by dividing the number of public payphones by the population and 
multiplying by 1000. As % of main lines is obtained by dividing the number of public telephones 
by the number of main lines.  

 

6. Telephone tariffs 

The table shows the costs associated with local residential and business telephone service. 
Connection refers to connection charges for basic telephone service. Monthly subscription refers to 
the recurring fixed charge for subscribing to the PSTN. This indicator is not always comparable 
since some countries include a number of free local calls in the subscription. When subscription 
charges are reported annually or bi-monthly, they are converted to their corresponding monthly 
amount. Local call refers to the cost of a 3-minute call within the same exchange area using the 
subscriber's equipment (i.e., not from a public telephone). This is the amount the subscriber must 
pay for a 3-minute call and not the average price for each 3-minutes. Any taxes involved in these 
three charges are included to improve comparability. The Subscription as a % of GDP per capita 
shows cost of an annual residential telephone subscription as a percentage of Gross Domestic 
Product (GDP) per capita.  

 

7. Mobile cellular subscribers 

Mobile cellular telephone subscribers refer to users of portable telephones subscribing to an 
automatic public mobile telephone service using cellular technology that provides access to the 
PSTN. Per 100 inhabitants is obtained by dividing the number of cellular subscribers by the 
population and multiplying by 100. Prepaid subscribers refers to the total number of mobile 
cellular subscribers using prepaid cards. Population coverage measures the percentage of 
inhabitants that are within range of a mobile cellular signal whether or not they are subscribers. 
This is calculated by dividing the number of inhabitants within range of a mobile cellular signal by 
the total population. As a % of total telephone subscribers is obtained by dividing the number of 
cellular subscribers by the total number of telephone subscribers (sum of the main telephone lines 
and the cellular subscribers. 

 

8. Prepaid cellular tariffs 

Connection charge refers to the initial, one-time charge for a new subscription. Per minute local 
call refers to the average cost of a one-minute peak and off-peak rate mobile local to within the 
same network. When there are different rates, the price of a call to the same mobile network is 
used. Cost of local SMS is the price of sending a national Short Message Service (SMS) message 
from a mobile handset within the same network. 100 minutes of use includes the tariff components 
of 50 minutes of local peak time calling and 50 minutes of local off-peak calling. Differences in the 
distance of calls, which may be applicable in some countries, are not taken into account, nor are 
international calls or SMS messages. The possible onetime charge for connection is not taken into 
account, except where this is bundled into the costs of a prepaid account. The price comparison is 



Appendix 

123 

expressed in US$, and as a percentage of per capita income, which is computed by dividing the 
100 minutes of use by the Gross National Income (GNI) of the country. 

 

9. ISDN and ADSL 

ISDN subscribers refers to the number of subscribers to Integrated Services Digital Networks. It 
includes both basic rate and primary rate interface subscribers. B-channel equivalents converts the 
number of ISDN subscriber lines into their equivalent voice channels. The number of basic rate 
subscribers is multiplied by two and the number of primary rate subscribers is multiplied by 23 or 
30 depending on the standard implemented. B-channels per 1000 inhabitants is the number of B-
channel equivalents divided by the population and multiplied by 1000. B-channels as % of main 
lines is the number of B-channel equivalents divided by the number of main telephone lines. DSL 
subscribers refers to subscribers using Digital Subscriber Line (DSL) technology. DSL is a 
technology for bringing high-bandwidth information to homes and small businesses over ordinary 
copper telephone lines, with speed equal to, or greater than 256 kbit/s, as the sum of the capacity in 
both directions. As % of subscriber lines is calculated by dividing the number of DSL subscribers 
by the number of subscriber lines. Subscriber lines is calculated by subtracting the number of ISDN 
channels from main telephone lines and adding ISDN subscribers. 

 

10. International telephone traffic 

Outgoing international telephone traffic refers to total telephone traffic measured in minutes that 
originated in the specified country with a destination outside the country. As % of bothway refers to 
outgoing traffic divided by total traffic (incoming and outgoing). Minutes per inhabitant is obtained 
by dividing outgoing international minutes by the number of inhabitants in the country. Minutes 
per subscriber is obtained by dividing outgoing international minutes by the number of main lines. 
International telephone circuits refers to the number of links (voice channel equivalents) with other 
countries for establishing telephone communications. 

 

11. Telecommunication staff 

Telecommunication staff refers to the total number of staff (part-time staff converted to full-time 
equivalents) employed by telecommunication enterprises providing public telecommunication 
services. In some cases where posts and telecommunication organisations are combined, no 
breakdown of telecommunication staff is available. Note that the figure would generally not 
include sub-contract staff. % female refers to the number of full time telecommunication staff that 
are female divided by the total number of employees. Main lines per employee is computed by 
dividing the number of main lines by the number of employees. Caution should be used in 
interpreting this figure as some countries may subcontract a proportion of work, in which case the 
number of main lines per employee would be overstated. 

 

12. Telecommunication revenue 

This table shows the revenues (turnover) received from providing telecommunication services in 
each country. United States dollar values are obtained by the method described earlier. Data may 
not be strictly comparable due to a number of factors. First, it is assumed that the data relate to 
revenues of all operators providing service in the country. This is not unequivocally known and 
may be impossible to determine since there may be no legal requirement for all operators to 
provide financial information, or operators may be part of a parent company that only provides 
consolidated accounts. The data does not always include revenues from cellular mobile telephone, 
radio paging or data services in some developing nations if these services are not provided by the 
main fixed-link operator. Second, the operators may have subsidiaries with financial activities 
unrelated to telecommunication services that may be included. Third, in the case of countries where 
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posts and telecommunications are combined, a perfect allocation of revenues is not always 
possible. Fourth, there are definition and accounting differences among countries. Total 
telecommunication revenue consists of all telecommunication revenues earned during the financial 
year under review. % mobile revenue is the share of mobile communication revenue. Per 
inhabitant shows current revenues divided by the number of inhabitants in the country. Per 
telephone subscriber is obtained by dividing revenues by total telephone subscribers (fixed plus 
mobile). Per employee is obtained by dividing revenues by employees. For some countries, no 
breakdown between postal and telecommunication staff is available and the figure may thus be 
unrealistically low. As a % of GDP shows telecommunication revenues divided by national Gross 
Domestic Product. 

 

13. Telecommunication investment 

Investment refers to the annual expenditure associated with acquiring ownership of property and 
plant used for telecommunication services and includes land and buildings. Total telecom 
investment shows total current investments for the year indicated; the United States dollar figure is 
arrived at by the method described above. Per inhabitant is obtained by dividing the annual 
investment by the population. Per telephone subscriber is obtained by dividing investment by total 
telephone subscribers (fixed plus mobile). As a % of revenue is obtained by dividing annual 
investment by telecommunication revenues. As a % of GFCF shows telecommunications 
investment divided by Gross Fixed Capital Formation (GFCF). For some countries where GFCF is 
not available, Gross Domestic Investment is used. This is similar to GFCF except that it does not 
include changes in inventories that tend to comprise a small proportion of GFCF. 

 

14. Information technology 

Internet subscribers refers to the number of dial-up, leased line and broadband Internet subscribers. 
Internet subscribers per 100 inhabitants is obtained by dividing the number of subscribers by the 
population and multiplied by 100. Internet Users is based on nationally reported data. In some 
cases, surveys have been carried out that give a more precise figure for the number of Internet 
users. However surveys differ across countries in the age and frequency of use they cover. The 
reported figure for Internet users – which may refer to only users above a certain age – is divided 
by the total population and multiplied by 100 to obtain users per 100 inhabitants. Countries that do 
not have surveys generally base their estimates on derivations from reported Internet Service 
Provider subscriber counts, calculated by multiplying the number of subscribers by a multiplier. 
PCs shows the estimated number of Personal Computers (PCs), both in absolute numbers and in 
terms of PCs per 100 inhabitants. The figures for PCs come from the annual questionnaire 
supplemented by other sources. 

 

15. Internet 

Internet subscribers refers to the number of dial-up, leased line and broadband Internet subscribers. 
Broadband subscribers refer to the sum of DSL, cable modem and other broadband subscribers. 
Although there exist various definitions of broadband, it may be defined as sufficient bandwidth to 
permit combined provision of voice, data and video. Speed should be greater than 128 kbps in at 
least one direction. As % of total subscribers is calculated by dividing the total number of 
broadband subscribers by the total number of Internet subscribers. Subscribers per 1000 
inhabitants is calculated by dividing the number of broadband subscribers by population of the 
country multiplied by 1000. International bandwidth refers to the amount of international Internet 
bandwidth measured in Mega Bits Per Second (Mbps). Data for Internet bandwidth come from 
ITU’s annual questionnaire supplemented with data from TeleGeography. Bits per inhabitant is 
calculated by dividing the international Internet bandwidth by the population. 
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16. Internet tariffs 

The table shows the costs associated with 20 hours dial-up use per month. If broadband prices are 
cheaper, these are used instead. Data are generally those of the largest Internet Service Provider 
(ISP) and incumbent telephone company as they list the prices. ISP charge refers to the Internet 
monthly subscription plus extra charges once free hours have been used up. Telephone charge 
refers to the amount payable to the telephone company for local telephone charges while logged on. 
This includes usage charges but does not include the telephone line rental. Total Internet price 
refers to the sum of telephone usage charges and ISP charges. As % of GNI per capita shows cost 
of 20 hours use per month as a percentage of Gross National Income (GNI). 

 

17. Multichannel TV 

Cable TV subscribers are those who subscribe to a multi-channel television service delivered by a 
fixed-link connection, usually coaxial or fibre optic cable. However, some countries also report 
subscribers using wireless technology. In addition, some countries also report the number of 
households cabled to community antenna systems re-broadcasting free-to-air channels because of 
poor reception. As % of TV households is calculated by dividing the number of cable TV 
subscribers by the number of TV households. Home satellite antennas shows the number of 
households with access to a multi-channel television service delivered by satellite. This figure 
includes both Direct-to-the-home (DTH) service and Satellite Master Antenna Television 
(SMATV) which serves several households in the same building. SMATV serving households in 
different buildings is counted as cable TV. Cable modem Internet subscribers refer to Internet 
subscribers via a cable TV network. As % of cable TV subscribers is calculated by dividing the 
number of cable modem Internet subscribers by the total cable TV subscribers and multiplying by 
100. 

 

18. Network growth 

This table shows the increase in the number of main telephone lines, mobile cellular subscribers 
and Internet users over the preceding year. Note that particularly for main telephone lines, the 
figure is the addition to the base of main lines and does not reflect replacements. 

 

List of indicators: 

 
% automatic main lines   Business telephone connection charge (US$)  
% digital main lines   Business telephone monthly subscription (US$)  
% of homes with a Personal Computer   Consumer price index (1995=100)  

% of homes with Internet   Coverage of mobile cellular network (population, 
in %)  

% of households with a radio   Faults per 100 main (fixed) lines per year  
% of households with a telephone   Fixed telephone service investment (US$)  
% of households with a television   Gross domestic product (GDP) (US$)  
% of main lines in urban areas   Gross Fixed Capital Formation (GFCF) (US$)  
% of telephone faults cleared by next working day   Home satellite antennas  
% residential main lines   Households  
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(List of indicators - cont.) 
 
 

International incoming fixed telephone traffic 
(calls)   Number of national (fixed) long distance 

telephone (calls)  
International incoming fixed telephone traffic 

(minutes)   Number of national (fixed) long distance 
telephone (minutes)  

International Internet Bandwidth (Mbps)   Personal computers  
International Internet Bandwidth per inhabitant 

(bit/s)   Personal computers per 100 inhabitants  

International outgoing fixed telephone traffic 
(calls)   Population  

International outgoing fixed telephone traffic 
(minutes)   Population - Urban population (%)  

International telephone circuits   Population of largest city  

Internet subscribers (Cable modem )   Price of a 3-minute fixed telephone local call (off-
peak rate - US$)  

Internet subscribers (Dial-up)   Price of a 3-minute fixed telephone local call 
(peak rate - US$)  

Internet subscribers (DSL)   Public payphones  
Internet subscribers (Total fixed broadband)   Public payphones per 1000 inhabitants  
Internet subscribers (Total fixed broadband) per 

100 inhabitants   Radio equipped households  

Internet subscribers (Total fixed Internet)   Radio sets  
Internet subscribers (Total fixed) per 100 

inhabitants   Residential monthly telephone subscription (US$) 

Internet users (Estimated)   Residential telephone connection charge (US$)  
Internet users per 100 inhabitants   Revenue from fixed telephone service (US$)  
ISDN Channels   Revenue from mobile communication (US$)  
ISDN subscribers   Staff (Female telecommunication staff)  
Main (fixed) telephone lines in largest city   Staff (Total full-time telecommunications staff)  
Main (fixed) telephone lines in operation   Telecommunication equipment (Export) (US$)  
Main (fixed) telephone lines per 100 inhabitants   Telecommunication equipment (Import) (US$)  
Mobile cellular - price of 3-minute local call (off-

peak - US$)   Television equipped households  

Mobile cellular - price of 3-minute local call 
(peak - US$)   Television receivers  

Mobile cellular connection charge (US$)   Television receivers per 100 inhabitants  
Mobile cellular monthly subscription (US$)   Television subscribers (cable)  
Mobile cellular telephone subscribers - (Post-paid 

+ Pre-paid)   Total annual investment in telecom (US$)  

Mobile cellular telephone subscribers - prepaid 
subscribers   Total capacity of local public switching 

exchanges  
Mobile cellular telephone subscribers (Digital)   Total national (fixed) telephone traffic (calls)  
Mobile cellular telephone subscribers per 100 

inhabitants   Total national (fixed) telephone traffic (minutes)  

Mobile communication investment (US$)   Total revenue from all telecommunication 
services (US$)  

Mobile communications staff   Total telephone subscribers (fixed + mobile)  

Number of local (fixed) telephone (calls)   Total telephone subscribers (fixed + mobile) per 
100 inhabitants  

Number of local (fixed) telephone (minutes)   Waiting list for main (fixed) lines 
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Sažetak 

Analitički postupak predviđanja kvantitativnih čimbenika životnog vijeka 
telekomunikacijske usluge  

 

Predviđanje tehno-ekonomskih indikatora telekomunikacijskih usluga posebno je važno pri 
poslovnom planiranju proizvođača telekomunikacijske opreme i telekom operatore. Svrha 
disertacije bila je istraživanje i razvoj analitičke metode za predviđanje kvantitativnih 
čimbenika životnog vijeka telekomunikacijskih usluga. Analitička metoda za 
prognoziranje temelji se na modeliranju postojećih segmenata životnog vijeka 
telekomunikacijske usluge, s ciljem ekstrapolacije na intervale životnog vijeka u 
budućnosti. Modeli, koji su dijelovi analitičke metode, razvijeni su po principima 
kvantitativnog prognoziranja vremenskih nizova s mogućnošću prihvata vanjskih varijabli 
koje su prognozirane temeljem procjena. Dodatno, pomoćni parametri uvedeni su u modele 
kako bi omogućili prilagodbu istih specifičnim praktičnim potrebama. Za modeliranje i 
prognoziranje rasta nove usluge na tržištu, Bassov model s eksplanatornim parametrima 
pokazao se kao najučinkovitiji. Za slučaj postojećih usluga, razvijen je univerzalni model 
za uzastopne segmente životnog vijeka usluge koji predstavlja optimum u fleksibilnosti i 
jednostavnosti. Razvijen je i testiran postupak za izravnu procjenu osjetljivosti logističkog 
modela na nesigurnost ulaznih podataka. U nastavku su analizirani i razvijeni modeli za 
predviđanje elemenata prihoda. 
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Abstract 

Analytical Method for Forecasting of Telecommunications Service Life-Cycle 
Quantitative Factors 

The forecasting of telecommunications services techno-economic indicators for business 
planning purposes has become increasingly significant, especially for telecommunications 
equipment manufacturers and telecom operators. The scope of Thesis was the research and 
development of the analytical method for forecasting of telecommunications service life-
cycle quantitative factors. The analytical forecasting method was based on the modelling 
of known parts of certain telecommunications service's life cycle, with the purpose of their 
extrapolation on its unknown life cycle interval. Developed models, which form parts of 
the analytical method, are based on quantitative time series forecasting with ability to 
accept external judgementally determined variables. Moreover, auxiliary parameters are 
introduced in models to enable adjusting of model to the specific practical requirements. It 
has been found that the Bass model with explanatory parameters is optimal for forecasting 
of new service market adoption. In the case of existing service, developed Universal Model 
for Successive Segments is the optimal balance of flexibility and simplicity. Procedure for 
direct assessment of logistic model sensitivity to uncertainty of input data has been 
developed and tested. In addition, models for forecasting of revenue elements have been 
analysed and developed. 

Keywords:  

• Quantitative forecasting methods 

• Service life cycle segments 

• Bass model with explanatory parameters 

• Uncertainty of forecasted market capacity 

• Composite growth models 

• Market share modelling 

• Markov chains based on diffusion growth 

• Pricing models 
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