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other possible pdf’s. It maximizes Shannon entropy, satisfying the moment constraints.
Thus, the MaxEnt algorithm transforms the original constrained optimization problem to
the unconstrained dual optimization problem using Lagrangian multipliers. The Classic
Moment Problem (CMP) uses algebraic power moments, causing typical conventional
. . numerical methods to fail for higher-order moments (m > 5—10) due to different sensitiv-
Maximum entropy algorithm .. . A R . . .
Classic Moment Problem ities of Lagrangian multipliers and unbalanced nonlinearities. Classic MaxEnt algorithms
Fup basis functions overcome these difficulties by using orthogonal polynomials, which enable roughly the
Compact support same sensitivity for all Lagrangian multipliers. In this paper, we employ an idea based
on different principles, using Fup, basis functions with compact support, which can exactly
describe algebraic polynomials, but only if the Fup order-n is greater than or equal to the
polynomial’s order. Our algorithm solves the CMP with respect to the moments of only
low order Fup, basis functions, finding a Fup, optimal pdf with better balanced Lagrangian
multipliers. The algorithm is numerically very efficient due to localized properties of Fup,
basis functions implying a weaker dependence between Lagrangian multipliers and faster
convergence. Only consequences are an iterative scheme of the algorithm where power
moments are a sum of Fup, and residual moments and an inexact entropy upper bound.
However, due to small residual moments, the algorithm converges very quickly as demon-
strated on two continuous pdf examples — the beta distribution and a bi-modal pdf, and
two discontinuous pdf examples - the step and double Dirac pdf. Finally, these pdf exam-
ples present that Fup MaxEnt algorithm yields smaller entropy value than classic MaxEnt
algorithm, but differences are very small for all practical engineering purposes.
© 2009 Elsevier Inc. All rights reserved.

Keywords:

1. Introduction

Many physical processes cannot be characterized deterministically due to the presence of intrinsic or parametric uncer-
tainty due to their physical nature, interpretation or measurements. Therefore, results are usually given in the form of a cer-
tain number of the first few statistical power moments or rarely as a probability density function (pdf). Jaynes [15] defined
the Maximum Entropy (MaxEnt) principle as a versatile tool for statistical inference of the probability density function (pdf)
from its moments (Classic Moment Problem - CMP) by maximizing the Shannon entropy [20]. This provides a least-biased
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estimation among all other possible distributions that satisfy constrained moments but ignore all unknown information. In
other words, the MaxEnt pdf presents the pdf with the highest uncertainty and appears to be a robust tool for pdf prediction
in terms of statistical moments [5].

In the last few decades, a number of MaxEnt algorithms have been developed and applied in many branches of science,
including solid-state physics [6,23], geophysical applications [1-3], econometrics [17,24] and transport planning [21]. The first
robust algorithm was developed in [16] for up to 10-12 moments. However, the MaxEnt algorithms for a higher number of mo-
ments are subjected to high unbalanced nonlinearities, ill-conditioned Jacobian and Hessian matrices in Newton algorithms,
and many other numerical problems such as insufficient arithmetic precision. In order to overcome these difficulties, the Max-
Ent algorithm uses orthogonal polynomials instead of classic monomials. Among others, this “state of the art” approach is pre-
sented in [23,6], who employed Lagrangian and Chebyshev polynomials, respectively. Recently, Abramov [1-3], in his series of
papers, extended these improvements to multi-dimensional problems using the generalized orthogonal polynomials.

In this paper, we employ a different and original idea using the finite and localized basis functions with compact support
closely related to the algebraic polynomials, which makes possible an efficient MaxEnt algorithm with more balanced non-
linearities and the ability to solve a higher number of moments. We are focused here on localized basis functions with com-
pact support, such as wavelets and splines. Apart from wavelets and splines, there is a relatively lesser known class of atomic
or Ry basis functions (Rvachev’s basis functions) [18,19]. Atomic functions are classified between classic polynomials and
spline functions. However, in practice, their application as basis functions is closer to splines or wavelets. In this study,
we shall use Fup basis functions, which are one type of atomic basis functions; recent review in [12]. Gotovac and Kozuli¢
[8] systemized the existing knowledge on atomic functions and presented the transformation of basis functions into a
numerically applicable form. The application of Fup basis functions has been demonstrated in signal processing [14], for
solving the integral Fredholm equations [13], in initial value problems [9], and in the collocation methods for boundary value
problems [10]. Recently, Fup basis functions were applied to the Monte-Carlo methodology and stochastic processes of flow
and transport in heterogeneous porous media [11].

This paper is organized as follows. In the next section, the novel Fup Maximum Entropy Algorithm (FMEA) will be pre-
sented. In Section 3, two continuous pdf examples - the beta distribution and a bi-modal pdf and two discontinuous pdf
examples - step and double Dirac pdf show ability of the method to solve ill-posed maximum moment entropy problem only
with low order Fup, basis functions enabling a stable and efficient algorithm. We end the paper with conclusions and an
Appendix A, which presents all basic properties of the Fup basis functions needed for development of the FMEA.

2. MaxEnt algorithm

In this section, we will present the maximum entropy principle and discuss numerical schemes for the classic MaxEnt
algorithm with orthogonal polynomials. Last, we will present a novel MaxEnt algorithm that uses Fup, basis functions with
compact support.

2.1. Maximum entropy principle

The maximum entropy principle (MaxEnt) is widely recognized as an efficient stochastic tool, especially in information
theory. Furthermore, MaxEnt is particularly useful for pdf characterization, since it shows how many conventional statistical
moments are needed in order to accurately describe all pdf properties, such as its shape, tailings, peakedness, number of
peaks, skewness and/or kurtosis. Despite direct and sometimes contradictory relations with classical physical entropy
[15], which describes chaos in a physical system and presents the second law of thermodynamics, Shannon information en-
tropy [20] is defined in a broader sense as

Hi =~ [ g 0

where I = In(f(x)) is a quantity of information and f is the pdf. Shannon information entropy is the expected information
quantity. The logarithm is chosen arbitrarily according to some desired properties of entropy: (a) decreasing probability
causes an increase of information, (b) higher uncertainty causes higher entropy and (c) the total entropy of two independent
events is equal to the sum of the individual entropies [22].

The MaxEnt is defined by Jaynes [15] such that the pdf with highest entropy is selected to give the most information
among all other possible pdf’s that satisfy known constraints. In other words, the MaxEnt principle states that among the
probability distributions that satisfy our incomplete information about the system, the pdf that maximizes entropy is the
least-biased estimate that can be made. It agrees with everything that is known but carefully avoids anything that is un-
known [5,22]. If these constraints are known statistical moments of arbitrary basis functions (h;(x);j =0, ..., m), MaxEnt
can be defined as the following optimization problem

max H(f) (2a)
/Xmax nXfX)dx = i i=0,....m (2b)
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Optimization problem (2) can be solved by introducing the Lagrangian function and corresponding multipliers 4;

L(f. 1) = H(f) i@-(

Jj=0

[ heosedx - uj) 3)

'min

The problem is reduced to solving the maximum of the Lagrangian function with respect to all possible functions f that sat-
isfy constraints (2b)

oL(f, ) [t mo
- (1= IngT) - > ) =0 )

‘min

The analytical form of the MaxEnt pdf is

fix >—exp( 1fixjh] > 5)

Finally, for a given constraints, the MaxEnt problem requires solving the Lagrangian multipliers from the nonlinear sys-
tem with (m + 1) equations, which is formed by introducing the MaxEnt pdf (5) into constraints (2b)

/mh( exp< 1-2% )dx_u” i—0,....m (6)

min

For a larger number of moments (m > 2) and/or arbitrary basis functions (h;(x); j = 0,...,m), the integrals in (6) are analyt-
ically intractable, and we use here adaptive Romberg integration

N m
Zaijwj exp <—1 - Zakjik) -W=0, i=0,...m (7)
Jj=1 k=0

where N is a number of integration points, x; and w; are the x-coordinates and weighting coefficients of integration points,
respectively, and a; are the values of h;(x;). System (7) shows that the original constrained optimization problem (2) can be
transformed into the unconstrained convex optimization problem, which finds a minimum of the dual variable:

m

N m
()= wexp (‘1 - Z“’“") -3 wi ®
= pry =0

It can be shown that a minimum of dual variable D(4) yields optimal solution Z;, which is also the solution of the original
problem (2), according to the Kuhn-Tucker theorem and solution (5) for a wide range of validity [5]. Note that a minimiza-
tion of D(4), i.e. their derivatives over all Lagrangian multipliers are zero, yields system (7). If basis functions h;(x) are mono-
mials ¥/, then a; = x]' along with the original (2) and dual problem (8), are transformed into the Classic Moment Problem
(CMP) where the zeroth normalized condition is given as K:{:* f(x)dx = 1. The MaxEnt pdf now has the following form

f(x) = exp ( 1—Jo— Z/fo> (9)

2.2. Classic MaxEnt algorithm

CMP and the corresponding nonlinear system (7) can be solved by a number of classic optimization techniques, such as
generalized or improved iterative scaling, gradient descent, the standard or modified Newton method and the BFGS proce-
dure [2,3,5]. In this paper, we use improved iterative scaling, an iterative procedure that solves only one moment equation
(in system 7) in each nonlinear step and finds a correction of the corresponding Lagrangian multiplier [6]. The procedure
consists of four basic steps, as follows.

Algorithm 1

Step 1: Choose the initial vector 4° (usually the null vector) and sufficiently small threshold 1, > 0, set the iteration coun-
ter k = 0 and calculate the initial value of pdf (9) for i°.
Step 2: Set the index of the current equation as i = (kmodm) and find a correction of 2* using the classic Newton method

N
oF (#) = 2 a* () exp (ay) s, = 0 1o
=
Step 3: Add the calculated correction to the current solution vector

M=k ek 1=0,...,m (11)



9082 H. Gotovac, B. Gotovac/Journal of Computational Physics 228 (2009) 9079-9091

Step 4: Calculate the MaxEnt pdf (9) for vector 4!, If all moment equations in (7) for a new vector 2! have values less
than #,, then stop the procedure and set the current solution as a final solution (9). Otherwise, set k = k + 1 and go
to step 2.

This iterative procedure is very attractive and computationally efficient because there is no matrix inversion. The proce-
dure is very stable and not sensitive to the initial vector as in the Newton method, but it usually requires more iteration steps
and exhibits slower convergence. However, all the aforementioned iterative procedures suffer from these numerical difficul-
ties and lack of convergence for CMP problems with m > 5—10 due to unbalanced nonlinearities of the Lagrangian multipli-
ers. These difficulties are closely related to the different behavior of monomials x' in the exponent of pdf (9) [2]. Therefore, for
a larger number of moments, the Jacobian and/or Hessian matrices become ill-conditioned with significant influence from
arithmetic precision, even in the case where extended precision is used [16,23]. These numerical difficulties can be signif-
icantly reduced by using the orthogonal polynomials instead of monomials x'. In this way, Lagrangian multipliers provide
similar sensitivities to the solution changes in the iterative nonlinear procedure, implying that the stable algorithm is well
suited for a larger number of moments. It is conventional to use Chebyshev [6] or Lagrange polynomials [23] for 1-D moment
problems. Abramov [2,3] has used generalized orthogonal polynomials for the multi-dimensional problems, maintaining the
orthogonality by the modified Gramm-Schmidt procedure in each iteration step.

Without loss of generality, we can use shifted Chebyshev polynomials where interval [-1,1] is transformed to [0, 1] for
solving the CMP and corresponding Lagrangian multipliers [6]. In that case,a; = T;(x;), and there is a direct relation between
Chebyshev polynomials and monomials

m
Ti(x) = > opd; i=0,...,m (12)
j=0
where o is the connection matrix. The reverse relation is given as
i m
X'=Y"BTi(x); i=0,....m (13)
=0
where ; = ocif. Due to the linear character of relation (13), it is possible to relate moments in the same way
m
=0

Relations (13) and (14) imply that satisfaction of Chebyshev moments also satisfies classic power moments. CMP is now re-
duced to the maximum entropy problem over the Chebyshev polynomials

1 m
/ T,(x) exp <1 Zy,T,(x))dx:tj; j=0,....m (15)
0 1=0
Finally, the optimal MaxEnt pdf that satisfies both power and Chebyshev moments (15) has the following form
m
f(x) =exp (—1 -3 VjTj(X)) (16)
=0

Note that these relations are valid for all types of orthogonal polynomials, as well as for all other basis functions that satisfy
relations (12) and (13).

2.3. Fup MaxEnt algorithm

Although the orthogonal polynomials significantly increase the efficiency of all aforementioned iterative procedures for
the CMP (7), many numerical difficulties are still present. Moreover, the drawback remains of a strong connection between
polynomials and their influence on the moment changes. For example, in light of Algorithm 1, correction /¥ belongs to the
current moment equation in system (7), but in each iteration step, it may significantly changes all the other moment equa-
tions, which can substantially decrease computational efficiency, especially for a larger number of moments and multi-
dimensional problems [2].

The original idea behind the proposed algorithm is to use finite and localized basis functions h;(x) with compact support
so that correction /¥ in each iteration step changes only a few moment equations in system (7), namely, the ones that belong
to the neighboring basis functions. This concept can significantly decrease the number of iteration steps in Algorithm 1. Clas-
sic candidates are B-splines and wavelets, which exactly describe polynomials. In this paper, we use Fup basis functions,
which belong to the atomic class of basis functions [8]. Fup basis functions also exactly describe polynomials if the Fup order
is equal to or higher than the polynomial order, as shown in Appendix A [8]. However, this means that Fup basis functions, as
well as other basis functions with compact support, require a higher order for a larger number of moments and have loose
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localized properties in this particular case (the compact support is greater than the considered interval from 0 to 1). More-
over, the iterative procedure shows even poorer performance than the algorithms with classic orthogonal polynomials. In
order to use the full capabilities of Fup basis functions, it is better to use low Fup order (we use here n = 2), but the exact
relation (13) still does not hold for the description of arbitrary polynomials of the mth order m > 2 or monomials with m > 2

X' =" djFup,(x) + &(x); i=0,...,m (17)

=0

where ¢;(x) are residual functions that describe the difference between monomials of the mth order and their Fup, approx-
imation. Appendix A shows that a linear combination of displaced Fup, basis functions describes exactly the monomials up
to m = 2, but all higher-order monomials are described approximately. Eq. (17) presents the connection matrix d;, which
depends on the Fup, approximation and on the location and number of basis functions and, consequently, moments. For in-
stance, the collocation procedure [10] calculates exactly monomials in the collocation points, and residual functions fluctu-
ate around the zero, with significantly smaller values than Fup basis functions (Appendix A and Theorem 1). For increasing
numbers of moments and basis functions, the residual functions converge to zero. In the limit, for m — oo, Eq. (17) converges
to the exact relation (13). Using Eq. (17), we can relate classic power moments and Fup, moments

W= Zduuf”"z“, i=0,..,m (18)

where (1, A,u, ) and uF “2() 3re moments of monomials, residual and Fup, basis functions, respectively. Since moments of

residual and Fup, ba51s functions are unknown, the algorithm must be defined in an iterative way, where [ is a counter of
iteration steps. An algorithm starts with an initial pdf guess (I = 0). In each iteration step, the residual moments are first cal-
culated from the previous iteration or initial conditions, then Fup, moments are obtained from the system (18), and finally
the MaxEnt nonlinear system is solved with respect to only Fup, moments

1 m
/ Fup.,;(x) exp (—1 - ZVjFupzj(x)>dx =w' i=0,...,m (19)
0 j=0

The procedure is repeated until convergence is achieved. The Fup MaxEnt algorithm is reduced to CMP over the moments of
Fup, basis functions. Finally, the optimal pdf has the form

f1(x) = exp <—1 =y, Fupy <x>> (20)

j=0

where classic power moments are satisfied exactly according to the relations (17) and (18)
o1 m o1
= / Xif*(x)dx = Zdu/ Fup,;(x)f* (x)dx + / s(x)f*(x)dx; i=0,....,m (21)
0 j=0

This algorithm solves higher-order MaxEnt moment problem with only low order Fup, basis functions which is opposite to
all existing MaxEnt algorithms. Only consequence is an iterative algorithm defined by Eq. (18), while classic MaxEnt algo-
rithms directly solve CMP due to exact relation (13) between monomials and orthogonal polynomials. However, iterative
scheme (18) converges very quickly due to small residual moments (see Appendix A) and their weak influence on changes
of Fup, moments. Therefore, an initial pdf guess as Gaussian normal distribution leads to fast convergence and relatively
small number of outer iterations as will be shown in the sequel.

Algorithm 1 now has the better convergence properties because the correction #* will change only six moments of the
closest Fup, basis functions. This implies that for a larger number of moments, the compact support is smaller, while the
connections between moment equations in system (7) are weaker. This results in a considerably smaller number of itera-
tions and more efficient the nonlinear Algorithm 1. Fup moments have a direct mathematical interpretation because they
present the average value of the pdf over the compact support. In the limit, the Fup basis function converges to the Dirac
function, while the compact support reduces to the point and corresponding moment describes the exact value of the pdf
at that point. This algorithm is called the Fup MaxEnt Algorithm (FMEA), and it is described by the following iterative
procedure:

Algorithm 2

Step 1: For a given set of m + 1 classic power moments on general interval [Xpin, Xmax], calculate their values on unit inter-
val [0,1] by applying the simple linear transformation.

Step 2: Set m + 1 uniformly displaced Fup, basis functions (Appendix A) on unit interval [0,1] and calculate connection
matrix d; and residual functions (17). Choose the initial pdf (I = 0).

Step 3: Calculate residual moments in the Ith iteration step.

Step 4: 1=1+1; Solve the system (18) and find Fup, moments.
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Step 5: Solve the MaxEnt problem with Fup, moments (19) using Algorithm 1 and a; = Fup,;(x — x?), where x? are vertices
of the corresponding basis functions. Also, obtain the optimal pdf (20).

Step 6: Calculate the difference between power moments (Eq. 21) in the l and I — 1 iteration step. If this difference is below
some prescribed threshold #,, stop the procedure. Otherwise, go to step 3.

Finally, note that Fup optimal pdf in (20) is inexact although exactly satisfies prescribed set of moments because only
optimal pdf in (9) yields upper entropy bound according to Eqgs. (1)-(8) and Section 2.1. In the sequel, we will discuss what
consequences imply inexact entropy bound in practical pdf examples.

3. Pdf examples

In this section, we will present an application of the Fup MaxEnt Algorithm (FMEA) on two illustrative continuous pdf
examples: the unimodal beta distribution and a bi-modal pdf, and two illustrative discontinuous pdf examples: the step dis-
tribution and a double Dirac pdf. We concentrate mainly on the accuracy of the algorithm in terms of reproduction of the
exact pdf and their original power moments. FMEA uses Fup, basis functions, which means that at least 4 basis functions
are needed for Algorithm 2 (m = 3). It is well known that the Gaussian distribution is indeed also the MaxEnt pdf for
m = 2. Therefore, the choice of the Fup, basis functions seems reasonable, as this allows the maximum use of localized basis
functions, while retaining good approximation properties. Threshold 7, in Algorithm 1 is chosen up to the limit of the ma-
chine’s double precision (around 10~'®). Threshold 7, in Algorithm 2 then depends on #, and iterative algorithm (18). We
will show accuracy of the algorithm if 5, = 107'°. The initial pdf is the Gaussian pdf. The most efficient strategy is to first
solve the MaxEnt pdf with m = 3. In that case, the Gaussian pdf is a very good starting vector, implying fewer inner iterations
in Algorithm 1 and outer iterations in Algorithm 2. Then, we gradually increase the number of moments, so that the previous
pdf solution is the initial pdf for the next simulation. In this paper, we use a dyadic grid (m =2 +2 where j=0,1,...is a
resolution level), which implies that the number of moments increases from m = 3 to m = 4,6,10, 18, and so on, until the
Fup optimal pdf converges to the exact pdf.

In the first example, we consider the beta distribution

_ I'(a+p)
- T(e)l(p)

which is defined on interval [0,1] and depends on two parameters o and 8, while I" is the gamma function. In this example,
o =3 and B =5, defining a slightly skewed pdf that requires more than two moments for its accurate description. Fig. 1
shows that three moments overestimate the pdf peak and produce a larger error at the left boundary. Four moments reduce
the differences between the exact and optimal pdf, especially for the right tail. Six moments quite accurately describe all pdf
features, while 10 moments completely reproduce the exact pdf.

Table 1 presents an accuracy and convergence analysis for the Fup MaxEnt approximation of the beta distribution for six
moments. We calculate the absolute moment error between the given and calculated power moments over all moments for

fx) X (1 —x)" (22)

3
r e m=3
25| = — —-m=4
L oy R i m=6
r P N - =—=--m=10
i \ Exact pdf
4 \
2 / A \
L \
i / A\
15[ /! \
- [ i/ \
- /’,' \
b \
- \
C /) “\
05+ ) \\
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X

Fig. 1. MaxEnt approximation of the beta pdf using Fup, moments up to m = 10.
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1, = 107", Table 1 shows how the actual moment error decreases with the number of outer iterations in Algorithm 2. For
[ = 5—10, the moment error is already small and acceptable for many practical and engineering purposes. After 50 outer iter-
ations, the moment actual error, 2.5 x 10™'2, reaches the asymptotic limit that is influenced by Fup threshold 7, = 107"*. In
each outer iteration, there are (20—50) - m inner iterations in Algorithm 1 in order to produce the double precision accuracy
of Fup, calculated moments in (18). Algorithm 1 is characterized by a stable nonlinear solver due to localized properties of
Fup, basis functions and converges regardless the initial vector which is the most important property for an ill-posed MaxEnt
problem. After only (2—5) - m inner iterations, Algorithm 1 obtained the single precision accuracy due to weak connections
between basis functions which produces a nonstiff and well-balanced nonlinear system. This relatively large number of total
iterations can be significantly reduced if thresholds #; and #, are chosen to be large enough that the obtained moment errors
satisfy our current requirements.

In the second example, we define a more complex bi-modal pdf as a sum of two Gaussian pdfs, normalizing its total area
to unity in a similar way as in [2]. For instance, a bi-modal pdf can be a real example of the concentration pdf in turbulent
diffusion or in porous media as a consequence of the pore-scale dispersion [4]. Fig. 2 shows the approximation of the bi-mod-
al pdf by m = 3,4,6,10 and 18. The MaxEnt pdf with three moments remains unimodal, while bi-modality is obtained for all
pdfs with more than three moments. This means that four moments are usually needed to describe the bi-modal nature of
the pdf. Higher-order moments (m > 4) have significant influence on the accuracy, where the MaxEnt pdf with 10 moments
describes very accurately all features of the pdf, while the MaxEnt pdf with m = 18 completely reproduces the exact pdf.

Table 2 presents the accuracy of the FMEA in terms of maximum absolute error defined for the bi-modal pdf,
m =10 and 5, = 10""°. As in the first example, 5—10 outer iterations ensure that the moment error is quite small for many
practical and engineering purposes. In this case, after only 20 outer iterations, the actual moment error is comparable with
the usual threshold in Newton algorithms.In each outer iteration, there are (20—50) - m inner iterations in Algorithm 1 for
the double precision accuracy. Furthermore, increasing the number of moments yields a pdf that converges to the exact one.
The number of iterations is large compared to the Newton method, but this algorithm uses a stable iterative procedure with
low order basis functions, which can solve a larger number of moments without sensitivity to the initial vector or classic
numerical difficulties such as lack of convergence, arithmetic precision or ill-conditioned related matrices.

Fig. 3 presents the approximation of the step discontinuous pdf by m = 6,10 and 18. This example is quite difficult due to
discontinuity at x = 0.5. Increasing number of moments clearly presents a better description of the exact step pdf, particu-
larly its boundaries and region around the front. Localized properties of Fup, basis functions enable the efficient resolving of
all discontinuities and nondifferentiable regions relating only few particular Lagrangian multipliers to these places. Contrary,
the classic MaxEnt algorithms use orthogonal polynomials and related Lagrangian multipliers defined on the whole domain

Table 1
Absolute moment error for beta pdf and m = 6 with respect to number of outer iteration steps and 7, = 107",
Outer iteration step (1) 5 10 20 50 100 200
Absolute moment error 14x1074 9.4 x 1077 1.5x 107" 2.7 x 10712 2.5 % 10712 2.5 % 10712
3
e m=
2.75 F - —m=
F ——— -m=6
25 E - —-m=10
F ——-m=18
2.25 Exact pdf
2
1.75 |
X 15EF
bl o
125 F
1E
0.75 F
05 F
0.25 F
0B
0 0.25 0.5 0.75 1

Fig. 2. MaxEnt approximation of the bi-modal pdf using Fup, moments up to m = 18.
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Table 2
Absolute moment error for bi-modal pdf and m = 10 with respect to the number of outer iteration steps and #; = 10~'°.
Outer iteration step (1) 5 10 20 50 100 200
Absolute moment error 48x107° 7.7 x 107° 2.1 x 10712 43x10713 42x10713 42x10713
2 -
175 F ————~— m=
r —— - - - m=10 . ,
15 F 77 -m=18 / \'\/ P i \\ ~ /
Tr Exact pdf i/ /‘:é--/ Nz 7
[ ir
[ c
1.25 - il
C iy
—_ C i
® 1f '
w C Jij
N 11
0.75 |- S
L RaVE
- - / ,I
05 Lt = A
7 A
0.25 :—
0 T T T T [ TN T TN TN Y SN SO TR SR ST S S S|
0 0.25 0.5 0.75 1

Fig. 3. MaxEnt approximation of the step pdf using Fup, moments up to m = 18.

Table 3

Absolute moment error for step pdf and m = 10 with respect to the number of outer iteration steps and 1, = 107"°.
Outer iteration step (1) 5 10 20 50 100 200
Absolute moment error 35x107° 47 x1078 1.7 x 1071° 1.5x 107" 1.3 x 10" 1.3x107"

which cannot always efficiently resolve pdf's with spatially different features. Despite pdf discontinuities, Table 3 presents a
quite accurate calculation of power moments and consequently small corresponding absolute moment error.

Discussion for MaxEnt approximation of more demanding discontinuous pdf examples has been given by Bandyopadhyay
et al. [6]. Therefore, we choose one their example (Fig. 1 in [6]), the double Dirac pdf with pulses at x = 0.25 and 0.75 in order
to show robustness and accuracy of our algorithm. Fig. 4 presents that Fup MaxEnt approximation for m = 18 correctly de-
scribes Dirac pulses without any numerical oscillations at boundaries or between them. Moreover, pulses are symmetric,
while peak value is around 175. By comparison in [6], pulses are slightly nonsymmetrical and peak value is around 47 using
the 25 shifted Chebyshev moments. Higher peak value implies more accurate MaxEnt approximation of double Dirac pdf.
Furthermore, absolute moment error is around 10~'° which means that algorithm keeps accuracy, even for very demanding
and discontinuous pdf examples. All four examples present ability of FMEA to accurately describe different pdf's and all its
features keeping the stability of algorithm for a larger number of moments.

Finally, we need to check consequences of an inexact nature of our algorithm with respect to the upper entropy bound
comparing entropy values for classic MaxEnt Algorithm and pdfin (9) or (16) and for FMEA and pdf in (20). In the first exam-
ple (beta pdf), we firstly check the entropy values for basic algorithm with monomials and pdf (9) and algorithm with Cheby-
shev polynomials and pdf (16). For instance, both algorithms with m = 4 yield H = —0.428134. Therefore, for all other pdf
examples and higher number of moments we will use classic MaxEnt algorithm based on Chebyshev polynomials [6] for
comparative purposes. On the other side, our algorithm yields somewhat smaller entropy value H = —0.428421. Accordingly,
for the bi-modal pdf and m = 10, classic algorithm yields H = —0.423428, since our algorithm yields H = —0.423583. Also,
for the step pdf and m = 10, classic algorithm yields H = —0.123142, since our algorithm yields H = —0.123424. The double
Dirac pdf is not suitable for comparison due to larger differences between our pdf solution and one in [6]. First three pdf
examples demonstrate that our algorithm is inexact because it yields smaller entropy value than classic MaxEnt algorithms,
as in [6]. However, in all these particular pdf examples, entropy differences are around 10~* which yield small entropy value
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Fig. 4. MaxEnt approximation of the double Dirac pdf (pulses at x = 0.25 and 0.75) using Fup, moments up to m = 18.

error implying “almost” obtained upper entropy bound and similar pdf’s in (9), (16) and (20), with differences irrelevant for
all practical purposes.

4. Conclusions

The Classic Moment Problem (CMP) causes typical conventional numerical methods to fail for higher-order moments
(m > 5—10) due to different sensitivities of Lagrangian multipliers and unbalanced nonlinearities. Classic MaxEnt algorithms
overcome these difficulties by using orthogonal polynomials, which enable roughly the same sensitivity for all Lagrangian
multipliers. In this paper, we present the Fup MaxEnt Algorithm (FMEA). This algorithm is based on low order Fup, basis
functions with compact support, which exactly describe polynomials up to the second order but approximately expressed
other higher-order polynomials. Therefore, the MaxEnt nonlinear algorithm possesses more balanced nonlinearities due
to localized Fup, basis functions with compact support and enables a robust and efficient numerical procedure well suited
for a larger number of moments. As a consequence, the algorithm exactly satisfies power moments over the Fup optimal
MaxEnt pdf using the iterative scheme (Eq. (18)) where algebraic power moments are calculated as a sum of Fup, and resid-
ual moments. However, due to the excellent approximation properties of Fup, basis functions for description of polynomials,
the residual moments are quite small implying a fast convergence of presented iterative stable algorithm. Robustness and
accuracy of our algorithm is demonstrated on two continuous pdf examples: beta and bi-modal pdf, and two discontinuous
pdf examples: step and double Dirac pdf. Particularly, presented algorithm does not satisfy upper entropy bound in compar-
ison with classic MaxEnt algorithms [6]. However, presented pdf examples clearly demonstrated that Fup, optimal pdf in
(20) “almost” yields upper entropy bound with value differences irrelevant for practical engineering purposes.

This new type of MaxEnt algorithm can be further developed for multi-dimensional problems [2,3] and an extreme num-
ber of moments (m > 20), as needed in solid-state physics [6,23]. Finally, the potential usefulness of Fup basis functions and
other functions with compact support should be explored for new algorithms in stochastic modeling, such as Bayesian Max-
imum Entropy [7].

Appendix A. Fup basis functions
A.1. Calculation of the Fup, basis functions

Atomic basis functions are compactly supported and infinitely differentiable functions [18,19]. Atomic functions y(.) are
defined as solutions of differential-functional equations of the following type:

LDy(X) = AD Z Cky(ax - bk) (Al)

k=1

where Lp is a linear differential operator with constant coefficients, Ap is a nonzero scalar, C, are coefficients of the linear
combination, a > 1 is a parameter defining the length of the compact support and b, are coefficients that determine the
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displacements of the basis functions. Rvachev and Rvachev [18], in their pioneering work, called these basis functions
“atomic” because they span vector spaces of all three fundamental functions in mathematics: algebraic, exponential and
trigonometric polynomials. Also, atomic functions can be divided into an infinite number of small pieces that maintain all
their properties, implying a so-called “atomic structure.”

The simplest function, which is the most studied among atomic basis functions, is the up(x) function. Function up(x) is a
smooth function with compact support [—1,1], which is obtained as a solution of a differential-functional equation:

up'(x) =2up(2x + 1) — 2up(2x — 1) (A.2)

with the normalized condition [ up(x)dx = f up(x)dx = 1. Function up(x) can be expressed as an inverse Fourier
transform

w0 =5 [ “*H(S‘“t;zj ) (A3)

Jj=1

Since Eq. (A.3) represents an exact but mathematically intractable expression, Rvachev [19] and Gotovac and Kozulic [8] pro-
vided tractable means for calculating the function up(x)

00 k )
up(x) = 1= (=)' Pep N " Cy(x = 0,p; ... pyY (A4)
k=1 Jj=0

where coefficients Cj are rational numbers determined according to the following expression
Cit :%2j0+1)/2up(—1 +270y, j=0,1,... .k k=1,2,...,00 (A.5)

Calculation of the up(—1 +27"); r € [0, o] in binary-rational points (Eq. (A.5)), as well as all details regarding the calcu-
lation of the function up(x) values, is provided in [8]. The argument (x — 0, p, ...p,) in Eq. (A.4) is the difference between the
real value of coordinate x and its binary form with k bits, where p; ... p, are digits, 0 or 1, of the binary representation of the x
coordinate’s value. Therefore, the accuracy of the x coordinate computation, and, thus, the accuracy of the up(x) function at
an arbitrary point, depends on the machine’s accuracy.

From Eq. (A.2), it can be seen that the derivatives of the up(x) function can be calculated simply from the values of the
function itself. The general expression for the derivative of the mth degree is

2m
up™ (x) = 21 > oup"x+2"+1-2k), meN (A.6)

k=1

where C2,.; = m(m + 1)/2 is the binomial coefficient and 3, are the coefficients with +1 value according to the recursive for-
mulas Sy, = S, o = —, k€ N, 5; = 1. It can be observed that the derivatives consist of the up(x) function compressed
to an interval of 27! length with ordinates extended with the 26m41 factor.

The Fup,(x) function satisfies the following differential-functional equation

n+2

Fup,, (x Z ( k- Ckl )Fupn (%) <2x —2 k42 2+ 2)) (A7)

where n is the Fup order. For n = 0, Fup,(x) = up(x), since Fup,(x) and its derivatives can be calculated using a linear com-
bination of displaced up(x) functions instead of using their Fourier transforms

k n4+2
Fup, (x Z Ci(n ( —gnt F) (A.8)

where Cy(n) = 26 = 2" D2 gpg Cip(n) = Cy(n) - C(n), where a recursive formula is used for calculating auxiliary coeffi-
cients C(n)

Cy(n) =1, when k = 0; i.e.when k >0
min {k;2"“ —1}
G =G~ > Gy b (A9)
=

The Fup,(x) is defined on the compact support [—(n +2)27" N (n+ 2)2’"’1]. Fig. A.1 shows the Fup,(x) function and its first
two derivatives, which are used in this paper. In order to define Fup, (x) basis functions on interval [0,1] in Algorithms 1 and
2, the location of each basis function is actually determined by the location of the vertex and defined by b, = (k — 1)Ax where
k =0,...,mis the corresponding moment index, while Ax = 1/(m — 2) is the characteristic interval or distance between ver-

tices of basis functions (Fig. A.2). The calculation of basis function values at a general characteristic interval Ax should be
done in the following form with respect to a basic characteristic interval 27"
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Fig. A.2. Residual functions defined for approximation of monomials on interval [0,1] and m = 10. Also, locations and distribution of Fup,(x) basis functions
are presented.
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1 X — by
Fupa() = (g e (“) (A10)

A.2. Approximation properties of the Fup, basis functions

Index n also denotes the highest degree of the polynomial that can be expressed exactly in the form of a linear combina-
tion of n + 2 Fup,(x) basis functions, uniformly displaced by a characteristic interval Ax. In this paper, we use low order
Fup, (x) basis functions, which exactly express polynomials (or monomials in this specific case) up to the second order on
interval [0,1] by a collocation procedure presented in [8]

1< x kK
ZZ up2<m—z> (A11)
%kapz(ﬁx ’;) (A12)
A2 I/ .2 5 x K

k=0

where k* = k — 1. Other higher-order monomials are expressed approximately. Differences between monomials and their
Fup, (x) approximation are defined by residual functions. Fig. A.2 shows a distribution of uniformly displaced Fup,(x) basis
functions for the approximation of monomials in [0,1] and m = 10. Note that basis functions defined for k =0 and k =m
are external basis functions, while other functions are internal basis functions. Their influence is only considered within
the domain [0, 1]. Higher-order monomials up to the 8-order can be presented by a collocation procedure [8] as follows

X3 _AXT:E"; <k*3 —%k )F p2(4zx ’Z) +6s(%) (A.14)
4_A:4kzm;< fgk + )UP2(42>< l;)+84() (A.15)
A"{i(k* By +—k)Fup2(&—kz*>+85(x) (A16)
MTBkZm;(k* Bt B Y ups () ) (A17)
Af}ﬁ;( i 12775k +%k*>Fup2<&—g>+s7(x) (A18)
X8 _%sg(k*“ —79—0k*6+%k*4+¥k*2 —%)Fup (4ZX ’;) + (%) (A.19)

Fig. 2 presents the residual functions &;(x) — &g(x) for m = 10. Their values are zero in the collocation points which are lo-
cated in the vertices of basis functions [8,10]. Between collocation points, the nonzero residual functions are a considerably
smaller than the monomials. Convergence of the iterative scheme (18) in presented Algorithm 2 mainly depends on the
approximation properties of the basis functions. Smaller residual functions imply the faster convergence in Algorithm 2.
Choice of the Fup,(x) basis functions seems reasonable due to their low order implying a stable algorithm, but still retains
good approximation properties because they span the vector space which is closely related to the vector space of monomials.
Accuracy of the collocation algorithm on the uniform grid has been shown in [13] by the following theorem:

Theorem 1. If f(x) € C", then exist Fup coefficients (d;) in Eq. (17) such that
[&i(X)]| < KnAX" T (f;Ax); i=0,...,m (A.20)

where K, is a real number independent of Ax, but depends on n-Fup order, while w,(f; Ax) is the modulus of continuity

n

d
wn(f; Ax max |[— (f(xo) — f(x} A.21
n(f ) ‘er |<AX Ox" (f( 0) f( 0)) ( )
It means that generally Fup approximation depends on three factors: n — Fup order, Ax and derivative differences of the n-or-
der inside the Ax. In the limit when m — oo, then Ax — 0 and consequently the derivative differences converge to zero, i.e.
oy (f; AX) — 0. It implies that for m — oo, the residual functions are zero and Eq. (17) becomes the exact relation (13) be-
tween Fup,(x) basis functions and monomials.
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