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Abstract 

 

 We use a thermodynamic assumption that the vertical heating profile 

has the shape of the first baroclinic mode, and that the analytical expression 

for vertical velocity has two modes, representing shallow and deep 

convection. The thermal assumption of the model is given through the 

convective inhibition closure, i.e. negative convective inhibition results in 

increased precipitation. These modeled modes are the free Kelvin waves 

and the convectively coupled Kelvin waves. We find the latter mode to be 

unstable, with maximum growth rate at wavelengths of 6000 kilometers. The 

model successfully captures the observed nature of the Kelvin waves and 

shows that convective inhibition closure is sufficient to trigger the observed 

destabilization of the convectively coupled Kelvin mode. 

 

Keywords: large-scale modes, tropics, destabilization.
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Introduction 
 

 Equatorial waves are disturbances that are trapped about the 

equator. They can propagate eastward or westward and they decay as we 

move away from the equator. The biggest disturbance among the equatorial 

waves is the Madden-Julian oscillation (MJO). The MJO is a wave envelope 

of planetary wavenumber l = 1, 2, 3 and a period of 30 - 60 days. It brings 

bad weather and lots of precipitation. Another equatorially trapped wave is 

the Kelvin wave. Its wavelength is smaller than the MJO's, but it can also be 

unstable and thus bring bad weather. The Rossby waves and inertia-gravity 

waves are also equatorially trapped waves, but will not be discussed in this 

work. Figure 1 shows the space - time spectrum of outgoing longwave 

radiation (OLR) symmetric about the equator, the equatorially trapped 

waves, their periods and zonal wavenumbers.  

 Due to the specific characteristics of the tropical atmosphere, we 

need to consider the influence of diabatic source terms on the dynamics of 

the waves. In this model we research the equatorial convectively coupled 

Kelvin waves. The observations show (Straub and Kiladis, 2002) that the 

convectively coupled Kelvin waves slow down compared to their free 

modes. The way that the local convection interferes with the dynamics of 

the Kelvin wave is still not well known. 

<FIGURE 1> 
 

 Matsuno (1966) is the father of the analytical theory for the 

equatorially trapped waves. In his work Matsuno assumes a shallow-water 

model where Coriolis parameter linearly varies with the longitude: f=βy. 

When zonally propagating waves are assumed as the solution, the result is 

a dispersion relation with several modes as a solution: inertia-gravity waves, 

Rossby wave and Kelvin wave (when meridional velocity is zero). In the 

Kelvin wave solution the phase speed of the wave is nondispersive and 

equal to (gh)1/2, i.e. it is equal to the phase speed of shallow water gravity 

waves.  Matsuno's model does not include thermal effects, i.e. it is an 
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adiabatic model and thus the modeled modes are free. Matsuno's modes 

are shown in solid line in Figure 1.  

 As local convection in the tropics is not well understood, it is difficult 

to model the unstable Kelvin waves coupled with convection. However, 

recent work by Raymond and Fuchs, 2007 (RF2007) and Khouider and 

Majda, 2006 (KM2006) has shown that such modeling is possible. 

 The main difference between KM2006 and RF2007 is the assumed 

heating profile. KM2006's vertical heating profile is more complex as they 

assume two different profiles; one corresponds to deep convection and the 

other to stratiform convection. Therefore, this model has two equations for 

the vertical velocity and consequently for all other fields. As a result the 

model can only be solved numerically. KM2006’s Kelvin wave phase speed 

agrees with the observations. 

 Raymond and Fuchs solve their model analytically using a simple 

sinusoidal heating profile with a wavelength equal to twice the depth of the 

troposphere. Despite this assumption, RF2007’s model obtains an analytical 

expression for the vertical velocity that has both types of the heating 

profiles. When the model is solved with the expression for vertical velocity, 

the result is an unstable convectively coupled Kelvin wave with a phase 

speed and instability properties that agree with the observations. Though 

RF2007 agrees with the observational data, it is still rather complex. The 

goal of this work is to create a model that is simpler than RF2007, but that 

still produces modes which agree with the observations. 

 The model in this paper is a simple non-rotating model of the tropical 

atmosphere. It is based on work by RF2007 as the assumed vertical heating 

profile is of the shape of the first baroclinic mode and as the vertical velocity 

expression is taken from their work. The assumption of the non-rotating 

atmosphere is justified as the Kelvin waves in a rotating atmosphere 

correspond to gravity waves in non-rotating atmosphere. For that reason we 

call those waves Kelvin waves. 

 In this paper we assume that the only condition for the strong 

precipitation connected to the Kelvin waves is suppressed convective 
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inhibition. It is an idealization, but the purpose of this work is to reduce the 

pool of diabatic effects and get a clearer picture of which mechanism is 

responsible for the instability of the wave.  

 We find the model with the above hypothesis successfully generates 

a convectively coupled Kelvin wave with the same phase speed and 

instability as the observed one. This points to suppressed convective 

inhibition as the primary mechanism responsible for the convectively 

coupled Kelvin waves in the tropics.  

 Section two shows the basic theory behind the model, section 3 

gives the results, while conclusions are given in section 4. 
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2. MODEL 

2. 1. Basic equations 
 

 We begin the derivation of Kelvin waves with the basic governing 

equations: 

 

 Momentum equation: 

 

FgVp
dt
Vd

ρρ
121

++×Ω−∇−=     (1) 

 

 Continuity equation: 

 

  0=⋅∇+ V
dt
d ρρ       (2) 

 

 Thermodynamic equations: 

 

  S
dt
d

=
θ        (3) 

  e
e S

dt
d

=
θ        (4) 

  q
q S

dt
d

=
θ

       (5) 

        

where θ is the potential temperature, θe is the equivalent potential 

temperature and q is the mixing ratio. As we are considering the diabatic 

case, the right side of the thermodynamic equations is not zero. We further 

neglect the processes that are not directly responsible for the Kelvin waves: 
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1. We assume a non-rotating atmosphere, i.e. 02 =×Ω V . The Kelvin 

waves in rotating atmosphere map into gravity waves in non-

rotating atmosphere which justifies this assumption and is a reason 

why we call them Kelvin waves.  

2. We neglect the friction: F = 0. 

3. We assume the fluid is incompressible ( 0=
dt
dρ ), which according 

to equation (2) implies that 0V∇ ⋅ =
r

. 

4. We assume the fluid is in hydrostatic equilibrium, 0=
dt
dw . In the 

vertical momentum equation the gravitational term is assumed to 

be balanced by the pressure gradient. 

5. We consider the (x, z) plane only. 

 

 After the above approximations we are left with: 
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  q
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t x z
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 The equations (6) and (7) are the x and z components of the 

momentum equation. Equation (8) follows from the continuity equation. 

Equations (9), (10) and (11) come from the thermodynamic equations. 
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From the Poisson equation 0 p
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and therefore  

 

Π= ~ddp θ
ρ

       (12) 

Where 
pc
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pc ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=Π

0

~  is the Exner function.  

Equations (6) and (7) can now be rewritten as: 
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2.2. Linearization 
 

 We linearize the model using the perturbation method and 

expressing every variable as a superposition of the equilibrium state and its 

perturbation. The basic state of every variable satisfies the governing 

system of equations, and the perturbation values are small enough for their 

multiplication to be neglected.  

 

 We start with: 
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We next assume that the mean horizontal and vertical velocities are 

zero, and therefore: 

        (17) 
( , , ) '( , , )
( , , ) '( , , )
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w x z t w x z t

=
=

 

 After linearization the system of equations (6) – (11) simplifies to:  
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where for simplicity we write u'→ u, w'→ w, etc. 
 
  We recognize the term in equation (19) as buoyancy: 

 

0

g bθ
θ

=        (24) 
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We further introduce 
0

B
gS
θ

= S  and to simplify the notation we redefine the 

Exner function as . The system of equations (18) – (23) can now be 

written as: 

Π=Π ~
0θ

 

  0u
t x

∂ ∂Π
+ =

∂ ∂
       (25) 

  b
z

∂Π
=

∂
       (26) 
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x z

∂ ∂
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  B
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∂
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ΓB is the square of the Brunt-Väisälä frequency: 2 0

0
B

gN
z
θ

θ
∂

Γ = =
∂

, while  

0
Q

p r

dqgL
c T dz

Γ = .  

 

 We use this system of equations to derive the convectively coupled 

Kelvin waves in moist atmosphere.  

 

2.3. Thermodynamics of moist atmosphere  
 

 In the tropical atmosphere precipitation is an important heating 

source as the latent heat is released by condensation of water vapor. 

Another heating mechanism is latent or sensible heat transport from the 

surface by evaporation or induced by wind (wind induced surface heat 

exchange). 
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 The heat source comes into the equations through the source terms. 

As we consider a non adiabatic case the heat is exchanged with the 

environment. We integrate the buoyancy source term SB through the entire 

troposphere: 

 

0

h

BB S d= ∫ z        (30) 

 

 Fuchs and Raymond (2007) assumed a simple sinusoidal heating 

profile (the first baroclinic mode), with the heating maximum in the middle, 

and falling to zero at the bottom (surface) and the top of the troposphere: 

 

(0
0sin

2B
m BS ⎛ ⎞= ⎜ ⎟

⎝ ⎠
)m z      (31) 

 

m0 = π/h is the vertical wavenumber where half of its wavelengths is equal 

to the depth of the troposphere. Troposphere depth is taken as  

h = 15000m. This type of heating profile corresponds to deep convection 

and we will use it in this paper. 

 Convective inhibition energy (CIN) is the amount of energy that will 

prevent an air parcel from rising from the surface to the level of free 

convection ( ): LFCz

  
LFC

parcel environment

environment

z
V V

Vz

T T
CIN g dz

T

−⎛ ⎞
= ⎜⎜

⎝ ⎠
∫ ⎟⎟     (32) 

 

 Convective inhibition disables the updrafts, thus preventing the 

development of convective clouds and precipitation. Convective inhibition is 

a consequence of stable stratification. In that situation the parcels that are 

being lifted come to the environment that is warmer than themselves and 

thus the convection ceases. In-situ measurements (Raymond et al., 2003) 

 11



 

show that a stable layer just above the boundary layer is sufficient to inhibit 

the development of deep convection and the associated cloudiness. This 

disables the precipitation from convective clouds. Convective inhibition is 

parameterized through the buoyancy perturbation. 

 The crucial hypothesis of this model is that the precipitation is 

controlled by changes in convective inhibition. The modulation of convection 

can be explained by wave-related adiabatic lifting of the capping layer just 

above the boundary layer. 

 Convective inhibition is parameterized through the precipitation term 

(P). Raymond and Fuchs, 2007 analyzed the data collected by the ship Ron 

Brown, and particularly the situations when the precipitation was connected 

to small or negative values of convective inhibition. They suggested the 

following parameterization:  

 

( )CIN tP bμ λ= − D       (33) 

 

 D is the dimensionless height of the stable layer, normalized by the 

depth of the troposphere h. μCIN is a parameter that defines sensitivity of the 

precipitation to convective inhibition (see Raymond and Fuchs, 2007 for 

more details), while λt is defined as: 1 s
t

p p

rL
c T

λ
⎡ ⎤∂⎛ ⎞≡ +⎢ ⎥⎜ ⎟∂⎝ ⎠⎢ ⎥⎣ ⎦

. L is the specific 

latent heat, cp is the specific heat capacity at constant pressure and rs is the 

saturation mixing ratio at level D*h. In tropical atmosphere λt ≈ 3.5 at level 

D*h. 

 

 To be able to isolate the most important mechanism for the 

convectively coupled Kelvin waves we neglect all other effects and thus 

assume that total heating is caused by latent heat release from 

precipitation. Compared to RF2007 this simplifies the parameterization of 

precipitation, as it is only done by changes in CIN: 
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      (34) ( ) ( )
0

h

B CINB S z dz P b Dμ λ= = = −∫ t

 To solve (25) – (29), we assume the following form of the variables: 

  

  ( , , ) ( )exp ( )u x z t u z i kx tω= −     (35) 

  ( , , ) ( )exp ( )w x z t w z i kx tω= −     (36) 

  ( , , ) ( )exp ( )x z t z i kx tωΠ = Π −     (37) 

  ( , , ) ( )exp ( )b x z t b z i kx tω= −     (38) 

  ( , , ) ( )exp ( )q x z t q z i kx tω= −     (39) 

 

 thus obtaining the polarization relations: 

 

  ( )( ) i w zu z
k z

∂
=

∂
      (40) 

  2

( )( ) i w zz
k z
ω ∂

Π =
∂

      (41) 

  [( ) ( ) ( )B B
ib z S z w z
ω

= − Γ ]      (42) 

  ( ) ( ) ( ) ( )Q Q
iq z S z z w z
ω

= − Γ⎡⎣ ⎤⎦      (43) 

 

 Vertical velocity perturbation is taken from RF2007 where the model 

was solved on the x-z plane: 

 

( )
0

02
( ) sin( ) exp sin( )

2 1B

m B iw z m z mzπ⎡ ⎤⎛ ⎞= + Φ −⎜ ⎟⎢ ⎥ΦΓ − Φ ⎝ ⎠⎣ ⎦
 (44) 

 

Φ is a nondimensional phase speed: 0m
m

ω
ακ

Φ = = . κ is a nondimensional 

horizontal wavenumber: 
1/ 2
Bh kκ

απ
Γ

= . α is a moisture relaxation rate (Fuchs 

and Raymond, 2001) in units of 1/day. m0 is the vertical wavenumber of the 
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first baroclinic mode while m is the vertical wavenumber of the calculated 

mode. Vertical velocity is a result of updrafts due to deep and stratiform 

convection and thus both components appear in the vertical velocity 

expression. The sin(m0z) term corresponds to the deep convection, while 

the exp(-iπ/Φ) sin(mz) term corresponds to stratiform convection. 

 Given we already know the vertical velocity profile w, and the vertical 

heating source profile SB, it is straightforward to obtain the dispersion 

relation. From equations (38), (31) and (44) we get the buoyancy 

perturbation as a function of height:   

 
( )

0
02

( ) sin( ) exp sin( )
2 1

iBm ib z m z i mzππ
ακ

− ⎡ ⎤⎛ ⎞= Φ + −⎜ ⎟⎢ ⎥Φ− Φ ⎝ ⎠⎣ ⎦
  (45) 

 

 Using equations (44), (45), (31) and (28) we find the dispersion 

relation to be: 

 

( ) ( )2
0 0 02 sin 2 exp sinCIN t CIN ti m m D i m i mDπακφ φμ λ ακ μ λ

φ
⎛ ⎞

+ − + −⎜ ⎟
⎝ ⎠

0=  

(46) 

 

Finally, we define 0

2
CIN t

t
mμ λ

χ
α

=  and obtain the nondimensional dispersion 

relation: 

 ( )2 sin exp sin 0t t
Di D i i π πκφ φχ π κ χ

φ φ
⎛ ⎞ ⎛ ⎞

+ − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=   (47) 

 

Parameter χt defines the sensibility to stable layers. It is taken to be equal to 

12, as in the control case from RF2007 who based it on the extended 

thermodynamic parameter analysis. Nondimensional height D is the ratio of 

the height of the stable layer and the height of the troposphere h. As the 

stable layer is usually at z=2 km, the parameter D is 0.17.  
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The dispersion relation is solved numerically using the Newton’s method in 

Mathematica.  

 

<TABLE 1> 
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3. RESULTS AND DISCUSSION 
 

 Dispersion relation (46) is solved numerically for Φ with D=0.17 and 

χt=12 (Raymond and Fuchs, 2007). Φ = ω/ακ is a complex number whose 

real part is nondimensional phase speed. If positive, the wave propagates 

eastward; if negative, it propagates westward. By multiplying Φ by 

wavenumber κ, we get Ω≡Φ∗κ=ω/α, where ω is the wave frequency in units 

of 1/day. Imaginary part of the wave frequency is growth or decay rate of 

the mode as all the fields have wave dependence in time that is proportional 

to exp(-iωt). If the imaginary part is positive, the result is exponentially 

growing mode, while if it is negative, the result is decaying mode.  

 To better visualize the results we define the planetary wavenumber  

l=k/k1, where k1 = 2π/40000 km-1. It is equal to 1 for waves with wavelength 

equal to circumference of the earth. Figures (2) – (7) show the phase speed 

and growth rate as a function of l for all the obtained modes -- the free 

Kelvin waves and the convectively coupled Kelvin waves. 

 Figures 2 and 3 show the free Kelvin waves that propagate eastward 

and westward with a phase speed of ±48 m/s. Figure 4 shows the growth 

rate of the free Kelvin wave. Imaginary part of the frequency is zero which 

means that they are neither growing nor decaying, they are neutral. 

 Figure 5 shows the convectively coupled Kelvin wave that 

propagates eastward and figure 7 the one that propagates westward. The 

phase speeds are ±18 m/s and vary slightly with the wavenumber. The 

westward propagating convectively coupled Kelvin wave does not have its 

analog in reality so we neglect it. The imaginary part of the frequency is 

positive (figure 6) for most wavelengths which means that the wave is 

unstable or growing in time. 

 The modeled phase speed of the convectively coupled Kelvin wave 

(16 – 19 m/s) is in good agreement with observations (Straub & Kiladis, 

2002). The imaginary part of the frequency reaches its maximum for 

planetary wavenumber l = 7. This indicates that the convectively coupled 
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Kelvin waves show the biggest growth rate for the wavelengths around 

6000 km. This result is in good agreement with observations as the highest 

spectral energy for this mode was found around that wavelength (Wheeler 

and Kiladis, 1999). The growth rate decreases as we go towards higher 

wavenumbers; after l = 15 the modes decay. 

 

<FIGURES 2-7> 
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4. CONCLUSIONS 
 
 We present an idealized, vertically resolved model of the tropical 

atmosphere. We assume that the heating profile is sinusoidal with half of 

the wavelength equal to the depth of the troposphere (the first baroclinic 

mode). The vertical velocity profile is bimodal and taken from Raymond and 

Fuchs (2007).  

 Heat release through precipitation is the only diabatic mechanism of 

importing heat in the system. Precipitation rate is parameterized by 

variations in convective inhibition (CIN), motivated by wave-related 

adiabatic lifting of the capping layer just above the boundary layer. The 

reason for such a simplified treatment is our intent to investigate the 

feasibility of CIN variations as the basic mechanism for generating 

convectively coupled Kelvin waves. 

 Two modes are modeled: the free Kelvin waves and the convectively 

coupled Kelvin waves. We find that the free Kelvin waves have a phase 

speed of approximately 48 m/s, close to that seen in observations (Andrews 

et al., 1987). They propagate eastward and westward, and are found to be 

neutral. The modeled free Kelvin waves follow the theory of free gravity 

waves. We find convectively coupled Kelvin wave that propagates with a 

phase speed of 16 – 19 m/s, varying only slightly with wavelength. It is 

unstable with the biggest growth rate for planetary wavenumber l = 7, 

corresponding to λ=6000 km. Phase speed and growth rate agree with the 

observations (Wheeler and Kiladis, 1999, Straub and Kiladis, 2002). The 

phase speed is likely to be a consequence of vertical velocity profile, i.e. of 

the wave dynamics while the instability is a result of the CIN modulation.  

 

 The presented model is an idealized analytical model for the Kelvin 

waves. Our results follow from only two assumptions: i) the first baroclinic 

mode heating profile (leading to bimodal vertical velocity profile; RF2007), 

and ii) the parameterization of precipitation by variations of CIN.  More 
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complex models such as Raymond and Fuchs (2007) also include cloud-

radiation interactions, precipitation dependence on humidity and wind 

induced surface heat exchange (WISHE). The dynamics in this model is the 

same as in RF2007, and the agreement between our results and RF2007 is 

very strong especially when compared to their case without WISHE. This 

shows that the basic mechanism for the instability of the convectively 

coupled Kelvin wave is the variation in convective inhibition. 
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Sažetak 

 

      Termodinamičke pretpostavke modela uključuju vertikalni profil grijanja 

koji ima oblik prvog baroklinog moda. Pretpostavljeni oblik vertikalne brzine 

sastoji se od dva dijela koji odgovaraju plitkoj i dubokoj konvekciji. Za 

pametrizaciju oborine uzeta je negativna konvektivna inhibicija (CIN). 

      Dobiveni modovi su slobodni Kelvinovi valovi i Kelvinov val povezan s 

konvekcijom. Kelvinov val povezan s konvekcijom je nestabilan, a najveću 

nestabilnost pokazuje pri valnoj duljini od 6000km. Ovim modelom uspješno 

je reproducirana opažena priroda Kelvinovih valova, a iz modela se vidi da 

je konvektivna inhibicija dovoljna za modeliranje opažene nestabilnosti 

Kelvinovih valova povezanih s konvekcijom.  

 

 

 

 

Ključne riječi: modeli velikih razmjera, tropi, destabilizacija. 
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Table 1. Parameters and their values 

 

Symbol Parameter Value/dimension 

U Horizontal speed [ms-1] 

Π~  Exner function [m2s-2K-1] 

Π  
Exner function * mean potential 
temperature [m2s-2] 

W Vertical speed [ms-1] 

B Buoyancy [ms-2] 

Q Scaled mixing ratio [ms-2] 

0

g d
B dz

θ
θ

=Γ  Squared Brunt-Väisälä frequency [s-2] 

G Gravitational acceleration [ms-2] 

Cp Specific heat capacity at constant 
pressure  1005 Jkg-1K-1

1/ 2 /Bm k ω= Γ  Vertical wavenumber  [m-1] 

m0 = π/h First baroclinic vertical 
wavenumber  2.09×10-4 m-1

h Depth of the troposphere 15 km 

k Horizontal wavenumber [m-1] 

o Frequency [s-1] 

Φ Nondimensional phase speed Calculated 

Ω = ω/α Nondimensional frequency Calculated 

1/ 2 / mBk ωκ = Γ  Nondimensional horizontal 
wavenumber  0.7 to 20 

l = 2π/40000 Planetary zonal wavenumber [km-1] 

α Moisture relaxation rate [1/day] 

χt Constant 12 

λ t Constant 3.5 

D = z*h Nondimensional height of the 
stable layer 0.17 

L Specific latent heat [Jkg-1] 
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