

Uzorci s većim udjelom nanočestica imaju manje B_{irr} od nedopiranog uzorka u cijelom temperaturnom području. Također, *B*_{irr} dopiranih uzoraka sporije se povećava sa sniženjem temperature u odnosu na nedopirani uzorak iz čega možemo zaključiti da zapinjanje vrtloga nije poboljšano u dopiranim uzorcima.

7. Zaključak

10, 12, 14, 16 T.

Ovisnost otpora R o temperaturi T; magnetska polja

redom su jednaka (s desna na lijevo): 0, 1, 2, 4, 6, 8,

Proučavana su transportna svojstva supravodiča MgB₂ dopiranog magnetskim Fe₂B i Fe₂B oklopljenim SiO₂ nanočesticama. Poboljšanje zapinjanja magnetskih vrtloga povezano s magnetskim međudjelovanjem vrtloga i magnetskih nanočestica nije opaženo. Uočeno je smanjenje T_c , B_{irr} i $J_c(B)$ s povećanjem udjela nanočestica. Opaženo ponašanje posljedica je smanjenja udjela supravodljivog volumena u dopiranim uzorcima te postojanja magnetskih nanočestica unutar supravodljivog MgB₂ zbog čega dolazi do magnetskog rasparivanja Cooperovih parova. Smanjenje supravodljivog volumena i povezanosti MgB₂ zrna jače je izraženo za veće dopiranje. Uzorci dopirani Fe_2B/SiO_2 česticama imaju veće B_{irr} i $J_c(B)$ od onih dopiranih Fe_2B česticama vjerojatno zbog manje količine magnetskog materijala. Slično ponašanje uočeno je ranije u MgB₂ dopiranim Fe [7].

Transportna svojstva supravodiča MgB₂ dopiranog magnetskim nanočesticama

Supravodič magnezij diborid MgB₂ ima temperaturu prijelaza $T_c \approx 39$ K [1] što omogućava veliku tehnološku primjenu (npr. za magnete za MRI). Pored poželjnih svojstava (kao što su relativno visok T_c , dobra povezanost zrna, mala anizotropija itd.), MgB₂ ima relativno malo gornje kritično polje $B_{c2} \sim 18$ T, a gustoća kritične struje J charto polje B_{c2} ~ 18 T, a gustoje B_{c2} magnetskih vrtloga, a time i ireverzibilno polje B_{irr} i gustoća kritične struje u magnetskom polju J_c(B) što je nužno za tehnološku primjenu [4]. Nedavno je predloženo dopiranje magnetskim nanočesticama čime se nastoji

3. Eksperimentalne metode

Rentgenska difrakcija polju $B \le 9$ T (PPMS, *Quantum Design*) poljima $B \le 16$ T (AC struja I = 1 mA, f = 18.4 Hz) oblika trajanja 0.5 ms, I_{max} = 320 A)

U svim uzorcima dominira MgB₂ faza sa približno jednakom veličinom kristalita ~ 20 nm. Pored MgB₂ faze u svim uzorcima prisutna je i MgO faza.

U uzorcima dopiranim Fe₂B česticama opaženo je

U uzorcima dopiranim Fe₂B/SiO₂ česticama Fe₂B/SiO₂ čestice nisu uočene jer su amorfne. U 7.5 wt.% dopiranom uzorku pronađena je FeB faza, dok udio MgO faze raste s povećanjem dopiranja, što upućuje da je prilikom toplinske obrade uzoraka u određenoj mjeri došlo do reakcije između Mg, B i nanočestica.

	1
/SiO ₂	
-	
12	

Dopiranje	Smanjenje T _{c0}
Fe ₂ B	0.72 K/wt.%
Fe ₂ B/SiO ₂	0.45 K/wt.%

 T_{c0} se brzo smanjuje s povećanjem udjela nanočestica. Za usporedbu smanjenje T_c u MgB₂ dopiranom SiC je 0.2 K/wt.% [6]. U dopiranim uzorcima magnetski moment čestica uzrokovao je magnetsko rasparivanje Cooperovih parova i smanjenje T_c .

Gustoća kritične struje J_c u ovisnosti o magnetskom polju *B*; prazni simboli: magnetske J_c , puni simboli: transportne J_c . Dobro kvalitativno slaganje između magnetskih i transportnih J_c . Transportne J_c su pouzdanije jer se određuju direktno iz mjerenih V-I krivulja, dok se magnetske J_c računaju pomoću modela. $J_c(B)$ dopiranih uzoraka su manje u odnosu na nedopirani uzorak na niskim (5 K) i na visokim (20 K) temperaturama. J_c krivulje za dopirane i nedopirani uzorak u ovisnosti o normiranom magnetskom polju B/B_{irr} gotovo se preklapaju (osobito na 5 K) što upućuje da je glavni mehanizam zapinjanja magnetskih vrtloga jednak u svim uzorcima (zapinjanje na granicama zrna). Poboljšanje zapinjanja vrtloga putem magnetskog međudjelovanja vrtloga i nanočestica nije ostvareno ili je puno manjeg značaja.

magnetskom polju B.

8. Literatura
[1] J. Nagamatsu[2] D. K. Finnemo[3] W. K. Yeoh, J.
Hauppauge NY
[4] K. Vinod et al.,
[5] A. Snezhko et
[6] Häßler et al., S
[7] S. X. Dou et al

²ISEM, University of Wollongong, Wollongong, Australija

B [T]

Gustoća kritične struje J_c u ovisnosti o normiranom magnetskom polju *B/Birr*.

Blago zakrivljene linije Kramerovih prikaza $J_c(B)$ upućuju na relativno veliku nehomogenost uzoraka. Prilikom miješanja prahova Mg, B i nanočestica vjerojatno je došlo do aglomeracije nanočestica zbog njihovog magnetskog međudjelovanja, što je rezultiralo u nehomogenosti uzoraka.

B [T]

et al., *Nature* **410**, 2001, 63-64

ore et al., *Phys. Rev. Lett.* 86, 2001, 2420-2422 Horvat, J. H. Kim, S. X. Dou, *Improvement of Vortex Pinning in MgB*₂ by Doping, : Nova Science Pub. Inc., 2008 Supercond. Sci. Technol. 20, 2007, R1-R13 al., Phys. Rev. B 71, 2005, 024527 1-6 Supercond. Sci. Technol. 21, 2008, 062001 (3pp) ., Supercond. Sci. Technol. 18, 2005, 710-715

