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Abstract— In this paper we consider problem of exploration
and mapping of unknown polygonal environments. To construct
a map of unknown environment we first must have exploration
algorithm, and we have to choose a map representation method.
Unknown environment needed to be explored is an indoor office
environment. We use line map representation method since it is
easy to represent office environment using line segments and it is
significantly less memory consuming than occupancy grid map
representation method. We combined two algorithms for line map
building: 1) weighted line fitting algorithm developed by Pfister et
al. [9], which incorporates noise models of the range sensor and
robot’s pose uncertainty and 2) exploration algorithm developed
by Ekman et al. [2], which explores polygonal environments
using ideal range data with no uncertainty and dealing with no
positional uncertainty. We combined and improved both methods
to derive complete exploration of polygonal environments and
statistically sound mapping solution. The algorithms were tested
using Pioneer 3DX mobile robot equipped with a laser range
finder.

Index Terms— exploration, mapping, line extraction, line fit-
ting, mobile robotics

I. INTRODUCTION

The exploration problem is the part of the more general
problem of robot motion planning. The robot equipped with
range sensor is required to autonomously navigate in the
finite unknown environment with the purpose of building the
complete map. During the exploration, the robot is expected
to traverse as small a distance as possible. Therefore, path
planning algorithm must be used for calculating the optimal
paths to the destination points of the exploration algorithm
using the newly explored information. Also, path following
algorithm must be used, which directly controls the robot’s
motion obeying its kinematic and dynamic constraints and
avoiding obstacles in the path. There are different possible
exploration methods and map representations.

The most exploration methods generate a line maps since
they require significantly less memory than occupancy grid
maps. Furthermore, they are more accurate since they do not
suffer from discretization problems. A variety of techniques
for learning line maps from range data have been developed.
Common task for all techniques is to find a minimum number
of line segments that best approximate a given set of range
data. Techniques used in exploration problem must operate
online, i.e., while the robot is exploring its environment. A
number of algorithms apply the well-known iterative end-point

fit or split-and-merge algorithm [1], [11] but do not incorporate
noise models of the range data. Therefore, the fitted lines do
not have a sound statistical interpretation. A Kalman-Filter
based approach for extracting line segments [10] allows only
for uniform weighting of the point fitting contributions. Pfister
et al. [9] consider how to accurately fit a line segment to a
set of uncertain points. Their fitting procedure weights each
point’s influence on the overall fit according to its uncertainty,
where the point’s uncertainty is derived from sensor noise
models. They provide closed-form formulas for the covariance
of the line fit.

The requirement for the exploration problem commonly
used in literature is that obstacles must be algebraic manifolds.
In [5] exploration strategy for environments containing convex
polygonal objects is obtained by repeatedly calling a path
planning algorithm with randomly selected destination points.
This strategy generates a faithful map with probability 1 but
lacks a termination criterion. Ekman et al. [2] present explo-
ration strategy for arbitrary polygonal environments, which
assumes a range sensor of finite angular resolution and thus
provides sampled version of the visibility polygon [6] instead
of imposing further restrictions on the environment. They
derive conditions, resembling the Shannon sampling theorem,
under which it is possible to generate a faithful map from the
range data. The exploration strategy is based on the presence
of discontinuities in the range data called ”jump edges” as a
possibly unexplored environmental regions. The measurement
positions are in the front of jump edges and their selection is
defined by the exploration strategy. The exploration strategy
is proved to completely explore a finite unknown environment
in finite time. However, proposed mapping strategy in [2] uses
robot with no positional uncertainty and with ideal laser range
sensor.

In this paper we introduce a complete solution for ex-
ploration and mapping of unknown environment with some
constraints on the environment. We use exploration strategy
presented in [2] and weighted line fitting algorithm presented
in [9], which introduces sensor noise model and uncertainty.
We combined and improved both methods to derive complete
exploration of polygonal environments and statistically sound
mapping solution. We speed up the exploration convergence by
changing the selection criterion of the measurement positions.
Line map is produced with weighted line fitting algorithm
presented in [9] with certain improvements. Instead of using
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Standard Hough Transform (SHT)[3], we used Probabilistic
Hough Transform (PHT) with postprocessing. PHT uses only
a fraction of points, thus minimising amount of computation
needed to detect lines, while giving less false positive and
false negatives than SHT, as stated in [4]. Post processing
is used to retrieve finite line segments instead of infinite
lines. Finite line segments retrieved from PHT, are used as
initial guess for weighted line fitting algorithm. Points are
grouped around estimated line segment if distance between
point and line segment is smaller or equal to 3σd value.
However this method can lead to undesired effects due to
PHT line segment estimation if too fine discretization is
chosen. It is then possible and highly likely that estimation
will result in too many line segments. We propose methods
to eliminate impossible line estimations in single range scan.
When we detect such impossible lines we simply group points
around them and proceed to linefit. Furthermore, we propose
a method for separating the line segments, which share a
common wall but are separated by a doorway. Since range
data have no information on data between points, range data
measurement prediction is used to ensure proper line splitting
when necessary, giving correct data representation.

This paper is structured as follows. Section 2 describes
polygonal environment exploration algorithm. Section 3 de-
scribes initial guess and methods for eliminating impossible
line estimations. Section 4 describes line fitting algorithm
along with methods for line splitting and merging. The ex-
periments in Section 5 demonstrate achieved results.

II. POLYGONAL ENVIRONMENT EXPLORATION
ALGORITHM

When working with indoor office environment, it is easy to
use line segments for representing the environment. Therefore,
we choose the exploration algorithm of polygonal environment
since line segments can easily be connected to a polygon. A
planar polygon P is a sequence of at least three line segments
v0v1, v1v2, ..., vn−1v0, where the points v0, v1, ..., vn−1 are
coplanar.

We used polygonal environment exploration algorithm de-
scribed in [2]. Algorithm is written using robot with no
localisation uncertainty and with ideal laser sensor. Strategy
is based on the presence of discontinuities in the range
data. Such discontinuities are called jump edges. Jump edges
indicates possibly unexplored regions. When robot measures
in front of jump edges, new regions are explored. Lack of
jump edges indicates that environment had been explored.
Map is represented by polygonal representation, and at the
higher level graph representation is used for path planning,
called exploration graph. A candidate measurement position
is defined in front of each jump edge. Exploration graph
is composed of nodes, which correspond to measurement
positions, and edges which are defined between visible nodes1.

In [2] a criterion is proposed that satisfies completely explo-
ration of an environment within a finite number of measure-
ments, with no claim of being optimal. Since environment is a

1Two points in the space are said to be visible to each other, if the line
segment that connects them does not intersect any obstacles

priori unknown, heuristics is used to predict the amount of new
information obtained from a measurement. Next measurement
position is chosen from the exploration graph according to the
selection criterion, which is defined as:

C(n) =
gn
cn
, (1)

where gn is the gain value of node n defined by all jump
edges (je) visible form the node n and cn is the length of the
path between current measurement position and the node n.
The gain is defined as:

gn =
∑
i

αni, (2)

where αni is the angle at the node n in the triangle defined
by ith jump edge (jei) and the node n. This is illustrated
in Fig. 1. The node with the highest C value is selected as

current
measurement

position

Fig. 1. Selection criterion based on the gain values

the new measurement position. Let’s consider an environment
configuration described in Fig. 2, where laser range scan is
shown with shaded light blue colour and jump edges are shown
with red lines. According to original selection criterion, it can

Fig. 2. Jump edges and candidate measurement positions

happen that further candidate measurement position will be
selected rather than closer candidate measurement position to
the robot’s position and the part of the polygonal environment
will still remain unexplored. In such indoor environments with
a lot of doors, desks and passages, this situation could happen
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frequently, which will result in unsatisfactory too long robot’s
motion. The main reason for this occasion is the use of the
ratio between the gain value and the length of the path in the
selection criterion.

To prevent such situations, we changed the selection cri-
terion. Instead of using the ratio, we use the sum of two
functions. Since the gain value gn can maximally be 180◦

(see Fig. 1) and placing the measurement position should
not be too far from the jump edge due to the limit of the
sensor range, we have chosen to place measurement position
exactly at the midpoint of the jump edge with orientation
perpendicular to the jump edge. Therefore, there is no need
of using the gain value in the selection criterion. Instead,
we incorporate the length of the jump edge in the selection
criterion since it greatly determines the size of unexplored
environment. Fig. 2 shows candidate measurement positions
(green dots) in order to scan possible unexplored parts of
the environment. Orientations of the candidate measurement
positions are noted with small lines. The selection criterion is
defined as:

C(n) =
ln

Rmax
+
Rmax
cn

, (3)

where ln is the length of the jump edge at the node n and
Rmax is maximal sensor range. This form of the selection
criterion prefers equally longer jump edges and shorter paths
to the candidate measurement positions. Fig. 3 shows the robot
taking the next measurement scan from the best measurement
position according to the selection criterion and configuration
presented in Fig. 2. The following best measurement position

Fig. 3. The robot’s next scan from the best measurement position

is shown with green dashed line.
At every measurement position the algorithm transforms

range scan into sampled version of the visibility polygon [6].
Measurement polygon is created iteratively by adding new
polygons from the following measurement positions. Extended
exploration polygon is created by adding the jump edges to the
measurement polygon. Jump edge at the measurement position
is deleted from the extended exploration polygon. If extended
exploration polygon contains no jump edges, then it is equal
to faithful polygonal description PF .

In Fig. 4 simulation results of the exploration algorithm
is shown. Algorithm is implemented in Player/Stage2. Range

Fig. 4. Simulation results of polygonal environment exploration algorithm

sensor and position are almost ideal and, therefore, polygonal
map (blue lines) is completely aligned with the real map
(black dots) used in the simulator. The robot explores all parts
of environment it could reach in finite time. Its trajectory is
presented with red colour.

The used exploration algorithm assumes ideal laser range
sensor and no positional uncertainty. When faithful polygonal
description PF is obtained, the map consists of almost all
the raw sensor data samples that have been gathered. Our
contribution is in reducing noise effects on map representation
and reducing number of lines.

III. INITIAL LINE SEGMENT ESTIMATION

This step is initial estimation of the line segment and
it is necessary for further iterative solution of non-linear
optimisation problem. The range data from a measurement
position is first sorted into subsets of roughly collinear points
using the Hough Transform.

We use weighted line fitting algorithm based on Hough
transform described in [8] and [9] with certain improve-
ments. We use probabilistic Hough transform (PHT) with
post processing, instead of standard Hough transform (SHT).
Only a fraction of points is used by PHT, thus amount of
computation time needed to detect lines is minimised. PHT
also estimates less false positive and false negative lines than
SHT, as stated in [4]. However PHT does not take noise and
uncertainty into account when estimating the line parameters.
As a consequence it is possible to get higher number of line
segments than necessary from single scan e.g (two partially
overlapping line segments instead of one line segment). It is
also possible to get impossible line positions (e.g intersecting
line segments or partially overlapping line segments) if too fine
initial discretization is chosen. Various methods for merging
partially overlapping and fully overlapping segments were
proposed in [12]. To maintain statistically sound method, we
detect such lines and group points around them, as seen in
Fig. 5. It is then possible to detect dominant line and proceed
with statistically sound linefit algorithm using points grouped
around that line. Afterwards we remove grouped points, and
proceed with new set of points as input to PHT.

2a free software tool for robot and sensor applications,
www.playerstage.sourceforge.net
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Fig. 5. Examples of candidate lines to be grouped together

IV. WEIGHTED LINE FITTING ALGORITHM

As mentioned before, line fitting algorithm and its derivation
is fully described in [7],[8],[9]. Here we will only introduce
laser range sensor model and line representation, and provide
formulas for line estimation, line covariance estimation, and
line merging using chi-squared test.

We use laser range sensor that measures range in 361
directions from the

−π
2

to
π

2
. Let the range measurement d̂k

be comprised of the true range dk and an additive noise term
εd:

d̂k = dk + εd. (4)

Also, let the scan angle Θ̂k be comprised of the true scan
angle Θk and an additive noise term εΘ:

Θ̂k = Θk + εΘ. (5)

The set of n points from the single measurement position is
denoted as ûk, where k = 1...n. Therefore, kth measurement
point in the robot’s local reference frame is given as:

ûk = (dk + εd)
[

cos(Θk + εΘ)
sin(Θk + εΘ)

]
. (6)

Let assume that all noise terms are zero-mean Gaussian ran-
dom variable. There, εd has variance σ2

d and εΘ has variance
σ2

Θ. For practical computation, we can use Θ̂k and d̂k as a
good estimates for the quantities Θk and dk.

Infinite line in polar form is represented as follows:

L =
[
ρ
α

]
(7)

Line parameters are obtained by well known Weighted Least
Square algorithm:

ρ = Pρρ(
n∑
k

P−1
k ) (8)

Iterative solution for α is suggested as α = α̂+ δα:

δα = −
∑n
k=1(Pka

′
k−akb

′
k

(Pk)2 )∑n
k=1

(a′′
kPk−akb′′k )Pk−2(a′

kPk−akb′k)b′k)

(Pk)3

, (9)

with:
sk = sin(α̂−Θk)
ck = cos(α̂−Θk)

ak = (dkck − ρ̂)2

a′k = −2dksk(dkck − ρ̂)
a′′k = 2d2

ks
2
k − 2dkck(dkck − ρ̂)

b′k = 2(d2
kσ

2
Θ − σ2

d)(cksk)
b′′k = 2(d2

kσ
2
Θ − σ2

d)(c2k − s2
k),

(10)

where Pk is described with Eq. (15). The covariance of the
line position is:

PL =
[

E
[
ε2α
]

E [εαερ]
E [εαερ] E

[
ε2ρ
] ]

=
[
Pρρ Pρα
Pαρ Pαα

]
, (11)

with:
Pρρ =

1∑N
k=1 P

−1
k

, (12)

Pαα =
1∑N

k=1
δΨ2

k

Pk

, (13)

Pρα = −PααPρρ
N∑
k=1

δΨk

Pk
, (14)

with Pk and δΨk defined as follows:

Pk = σ2
d cos2(α̂−Θk) + σ2

Θd
2
k sin2(α̂−Θk), (15)

δΨk = dk sin(α̂− Θ̂k)−
∑n
k=1

Ψk

Pk∑n
k=1

1
Pk

. (16)

After detecting infinite lines, line segments are retrieved by
trimming infinite lines at extreme endpoints. Line segment
representation with common infinite line and arbitrary even
number of points is used. Extreme endpoints are detected if
distance between two points is larger than some threshold.
Our contribution is to dynamically calculate that threshold (l1)
using measurement prediction. Measurement prediction and
line segment representation mentioned above is used to detect
doorways and similar features, as shown in Fig. 6. Furthermore
we introduce another threeshold (l2) for eliminating points that
belongs to some other line segment.

Method for estimating distance between two measurement
points is proposed in [10]. However we take into account
modeled laser range noise when predicting next measurement:

Θ̃k = Θk ± 5σΘ

x̂ =
(ρ± 5σdk

)
cos(α) + sin(α) tan(Θ̃k)

(17)

ŷ = x tan(Θ̃k),

where x̂, ŷ are Cartesian coordinates of estimated measure-
ment.

Ideal prediction is made along with modeled noise predic-
tion for all combinations of ± sign to get maximal and min-
imal expected distance between two measurements. Minimal
allowed distance allows detecting points that do not belong to
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x

y

Actual measurement

Closest point to measurement point

Ideal measurement prediction

Point with maximum distance from measurement

Fig. 6. Line segments sharing infinite line separated by measurement
prediction

Fig. 7. Measurement prediction based on actual measurement

the proposed line. Ideal measurement prediction is shown in
Fig. 7.

After estimating line segments it is possible to further
compress data by merging sufficiently similar line segments. If
two lines are not taken from the same pose, it is first necessary
to transform lines and covariance matrices as described in the
following.

Lets consider line Li = [αi ρi] taken from local reference
frame i represented by gi = (xi, yi, φi). It is possible to
transform line into global reference frame g0. Line in global
reference frame is represented as L0 :

L0 =
[
α0

ρ0

]
=
[
αi + φi
ρi + δρi

]
, (18)

where :

δρi = xi cos(αi + φi) + yi sin(αi + φi). (19)

Let’s consider line Li and its covariance matrix PLi taken at
pose gi with covariance matrix Pgi

. It is possible to transform
covariance matrix as follows:

PL0 = KiPLiK
T
i +HiPgi

HT
i , (20)

where:

Ki =
[

0 0 1
cos(αi + φ) sin(αi + φ) 0

]
, (21)

H =
[

1 0
δΨ 1

]
, (22)

δΨ = yi cos(αi + φi)− xi sin(αi + φi). (23)

To determine wether given pair of lines are sufficiently
similar to merge we use merge criterion based on Chi-Squared
test :

X2 = (δL)T (P iL1 + P iL2)−1(δL) < 3, (24)

where

δL = Li1 − Li2. (25)

If lines are sufficiently similar for merging, we compute
new underlying line estimate as follows:

Lim = P iLm((P iL1)−1L1
i + (P iL2)−1L2

i), (26)

P iLm = ((P iL1)−1 + (P iL2)−1)−1. (27)

V. RESULTS

Algorithms are tested on mobile robot Pioneer 3DX in
a small part of the environment. Mapping algorithms are
compared under the same conditions. In Fig. 8 results obtained
from single range scan data are presented. In Fig. 9 results

Fig. 8. Two pose single scan results.

from ten poses are brought to common reference frame.
In Fig. 10 the result of the exploration algorithm is shown.

The robot explores all parts of environment it could reach
in finite time. Its trajectory is presented with red colour.
Polygonal map is presented with blue lines and partially
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Fig. 9. Fit lines from several poses in common reference frame. Nonmodeled
uncertainty (left) and modeled uncertainty (right)

Fig. 10. Experimental results of polygonal environment exploration algorithm
- Polygonal map representation

known map used for evaluation of the results is presented
with black dots. The map consists of almost all the raw
sensor data samples that have been gathered. It is a noisy
map representation due to real sensor noise and localisation
uncertainty.

Improvement in reducing noise effects on map representa-
tion and reducing number of lines is obvious in Fig. 11. After

Fig. 11. Experimental results of polygonal environment exploration algorithm
- Line fitted map representation

linefit algorithm without grouping points around similar lines
and merging part we retrieved 886 lines from 21960 raw data
points. After grouping points around similar lines we retrieved
416 fit lines. After merging similar lines we retrieved 545 lines,

and by combining these two methods we retrieved 324 lines.
We achieved compression of 97.05%. Further compression is
possible but it would result in loosing information of empty
space between objects which we prevented by measurement
prediction. However, it is worth mentioning that further com-
pression could probably been achieved if environment had less
nonpolygonal obstacles. There was a table, a flower, some
boxes and some chairs to block access to stairways which are
not drawn on map on simulator.

VI. CONCLUSION AND FUTURE WORK

In this paper we combined two methods to achieve complete
exploration and mapping solution: Ekman’s exploration strat-
egy and Pfister’s weighted line fit algorithm. We improved
convergence of the exploration strategy and produce accu-
rately fitted line map based on modelled sensor and position
uncertainty. The algorithms were experimentally tested and
compared under the same conditions. In future work we will
consider further simplifying line fit by doing measurement
prediction at scan positions to eliminate “invisible” lines. By
connecting endpoints as a final step we would turn line fit map
into polygonal map for exploration algorithm.
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