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Abstract. Converters with pulse width modulation are used for connections between the 
DC and AC networks, e.g. in uninterrupted power supply systems, AC electromotor 
drives, for powering induction furnaces, in audio technique. Spectrum of signals sampled 
by pulse amplitude modulation and output voltage spectrum of the converter with pulse 
width modulation have similar properties. Spectrum of signals sampled by pulse 
amplitude modulation contains a harmonic of frequency equal to the frequency of the 
modulating signal and the harmonics of frequencies equal to the sum of frequency of the 
modulating signal and multiples of the sampling frequency. The output voltage spectrum 
of the converter with bipolar pulse width modulation contains harmonic of frequency 
equal to the frequency of the modulating signal and harmonics of frequencies equal to 
sum of the frequency of the modulating signal and multiples of the frequency of the 
carrier signal. It also contains harmonics of frequencies equal to the sum of the multiples 
of the frequency of the modulating signal and the multiples of the carrier signal. The 
comparison analysis was carried out for the harmonics of the output voltage of the 
converter with bipolar pulse width modulation in time domain. The dependency of the 
amplitudes and frequency spectre on the wave forms of the carrier signal and modulating 
signal was shown. Similarity of the output voltage spectrum of the converter and signal 
spectrum sampled by the pulse width modulation was also shown.  

 
Keywords. output voltage converter with bipolar pulse width modulation, spectral 
analysis, Fourier series, carrier signal, reference signal.  

 

 

 

INTRODUCTION 
 

In [1] voltage spectrum calculation was carried out for the pulse width modulation converter (PWM-              
-converter) using the Fourier transformation for a two variable function (double variable controlled 
waveform Fourier series).  
 
The calculation was performed by splitting of the voltage waveform into a Fourier series and by calculating 
the series coefficients, assuming a periodical voltage. The periodical voltage is essential for the foregoing 
applications.  
 
A periodical signal with period T0 can be represented by Fourier series in trigonometric or in complex form. 
Trigonometric form of Fourier series is: 
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Complex form of Fourier series is: 
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If it can be assumed that the function g(t) is square integrable over the interval 
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ak, bk and ck are: 
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As an example a spectral calculation was carried out for the reference signal of the sinusoidal waveform 
sampled by pulse amplitude modulation.  
 
Sampling of a signal by a series of the Dirac delta-functions gives the signal value (amplitude) for the 
moments of sampling. Sampling of a signal with pulse amplitude modulation can be mathematically 
modelled as a product of the modulating signal and carrier signal.  
 
Sampling of a signal with pulse width modulation gives the median value signal for the sampling period by 
the ratio of durations of individual positive and negative pulses. Sampling of a signal with pulse width 
modulation can be mathematically modelled as a sign function of the difference between the modulating 
signal and the carrier signal.  
 
Fig. 1. a) shows a block diagram of the sampling model for the sinusoidal signal by pulse amplitude 
modulation, and Fig. 1. b) shows a block diagram of the sampling model of the sinusoidal signal by pulse 
width modulation.  
 
Modulation of the reference signal is, according to [2], carried out because the form of the modulated signal 
is suitable for transmission through the individual medium.  
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Fig. 1. Reference signal (modulating), carrier signal (transmitting signal) and modulated signal (sampled) 
  

The Fourier series for the signal modulated by pulse amplitude modulation is calculated as a product of the 
modulating signal Fourier series and the carrier signal Fourier series. The first step in the modulated signal 
spectrum calculation is calculation of the coefficients separation for the carrier signal into a Fourier series.  
The Fourier series in the complex form of Dirac delta-function δS(t) is: 
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Fourier series in complex form of the reference signal fr(t) = sin(ωr·t) is: 
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The coefficients of the complex form Fourier series (8) are 1 and –1. 
The complex form Fourier series of the sinusoidal waveform signal sampled by pulse amplitude modulation 
is: 
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For the purpose of the expression (9) in trigonometric form, the real and imaginary parts of the coefficients 
in (9) must be separated. Real parts in both sums are zero, and the imaginary parts are –1 and 1. According 

to (6) it follows that ( )kkk bac ⋅−⋅= j
2

1
 and according to (1), (9) in the trigonometric form: 
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The spectrum of the pulse amplitude modulation sampled signal is represented as a periodical spectrum of 
the sampled signal, with the period equal to the sampling period. 
 
 

1. BIPOLAR PULSE WIDTH MODULATION FOR THE TRIANGULAR CARRIER SIGNAL 

 
Spectral calculation was carried out for the harmonics of the modulated signal for the reference signal of a 
cosine waveform for the bipolar method of pulse width modulation. The calculation was carried out for the 
cosine waveform of the reference signal, since that form is the most often used for the applications listed in 
the Summary. The results of the spectral calculations for the modulated signal PWM-inverter were verified 
against the results of the calculations in [1]. 
 
The bipolar pulse width modulation is a two-level pulse width modulation, since the output voltage of the 
converter takes positive and negative values of the input voltage. For the interval where the reference signal 
is higher than the carrier signal the converter output voltage is positive, and in the interval where the 
reference signal is lower than the carrier signal the converter output voltage is negative.  
 
Fig. 2. a) shows the comparison of the reference signal fr(t) and the carrier signal fN(t), and Fig. 2. b) shows 
the modulated signal frm(t).  

 
 

Fig. 2. Comparison of the carrier signal fn(t) and the reference signal fr(t) and the modulated signal frm(t) 
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The voltage waveform of the converter is equal to the waveform of the modulated signal. Time tS is the time 
shift of the carrier signal, and time tr is the time shift of the reference signal. TS is the period of the carrier 
signal, Tr is the period of the reference signal. It is assumed that the phase shifts of the reference signal and 
the carrier signal are equal and that the ratio of TS and Tr is an integer number. If the ratio of TS and Tr is not 
an integer number, the modulated signal is not periodical and the Fourier transformation must be used 
instead of the Fourier series.  
 
The amplitudes of the reference signal and the carrier signal are taken to have value of 1, for the sake of 
simpler calculations of the Fourier series coefficients. The reference signal amplitude can take any value in 
the interval of [ ]N,0 A , where AN is the amplitude of the carrier signal. 

Waveform of the modulated signal, as shown in Fig. 3. b), is periodical with the period of the reference 
signal Tr. Signal frm(t) in Fig. 3. a) can be represented as the sum of l signals frm(t)(1), ..., frm(t)(l), shown in 

Fig. 3. b) – 3. d), where 
S

r

T

T
l = . Fourier series of the signal in Fig. 3. a) can be represented as the sum of l 

Fourier series of the signals frm(t)(1), ..., frm(t)(l) in Fig. 3. b) – 3. d).  
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Fig. 3. Parts of a modulated reference signal 
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The coefficients ck of the signal frm(t)(1) of the complex form Fourier series is calculated according to (6). 
The integration boundaries are the crossing points of the reference signal and the carrier signal, i.e. solutions 
for the system of two equations: equations for the carrier signal and the reference signal. Periods T0 from (6) 
do not have to be equal, since the waveform signal in Fig. 3. a) consists of two periods: TS and Tr. If the 
integration limits are the solutions for the carrier signal equation, the exponent periods from (6) and (2) are 
TS. If the integration limits are the solutions of the reference signal equations, the exponent periods from (6) 
and (2) are Tr. Period T0 from (6) is the period of the signal in the Fig. 3. b) Tr for any form of solution of the 
equation system.   
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The signal time shift frm(t)(i) and frm(t)(i+1) is TS. The coefficient ck(i) of the signal frm(t)(i) is: 
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ck(i) in (12) are functions depending on the waveform of the reference signal fr(t). The coefficients ck of the 
modulated reference signal are the sum of l coefficients ck(i): 
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If it is assumed that the reference signal is fr(t – tr) = cos(ωr·(t – tr)), for comparison of the results with the 
results in u [1], the coefficients ck are: 
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Where Θr, a product of tr and ωr, is the phase shift of the reference signal, and ΘS, a product of tS and ωS, is 
the phase shift of the carrier signal. Jn are Bessel functions of the first kind of the n-th order, and fr is the 
frequency of the reference signal.  
 
c0 is calculated by applying the L'Hospital rule, due to zeros in the numerator and denominator of the 
fraction of ck after insertion of k = 0 and integer n in (14). Instead of calculating ck for all cases of the integer 
n and k = 0, a0 can be calculated according to (3), after representing the Fourier series in trigonometric form.  
 
By inserting (14) into (2) the modulated signal can be represented as the Fourier series in complex form: 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )Ssrr

rrS

srrrrS

jj

0

jj
0

j

0

j2
j

j2
jj

0rm

2
sinj

2
cos

2
sinj

2
cos

2

1

j

1

2

1

j

1
)(

Θ⋅−⋅⋅⋅⋅−⋅⋅⋅−

−∞=

≠
−∞=

⋅−⋅⋅⋅
∞

−∞=

Θ⋅⋅

⋅⋅⋅
−∞=

≠
−∞=

⋅−⋅⋅⋅−⋅−⋅⋅−⋅⋅⋅⋅−⋅∞

−∞=

Θ⋅⋅−

⋅




⋅














 ⋅−⋅−






 ⋅−−





−⋅














 ⋅−⋅+






 ⋅−⋅






 ⋅⋅⋅⋅
⋅

+=

=⋅












⋅−⋅⋅







 ⋅⋅⋅⋅
⋅

+=

∑ ∑

∑ ∑

ktkΘntn

k

k
k

Θntn

n

n
k

tk
k

k
k

Θntn
nk

Θntn
kn

n

n
k

eeknkn

eknknkJ
k

ec

eeeeekJ
k

ectf

ωω

ω

ωω
π

ω
π

ππ

πππ
π

π
π

 (15) 

 
(15) can be written as: 
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The sine is an odd and the cosine is an even function. The following applies: 
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It can be written: 
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Resolution of real and imaginary parts of the coefficients in (21) due to the expression (21) in the 
trigonometric form is carried out analogously to those in the section „Introduction“. The expression (21) in 
the trigonometric form is: 

 

( ) ( ) ( )[ ]∑ ∑
∞

=

∞

−∞=

Θ−⋅⋅+−⋅⋅⋅






 ⋅−⋅






 ⋅⋅
⋅

+=
1

Ssrr0rm cos
2

sin
2

4
)(

k n

n tkΘtnknkJ
k

atf ωω
ππ

π
 

(22) 

 
The coefficient a0 is calculated according to (3), analogously to calculation of the coefficients ck: 
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By insertion of (24) into (22) the modulated signal can be represented as: 

(25) 
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The Bessel function of the first order for the argument 
2

π
 is the form:  
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By growth of order of the Bessel function n, its value decreases exponentially. The Bessel function of the 
ninth order is by five orders of magnitude smaller in comparison to the Bessel function of the first and the 
second order, for the same argument. In [1] the amounts for the Bessel function for 9>n  are neglected. 

 
The harmonics of the modulated signal are shown in the Fig. 4., for the frequency of the carrier signal fS = 
2000 Hz and the frequency of the reference signal of fr = 50 Hz. The frequency of the carrier signal is 
dominant in comparison to the frequency of the reference signal and the harmonics k ≠ 0 and n ≠ 0 from (13) 
are repeated every k·fS, as in the Fig. 4.  
 
Harmonics for k ≠ 0 and n ≠ 0 are called carrier and sideband harmonics in [1]. Carrier and sideband 
harmonics are a consequence of two frequencies contained in the waveform of the voltage of the PWM-
converter frequency of the modulating signal and carrier signal.  
 

 
Fig. 4. Amplitude - frequency properties of the PWM-converter output voltage in the case of the triangular 

carrier signal 
 
 

EDPE 2009, October 12-14, 2009, Dubrovnik, Croatia



2. BIPOLAR PULSE WIDTH MODULATION IN THE CASE OF SAWTOOTH CARRIER 

SIGNAL 

 
The calculation of the Fourier series for modulated signal by bipolar pulse width modulation in the case of a 
sawtooth carrier signal waveform was carried out in the same manner as in the section for the bipolar 
modulation of the pulse width in the case of triangular carrier signal waveform.  
 
Coefficients ck(i) for the modulated signal Fourier series frm(t) are: 
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Coefficients ck are: 
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The coefficient c0 has a zero in the numerator and denominator and is calculated by applying the L'Hospital 
rule. Instead of calculating the coefficient c0, the coefficient a0 can be calculated according to (3), after the 
Fourier series is represented in trigonometric form.By inserting (28) into (2) the modulated signal it can be 
represented as a Fourier series in complex form: 
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(29) 

 
Representation of the Fourier series in trigonometric form is done analogously to the case of the triangular 
carrier signal. Coefficient a0(i) is: 
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Coefficient a0 is: 
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The modulated signal represented as a Fourier series in trigonometric form is:  
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(32) 

 
Spectrum of the modulated signal sampled by pulse width modulation in case of a sawtooth carrier signal 
differs from the spectrum of the modulated signal sampled by a triangular carrier signal in the contents of 
the accompanying harmonics. This is a consequence of changed integration boundaries while calculating 
Fourier series’ coefficients ck.  
 

As well as in the case of pulse width modulated with a triangular carrier signal, harmonics of the modulated 
signal have a frequency equal to the sum of the multiples of the frequency of the carrier signal and the 
multiples of the reference signal.  
 
 

CONCLUSION 

 
The analysis of the frequency harmonics of the converter output voltage with the bipolar pulse width 
modulation was carried out in time domain. The applied calculation method for the spectrum is performed 
without a need to know the double variable controlled waveform Fourier series. Changing the boundaries of 
integration while calculating the members of the Fourier series applies to the procedure for calculation of the 
frequency spectrum for any form of the carrier signal and the reference signal. It was demonstrated that the 
signal spectrum sampled by various forms of the carrier signals differ in the contents of the carrier and 
sideband harmonics. Appearance of the carrier and sideband harmonics in the output voltage spectrum of the 
converter is the result of two frequencies contained in the waveform of the converter voltage. 
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