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ABSTRACT 
 

Independent component analysis (ICA) has been widely used for hyperspectral image classification in an 
unsupervised fashion. It is assumed that classes are statistically mutual independent. In practice, this assumption may 
not be true. In this paper, we apply dependent component analysis (DCA) to unsupervised classification, which does 
not require the class independency. The basic idea of our DCA approaches is to find a transform that can improve the 
class independency but leave the basis mixing matrix unchanged; thus, an original ICA method can be employed to the 
transformed data where classes are less statistically dependent. Linear transforms that possess such a required 
invariance property and generate less dependent sources include: high-pass filtering, innovation, and wavelet 
transforms. These three transforms correspond to three different DCA algorithms, which will be investigated in this 
paper. Preliminary results show that the DCA algorithms can slightly improve the classification accuracy. 
 
Keywords: Dependent Component Analysis. Independent Component Analysis. Hyperspectral Imagery. 
Classification.  

 

1. INTRODUCTION 
 

In many real applications of remote sensing image classification, it may be very difficult or even impossible to get 
prior information about class signatures. So unsupervised methods have to be applied. The spatial resolution of remote 
sensing imagery is relatively rough, and the area covered by a single pixel is quite large. In general, there are several 
different materials resident in this area. So we have to deal with mixed pixels instead of pure pixels as in conventional 
digital image processing. Linear spectral unmixing analysis is a popularly used approach to handle mixed pixels, which 
assumes the pixel reflectance is the linear mixture of all the materials resident in the area covered by this pixel. Let L 
be the number of spectral bands and r a column pixel vector with dimension L in a hyperspectral image. An element ri 
in the r is the reflectance collected at the i-th band. Let M denote a matrix containing p independent material spectral 

signatures (endmembers), i.e., ],,,[ 21 pmmmM  . Let  be the unknown abundance column vector of size 1p  

associated with M, which is unknown and to be estimated. The i-th item i  in  represents the abundance fraction of 

im  in pixel r. According to the linear mixture model,  

 nMαr   (1) 

where n is the noise term. When M is known, the estimation of  can be accomplished by least squares approaches. 
But when M is also unknown, i.e., unsupervised analysis, the task is much more challenging since both M and  need 
to be estimated. This can be considered as a blind source separation problem. 
 

Independent component analysis (ICA) is a powerful tool for unsupervised classification, which has been 
successfully applied to blind source separation.1 Its basic idea is to decompose a set of multivariate signals into a base 
of statistically independent sources with the minimal loss of information content so as to achieve detection and 
classification. The standard linear ICA-based data model with additive noise is 



                                                                                                                                                                                                                                                          

  

 vAsu   (2) 

where u  is an L dimensional data vector, A  is an unknown mixing matrix, and s  is an unknown source signal vector. 
Three assumptions are made on the unknown source signals s: 1) each source signal is an independent identically 
distributed (i.i.d.) stationary random process; 2) the source signals are statistically independent at any time; and 3) at 
most one among the source signals has Gaussian distribution. The mixing matrix A although unknown is also assumed 
to be non-singular. Then the solution to the blind source separation problem is obtained with the scale and permutation 
indeterminacy, i.e., PΛWAQ  , where W represents the unmixing matrix, P is a generalized permutation matrix, 

and  is a diagonal matrix. These requirements ensure the existence and uniqueness of the solution to the blind source 
separation problem (except for ordering, sign, and scaling). Comparing to many conventional techniques, which use up 
to the second order statistics only, ICA exploits high order statistics that makes it a more powerful method in extracting 
irregular features in the data. 
 

Several researchers have explored the ICA to remote sensing image classification.2-5 In general, when we intend to 
apply the ICA approach to classify optical multispectral/hyperspectral images, the linear mixture model in Eq. (1) 
needs to be reinterpreted so as to fit in the ICA model in Eq. (2). Specifically, the pixel vector r is denoted as u in Eq. 
(2), the noise term n is denoted as v in Eq. (2), the endmember matrix M in Eq. (1) corresponds to the unknown mixing 
matrix A in Eq. (2), and abundance fractions in  in Eq. (1) correspond to source signals in s in Eq. (2). Moreover, the 
abundance fractions are considered as unknown random quantities specified by random signal sources in ICA model 
(2) rather than unknown deterministic quantities as assumed in the linear mixture mode (1). With these interpretations 
and abovementioned assumptions, we will use the model (2) to replace model (1) thereafter. The advantages offered by 
using model (2) in remote sensing image classification are: 1) no prior knowledge of the endmembers in the mixing 
process is required; 2) the spectral variability of the endmembers can be accommodated by the unknown mixing matrix 
A since the source signals are considered as scalar and random quantities; and 3) higher order statistics can be 
exploited for better feature extraction and pattern classification. 
 

However, it has been argued that the assumption of source independence may not be true in many situations. For 
instance, endmembers may be correlated spatially and spectrally. Thus, in this paper, we will propose the use of 
dependent component analysis (DCA) for image restoration, which does not require that the sources are independent. 
The experimental result demonstrates that DCA outperforms ICA under this circumstance.  
 

2. Derivation of DCA algorithms 
 

Very few papers in the literature discuss the problem of DCA.6  Here we adopt some previous studies conducted in 
[7][8]. The basic idea is to find a transform T that can improve the statistical independence between the sources but 
leave the basis matrix unchanged, i.e.,  

      SAASG TTT  . (3) 

Because the sources in this new representation space will be less statistically dependent, any standard ICA algorithm, 
such as FastICA, derived for the original blind source separation problem can be used to learn the basis matrix A. Once 
the basis matrix A is estimated, the sources S can recovered by applying the inverse of A on the multi-frame image G 
in (2). 

 
Linear transforms that possess such a required invariance property and generate less dependent sources in the new 

representation space include: 1) high-pass filtering, 2) innovation, and 3) wavelet transforms. These three transforms 
correspond to three different DCA algorithms, which are described as follows. 

 
High-pass filtering (HP) 

 
A high-pass filter, such as the Butterworth high-pass filter, is applied to preprocess the observed signals G and 

then apply a standard ICA algorithm, such as JADE, on the filtered data in order to learn the mixing matrix A. This is 
motivated by the fact that high-pass filtered signals are usually more independent than original signals that include low 
frequency components.  Meanwhile, this approach is computationally very efficient, making it attractive for DCA 



                                                                                                                                                                                                                                                          

  

problems with statistically dependent sources.  In this case the transform T in Eq. (3) is the high-pass filtering operator 
that can be seen as a special case of the filter bank approach.9-10 

 
Innovation (IN) 

 
Another computationally very efficient approach to solve the blind separation of statistically dependent sources is 

based on the use of innovation. The arguments for using innovation are that they are usually more independent from 
each other and more non-Gaussian than original processes.11 The innovation process is referred to as prediction error 12, 
which is defined as:  

       Mmirsbrsre m

l

i

imm ,,1   ,
1

 


 (4) 

where sm(r i) is the i-th sample of a source process sm(r) at location (r i) and b’s are prediction coefficients. em(r) 
represents the new information that sm(r) has but is not contained in the past l samples. It is proved in [11] that if G and 

S follow the linear mixture model (2), their innovation processes GE  and SE  (in matrix form) follow the same model 

as well, i.e.,  
 SG AEE  . (5) 

In this case the transform T in Eq. (3) is the linear prediction operator. 
 
Subband decomposition independent component analysis (SDICA)  
 

The SDICA approach assumes that wideband source signals can be dependent but some of their narrowband sub-
components are less dependent.9-10  Thus, SDICA extends applicability of standard ICA through the relaxation of the 
independence assumption. In this case the transform T in Eq. (3) is any kind of the filter-bank-like transform used to 
implement the sub-band decomposition scheme. 

 
A wavelet transform-based approach to SDICA was developed in [8][13] to obtain adaptive subband 

decomposition of the wideband signals through the computationally efficient implementation in a form of iterative 
filter bank. Computationally efficient small cumulant-based approximation of mutual information is used for 
automated selection of the subband with the least dependent components, to which an ICA algorithm is applied. The 
potential disadvantage of this approach is high computational complexity if 2D wavelet transform is used for image 
decomposition. Hence, a reformulation can be accomplished based on dual tree complex wavelets.14 Dual tree complex 
wavelets are approximately computationally efficient as decimated wavelet packets but as accurate as the shift-
invariant wavelet packet approach.15-16 

 

3. EXPERIMENT 
 

The HYDICE Forest subimage scene of size 64128  shown in Figure 1(a) was collected in Maryland in 1995 

from a flight altitude of 10,000 ft with about 1.5 m spatial resolution. The spectral coverage is 0.4-2.5 m. The water 
absorption bands and low SNR bands were removed reducing the data dimensionality from 210 to 169. This scene 
includes 30 panels arranged in a 310  matrix. The three panels in the same row icibia ppp ,,  were made from the same 

material of sizes 3mm3  , m2m2  , and m1m1  , respectively, which can be considered as one class, iP . The 

ground truth map in Figure 1(b) shows the precise locations of the panel center pixels. These panel classes have very 
close spectral signatures, and it is difficult to discriminate them from each other. The total number of pure panel pixels 
is 38. 

 
FastICA method was chosen for ICA, and it was also used in DCA. Figures 2-5 show the classification result 

using FastICA, DCA (HP), DCA (IN), and DCA (SDICA), respectively. From visual inspection, all the results were 
comparable; there were some misclassifications between P2 and P4, P3 and P7 and P8, P4 and P6, P9 and P10. To 
quantify the performance, each classification map was normalized to [0 1] and converted to a binary map by changing 
a threshold  from 0.1 to 0.9. The accurately detected panel pixels were counted as ND and false alarm pixels as NF. 



                                                                                                                                                                                                                                                          

  

Table 1 lists ND and NF when  = 0.5. We can see that the values of ND were similar, but NFs from DCA approaches 
were smaller. 

 
Since ND is a non-decreasing function of NF and vice versa, we also counted the largest ND when NF = 0 and the 

smallest NF when ND = 38. For better performance, the former should be larger and the latter should be smaller. Table 2 
lists the largest ND when NF = 0. ICA, DCA (HP), DCA (IN), and DCA (SDICA) detected 16, 20, 23 and 18 out of 38 
panel pixels. By slightly decreasing the threshold , all the 38 pixels could be detected but the false alarm was not zero 
any more. Table 3 lists the smallest number of NF when all the 38 panel pixels were detected. The values of NF from 
the three DCA approaches were significantly lower than that from ICA. 

 
The three DCA approaches performed similarly. Overall, DCA (HP) provided slightly better result than the other 

two in this experiment. 
 

                                                                       
                                                                         1(a)                                              1(b) 

 

1(c)                                                     

Figure 1:   (a) A HYDICE image scene with 30 panel; (b) Spatial locations of 30 panels provided by ground truth; (c) 
spectral signatures of the 10 panel classes. 
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Figure 2: Classification result using ICA 
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Figure 3: Classification result from DCA (HP)



                                                                                                                                                                                                                                                          

  

                                            
                          P1                             P2                              P3                            P4                              P5 

 

                                            
                          P6                             P7                              P8                            P9                             P10 

 
Figure 4: Classification result from DCA (IN) 
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Figure 5: Classification result from DCA (SDICA)



                                                                                                                                                                                                                                                          

  

Table 1: Number of false alarm pixels (NF) and detected pixels (ND) when  = 0.5. 
 

# of Pure Pixels ICA DCA (HP) DCA (IN) DCA (SDICA) 

  ND NF ND NF ND NF ND NF 

P1 3 2 0 2 0 2 0 2 0 
P2 3 2 0 2 0 2 0 2 0 
P3 4 3 0 3 0 3 1 4 5 
P4 3 2 0 2 0 2 0 2 0 
P5 6 5 0 4 0 5 0 5 0 
P6 3 0 25 1 0 1 0 1 0 
P7 4 3 0 3 0 3 0 3 0 
P8 4 3 1 3 1 3 1 3 2 
P9 4 3 0 3 0 3 0 3 0 

P10 4 3 0 3 0 3 0 3 0 

Total 38 26 26 26 1 27 2 28 7 

 
 

Table 2: (Largest) Number of detected pixels (ND) when no false alarm exists (NF = 0). 
 

# of Pure Pixels ICA DCA (HP) DCA (IN) DCA (SDICA) 

  ND NF ND NF ND NF ND NF 

P1 3 2 0 2 0 2 0 2 0 
P2 3 1 0 1 0 1 0 1 0 
P3 4 1 0 3 0 3 0 3 0 
P4 3 1 0 1 0 1 0 1 0 
P5 6 3 0 1 0 4 0 1 0 
P6 3 0 0 1 0 1 0 1 0 
P7 4 3 0 3 0 3 0 3 0 
P8 4 2 0 2 0 2 0 2 0 
P9 4 2 0 3 0 3 0 3 0 

P10 4 1 0 3 0 3 0 1 0 

Total 38 16 0 20 0 23 0 18 0 

 
 

Table 3: (Smallest) Number of false alarm pixels (NF) when all target pixels are detected (ND = 38). 
 

# of Pure Pixels ICA DCA (HP) DCA (IN) DCA (SDICA) 

  ND NF ND NF ND NF ND NF 

P1 3 3 5 3 0 3 1 3 1 
P2 3 3 2670 3 1 3 11 3 7 
P3 4 4 7175 4 17 4 2074 4 4721 
P4 3 3 419 3 5 3 17 3 205 
P5 6 6 0 6 0 6 0 6 0 
P6 3 3 8086 3 0 3 0 3 0 
P7 4 4 6445 4 1261 4 2053 4 5223 
P8 4 4 61 4 6 4 82 4 15 
P9 4 4 812 4 0 4 4 4 13 

P10 4 4 119 4 3 4 5 4 5 

Total 38 38 25792 38 1293 38 4247 38 10190 

 



                                                                                                                                                                                                                                                          

  

4. CONCLUSION 
 

In this paper, we proposed DCA for unsupervised hyperspectral image classification. It finds a transform that can 
improve the statistical independence between the sources but leave the basis matrix unchanged, where an original ICA 
method can be applied. The preliminary result demonstrates that the three DCA approaches investigated can provide 
more accurately classification result than the original ICA. 
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