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MOVEMENT DISORDER - SHORT COMMUNICATION1

2 Single intracerebroventricular injection of botulinum toxin type A

3 produces slow onset and long-term memory impairment in rats

4 Zdravko Lacković Veseljka Rebić

5 Peter F. Riederer

6 Received: 24 March 2009 / Accepted: 27 July 2009
7 � Springer-Verlag 2009

8 Abstract It is generally believed that the cholinergic

9 system plays an important role in normal cognitive func-

10 tioning. Botulinum toxin is the most potent toxin of the

11 peripheral cholinergic system and today it is used in the

12 treatment of a variety of neurological disorders. However,

13 it is surprising that its effect on cognitive processes has

14 been investigated in only two publications. Short-term

15 effects of the central application of botulinum toxin (BTX)

16 type B have been associated with cognitive impairment in

17 animals, while results with type A are ambiguous. In the

18 present study, we have investigated the duration of memory

19 impairment after an intracerebroventricular administration

20 of BTX-A in rats. Two experiments were performed,

21 lasting 12 and 5 months, respectively. In both experiments,

22 the same dose of BTX-A was applied (2 U/kg) and the

23 Morris water maze test was used in the assessment of

24 memory performance. Results show that a single icv

25 injection of a small dose of BTX-A significantly impairs

26 the water maze performance. In both experiments,

27impairment was apparently of a slow onset and long lasting

28(up to 12 months). The length and pattern of attenuation

29suggest development of dementia-like deficits. In addition

30to providing a potentially new experimental model of

31memory impairment, these results question the idea of an

32intracranial application of BTX in the treatment of CNS

33disorders.

34

35Keywords Botulinum toxin �

36Botulinum toxin type A, cognitive impairment �

37Intracerebroventricular application �

38Morris water maze, rat, dementia

39Introduction

40The classic mechanism of the botulinum toxin (BTX)-type

41A action is cleavage of the synaptosomal associated protein

42of 25 kD (SNAP-25) which is required for vesicle docking

43and fusion with the plasma membrane. Accordingly, in the

44peripheral nervous system, BTX-A prevents acetylcholine

45release into the synaptic cleft (Kao et al. 1976; Bach-

46Rojecky et al. 2007).

47Cholinergic activity is considered to play an important

48role in animal and in human memory function. A sup-

49pressed cholinergic function impairs, and an enhanced one

50improves learning and memory (for review see Gold 2003).

51Moreover, a selective loss of cholinergic neurons in the

52brain of Alzheimer’s patients was already well documented

53decades ago (Davies and Maloney 1976). In line with that,

54cholinomimetics (cholinesterase inhibitors) are an accepted

55therapy in Alzheimer’s disease (Birks 2006). Accordingly,

56if the outcome of a centrally administered BTX is similar

57to the effects on the peripheral cholinergic nerves, cogni-

58tive impairment could be expected. Contrary to such
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59 expectations, some authors recently suggested that a central

60 administration of BTX A could be useful in the therapy of

61 seizures and several other CNS disorders (Bozzi et al.

62 2006; Verderio et al. 2007). Therefore, further investiga-

63 tion of the centrally applied BTX-A seems increasingly

64 important.

65 Here, we report that an icv application of small doses of

66 BTX A impairs hippocampal-dependent memory in rats,

67 tested with the standard version of the Morris water maze

68 (MWM) task. This effect was long lasting, possibly per-

69 manent and developed slowly after the BTX A application.

70 Methods

71 Animals

72 A total of 32 male Wistar rats (Zagreb University School of

73 Medicine, Zagreb, Croatia), 3-month-old and weighing

74 250–300 g at the beginning of treatment, were used in two

75 experiments. Additional 23 rats were used for preliminary

76 experiments in which dose dependency of BTX-A effects

77 was examined.

78 Rats were housed in standard transparent plastic cages,

79 in groups of four per cage, under standard animal room

80 conditions (free access to food and water, 12 light:12 dark

81 cycle, room temperature of 23�C). The experiments were

82 carried out between 09.00 and 18.00 hours. The experi-

83 ments were carried out according to the Croatian Act on

84 Animal Welfare (Narodne novine 19/1999). The Principles

85 of Laboratory Animal Care (NIH Publication No. 86-23,

86 1985) were followed. The experiments were approved by

87 the Ethical Committee of the Zagreb University School of

88 Medicine (permit No. 07-76/2005-43).

89 Drugs

90 Botulinum toxin type A (BOTOX�, Allergan, Inc., Irvine,

91 USA); containing per vial 100 U (*4.8 ng) of purified

92 Clostridium botulinum toxin type A. BTX-A was recon-

93 stituted in a 0.9% saline solution. In preliminary experi-

94 ments, BTX-A was used in doses of 0.5, 2 and 4 U/kg

95 (Table 1). All three doses had similar effect on the decline

96 of results in memory test, and only the dose of 2 U/kg was

97 employed in all further experiments. Chloral hydrate

98 (Sigma, St. Louis, MO, USA) was used for anaesthesia.

99 Drug administration

100 Rats were randomly divided into groups (5–6 per group in

101 Experiment 1, 10–11 per group in Experiment 2) and given

102 general anaesthesia (chloral hydrate 300 mg/kg, i.p), fol-

103 lowed by an icv injection of either saline as vehicle or

104selected BTX–saline solutions. An icv-injection of botu-

105linum toxin type A was applied bilaterally into the left and

106the right lateral ventricle, according to the procedure

107described by Noble et al. (1967). Drug concentration and

108solution volume were adjusted according to the animal

109body weight, and a volume of 4 lL per 300 g body weight

110was administered (2 lL/ventricle). The same procedure

111was applied for dose-dependent pre-screening.

112Acquisition of motor skills

113Motor learning was assessed using the Rotarod test. The

114apparatus consisted of a horizontal rod (7 cm in diameter,

11510 cm long), situated 30 cm above the landing platform.

116The animals were placed on the rod with their head

117directed against the direction of the rotation so they had to

118progress forward to maintain equilibrium. Duration of their

119holding without falling down was measured. The test was

120run up to 180 s.

121The rotarod test used acclimation sessions and training

122sessions. The acclimation sessions were performed over

123two consecutive days (one session per day). The training

Table 1 Time course of memory impairment for saline and BTX-A

icv treated rats

Time after injection

15 days 1 month 3 months

Saline injected

Mean 60,75 91,875 71,375

SE 4,283 6,634 7,969

N 8 8 8

BTX-A 0.5U

Mean 70,50 80,25 54,00

SE 4,787 6,909 9,958

N 4 4 4

BTX-A 2U

Mean 56,00 76,75 48,5

SE 7,012 11,736 7,577

N 4 4 4

BTX-A 4U

Mean 65,14 62,714 43,86

SE 7,731 8,909 5,152

N 7 7 7

Kruskall-Wallis test

Chi-square 3,154 4,653 7,507*

df 3 3 3

BTX-A was injected in doses of 0.5, 2 and 4 U/kg. Memory

impairment was assessed with the Morris water maze task. Results

present time spend in the goal quadrant (max 120 s) during a probe

trial for different periods of assessment (0.5, 1 and 3 months). The

mean difference was tested using Kruskal–Wallis test (*p\ 0.05)
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124 sessions started on the day following the last acclimation

125 session. Each (daily) training session consisted of four

126 trials with an inter-trial interval of 10 min. The training

127 sessions were performed over four consecutive days. This

128 assessment was part of Experiment 1 and was applied

129 6 months after the drug administration.

130 Spatial learning and memory tests

131 Spatial memory was evaluated in the hidden platform

132 version of the MWM task. Rats were required to learn

133 spatial location of a hidden platform in a square pool filled

134 with clear water (25�C). A circular transparent platform

135 (10 cm in diameter) was placed 1.5 cm below the water

136 surface in the middle of the northeast quadrant. There were

137 large high-contrast visual cues throughout the room and on

138 the pool walls.

139 The following MWM procedure was the same for all

140 experiments:

141 A rat was placed in the pool with its head facing the pool

142 wall. A different starting point was used for each trail in

143 pseudo-random order. If the rat did not find the platform

144 within 120 s, it was gently guided by hand to the platform.

145 When finding the platform, rats were allowed to remain

146 there for 30 s. For each point of testing, rats were trained in

147 this task for four consecutive days, performing block of

148 three trials per day. An inter-trial interval of 5–10 min was

149 given. On the fifth day, rats were given a retention probe

150 test in which the platform was removed from the quadrant.

151 For dose-dependent pre-screening, following procedure

152 matched one described for Experiment 1, except that test-

153 ing was done within 3 months and the cut-off time in probe

154 test was set at 120 s.

155 Experiment 1

156 No training in the task prior to drug administration was

157 conducted. The MWM performance was evaluated at day

158 15 after the surgery, 1 month after the surgery and from

159 that point once per month for 12 months in total. During a

160 probe trail (cut-off time 90 s), the total time each rat swam

161 in the former platform quadrant was recorded.

162 Experiment 2

163 Prior to drug administration all animals were trained in the

164 MWM task for 10 sessions (10 consecutive days), each

165 session consisting of three trials, following the general

166 procedure described above. At the end of the training

167 phase, all animals were able to find the platform within

168 10 s. After the training phase, animals were randomly

169 assigned to the control (saline-infusion) group (N = 11) or

170 the BTX-A-infusion group (N = 10), and an icv drug

171administration was conducted. Time period between the

172end of the training phase and the surgical procedure was

1732 days. The MWM performance was evaluated 3, 10, 20,

17430, 40, 60, 120, and 150 days after the BTX-A application.

175During a probe trail (cut-off time 60 s), the total time each

176rat swam in the former platform quadrant was recorded.

177A larger pool was used than in Experiment 1 (1.75 vs.

1781.2 m), so the absolute magnitudes of time spent in the goal

179quadrant were not comparable between the experiments.

180Statistics

181All values are expressed as the mean ± SE. In all three

182data sets (Rotarod test; MWM 1 and MWM 2), the

183Friedman test was used to analyse data in each group

184within the time course. Depending on data set character-

185istics, either the Kruskal–Wallis or the Mann–Whitney U

186test was used for comparison of the data among groups at

187the same time point. A p value less than 0.05 was con-

188sidered statistically significant.

189Results

190Dose-dependent pre-screening experiment

191To investigate weather BTX-A affects memory and pos-

192sible dose-dependency of such effects; a MWM task was

193assessed in four groups: (1) saline-treated; (2) BTX-A

1940.5 U/kg; (3) BTX-A 2 U/kg and (4) BTX-A 4 U/kg.

195During the probe test, the time rats spent swimming in the

196goal quadrant was recorded at multiple points: 0.5, 1 and

1973 months after the treatment. The Kruskal–Wallis test

198showed marginally significant difference in group perfor-

199mance for probe tests conducted 3 months post-treatment

200(p = 0.51), while differences on the probe tests conducted

201prior to that point were not significant (Table 1).

202Experiment 1

203Motor learning

204To examine whether the central administration of the BTX-A

205impairs acquisition of skilled behaviour, performance on the

206Rotarod test of the BTX-A- and the saline-treated rats was

207assessed. Results of four trials per training session were

208averaged and treated as one trial. The changes in performance

209over four training sessions, analysed with the Friedman test,

210were statistically significant both in the saline-injected group

211(v2 = 8.846, df = 3, p\ 0.05) and the BTX-A injected

212group (v2 = 14.455, df = 3, p\ 0.01). Differences in the

213groups’ performance were not statistically significant for any

214of the training sessions, as confirmedwith theKruskal–Wallis

Single icv injection of BTX-A produces slow onset and long-term memory impairment in rats
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215 test (vday1
2

= 0.409, df = 1, p [0.05; vday2
2

= 0.186, df= 1,

216 p[ 0.05; vday 3
2

= 0.001, df = 1, p[ 0.05; vday4
2

= 0.012,

217 df = 1, p[ 0.05).

218 Results show that both the BTX-A-injected and the

219 control rats were equally able to improve their Rotarod

220 performance, displaying continuous increase of time spent

221 walking on the rotating rod during the 4 days of training

222 sessions, as shown in Fig. 1.

223 MWM—no previous training

224 To investigate onset and duration of the BTX-A-induced

225 memory impairment, a MWM task was assessed and dur-

226 ing a probe test, the time rats spent swimming in the goal

227 quadrant was recorded at multiple points: day 15 after the

228 treatment and from that point once per month for

229 12 months in total. A clear trend of impaired performance

230 in the BTX-A group is notable in all probe trials (Fig. 2).

231 The Friedman test showed that changes in performance

232 within each group over the time course were not statisti-

233 cally significant, neither for the BTX-A (v2 = 13.555,

234 df = 12, p[ 0.05) nor the saline-injected group

235 (v2 = 13.872, df = 12, p[ 0.05;), i.e. results for each

236 group were stabile over time.

237 The groups’ performance on each of the multiple probe

238 trials was compared using the non-parametrical Mann–

239 Whitney U test. The between-group difference was con-

240 firmed statistically significant on the 2nd to 5th month of

241 testing, then on 8th and 10th to 12th month of testing

242(p\ 0.05). A marginally significant difference (p = 0.052)

243was found on the 1st month of testing, and performance at

244other time points (15th day, 6th, 7th, 9th month) was non-

245significant (p[ 0.05). Non-significant difference in some

246of the points of testing could be a result of random varia-

247tions, due to small number of animals per group and rel-

248atively high variability of tested behaviour. As random

249variations are inconsistently related to the true results of

250measurement, they should cancel themselves when results

251are aggregated over multiple data-points, resulting with

252significant difference in all aggregated time points.

253To test this hypothesis, four quartiles were calculated

254from the original data set, i.e. individual results for each

2553 months were averaged and treated as one. No changes in

256the amount of time that rats spend in the goal quadrant

257were found in any of the groups (Friedman test;

258vsaline
2

= 2.28, df = 3, p[ 0.05;; vbtx-A
2

= 2.80, df = 3,

259p[ 0.05) and group differences at all four quartile points

260were found significantly different (Kruskal–Wallis test;

261vquartile1
2

= 7.50, df = 1, p\ 0.01; vquartile2
2

= 4.03, df =

2621, p\ 0.05; vquartile3
2

= 7.50, df = 1, p\ 0.01; vquar-

263tile4
2
= 5.66, df = 1, p\ 0.05), showing impaired perfor-

264mance in the BTX-treated group.

265Experiment 2

266MWM—training in task prior to the treatment

267To examine whether an icv injection of BTX-A could

268affect retrieval of the previously learned spatial informa-

269tion, rats were trained in the MWM task prior to treatment.

270The MWM test was performed after the drug administra-

271tion. During a probe test, the time that rats spent swimming

272in the goal quadrant was recorded 3, 10, 20, 30, 60, 120 and

273150 days after the treatment (Fig 3). For the saline group,

Fig. 1 Results of the Rotarod test for the BTX-A-treated and the

control rats. Results present time spent on the rotating rod (max

180 s) during four daily trials. Results are presented as the

mean ± SEM, n = 5–6. Statistical analyses shows a significant

improvement of within groups’ performance over the training trials

(Friedman test), and no significant difference in between group

performance at any of the trials (Kruskal–Wallis test)

Fig. 2 Time course of the memory impairment after an icv-injection

of BTX-A (2 U/kg); assessed with the Morris water task, with no

training in task prior to the drug administration. Results present time

spent in the goal quadrant (max 90 s) during a probe trail for different

periods of assessment (15 days, 1–12 months). Results are presented

as the mean ± SEM, n = 5–6. The mean difference was tested using

the Mann–Whitney U test (**p\ 0.01; *p\ 0.05)
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274 the Friedman test showed no significant changes in per-

275 formance over time (v2 = 11.634, df = 1, p[ 0.05); but

276 for the BTX-A-injected group a decrease in performance

277 after 2nd month of testing was found (v2 = 15.165, df = 7,

278 p\ 0.05). The Kruskal–Wallis test showed significant

279 difference in group performance for probe tests conducted

280 on 2nd (v2 = 4.492, df = 1, p\ 0.05), 3rd (v2 = 4.576,

281 df = 1, p\ 0.05) and 5th (v2 = 11.148, df = 1, p\ 0.01)

282 month after the treatment, while group performance on the

283 probe test conducted prior to 2nd month after the treatment

284 were not significant (vday3
2

= 0.549, df = 1, p[ 0.05;

285 vday10
2

= 1.541, df = 1, p[ 0.05; vday20
2

= 0.013, df = 1,

286 p[ 0.05; vday30
2

= 0.150, df = 1, p[ 0.05;

287 vday40
2

= 0.245, df = 1, p[ 0.05).

288 Discussion

289 It is generally accepted that modulation of the central

290 cholinergic system influences cognitive function, primarily

291 attention processes and capacities (Everitt and Robbins

292 1997; Sarter and Bruno 1997), and consequently learning

293 and memory (Torres et al. 1994; Sarter et al. 2003).

294 One of the most frequently used laboratory tools for

295 investigating spatial memory in rats is the MWM task (for

296 review, see D’Hooge and De Deyn 2001). The standard

297 version of the MWM task requires an animal to learn to

298 escape from water onto a hidden platform, using distal

299 extra-maze cues to map the platform location. This spatial

300 version of the task is considered to be largely dependent on

301 the neuronal integrity of the hippocampus (Morris et al.

302 1986).

303Effects of central cholinergic system manipulations are

304extensively investigated using the MWM (for review, see

305Myhrer 2003). In general, impaired performance in the

306MWM task was related to a systemic administration of

307cholinergic antagonists (Miyamoto et al. 1989; Cozzolino

308et al. 1994; Fishkin et al. 1993; Puumala et al. 1996;

309Jackson and Soliman 1996; von Linstow Roloff et al.

3102007; Herrera-Morales et al. 2007), or icv infusions of

311toxic agents, such as cholinergic immunotoxin 192IgG-

312saporin (Nilsson et al. 1992; Leanza et al. 1995; Garcia-

313Alloza et al. 2006) and cholinergic neurotoxin AF64A

314(Opello et al. 1993). Surprisingly, however, botulinum

315toxin, usually assumed the most potent cholinergic neu-

316rotoxin, was investigated only sporadically. So far, only

317two studies on experimental animals addressed the effect

318of BTX on cognitive performance. The only experimental

319finding that indicates a long-term cognitive impairment

320after a central application of BTX was done with clini-

321cally less important BTX-B. Ando et al. (2002) found that

322entorhinal injections of BTX-B lead to an impaired per-

323formance on several memory tasks and a long-lasting

324reduction of LTP formation in aged rats. In a short-lasting

325experiment (9 days), Luvisetto et al. (2004) found that an

326intracerebroventricular (icv) injection of BTX-B and

327BTX-A (7.5 pg/animal) in mice is associated with

328impaired performance on the novel recognition test, but

329had no effect on the avoidance acquisition. Both studies

330indicate that the BTX-related cognitive impairment

331develops relatively shortly after the drug administration

332(1–2 weeks). Although different species, doses, types of

333BTX, mode of application as well as nature of cognitive

334test used do not allow direct comparison between those

335two studies, it is evident that the central administration of

336botulinum toxin in animals contributes to some sort of

337cognitive decline.

338In spite of these preclinical observations of potentially

339deleterious effects of the central administration of BTX,

340some authors recently suggested that centrally applied

341BTX A could be useful in therapy of seizures and some

342other CNS disorders (Bozzi et al. 2006; Verderio et al.

3432007).

344In this paper, we investigated duration and possible

345variations in the magnitude of cognitive deficit in rats after

346an icv application of the clinically most important BTX

347type A. In the preliminary experiment, the rats’ perfor-

348mance on the MWM test demonstrated that significant

349memory impairment after BTX-A icv application becomes

350statistically significant after 3 months (Table 1). Based on

351that observation, we decided for a long-term follow up. In

352that preliminary experiment, there was no difference

353among doses of 2 and 4 U/kg. Small number of animals

354might account for that. We did not investigate dose-

355dependent relations in more detail because a slow onset of

Fig. 3 Time course of the memory impairment after an icv-injection

of BTX-A (2 U/kg); assessed with the Morris water task, with the

training in task prior to the drug administration. Results present time

spent in the goal quadrant (max 60 s) during a probe trail for different

periods of assessment. Results are presented as the mean ± SEM,

n = 10–11. The mean difference was tested using the Kruskal–Wallis

test (**p\ 0.01; *p\ 0.05)

Single icv injection of BTX-A produces slow onset and long-term memory impairment in rats

123
Journal : Large 702 Dispatch : 5-8-2009 Pages : 8

Article No. : 285
h LE h TYPESET

MS Code : JNT-D-09-00069 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f

me
Highlight
LINE 275: change to df=7

me
Typewritten Text



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

356 the effect and its potentially long duration appeared more

357 intriguing.

358 In the follow-up experiment (Experiment 1), rats’ per-

359 formance on the MWM test was monitored for 12 months

360 after the drug administration. Results showed that a single

361 icv injection of 2 U/kg of BTX-A leads to impaired per-

362 formance. The effect lasted up to 12 months, with no sign

363 of recovery; and became significant between the 1st and

364 2nd month after the toxin administration. However, due to

365 the high intra-group variability and the fact that the

366 Friedman test did not show significant changes in perfor-

367 mance over time for neither group, we cannot exclude the

368 possibility that significant differences in performance

369 between the BTX-A- and the saline-injected rats could

370 exist prior to the observed ones (Fig. 2). Onset of memory

371 impairment between 1st and 2nd month seems especially

372 important because other BTX_A effects like muscle

373 weakness or antinociceptive effect become evident within

374 few days and after 2 months they are not visible any more.

375 (Aoki 2002; Bach-Rojecky et al. 2005).

376 Additionally, using the Rotarod test, we investigated the

377 effect of BTX-A on motor skill acquisition. Motor learning

378 is a model of procedural learning, which is known to lar-

379 gely depend on the basal ganglia (Salmon and Butters

380 1995). In spite of the important role of cholinergic nerves

381 in the central motor control performance, the Rotarod

382 performance was not affected by the employed dose of

383 BTX A (Fig. 1). Some research suggests that selective

384 ablation of cholinergic neurons in the striatum impairs

385 procedural learning only in reward-related tasks, but not in

386 simple motor tasks (Kitabatake et al. 2003) which could

387 account for our findings.

388 It is known that the pre-training in MWM can restore

389 impaired spatial performance in some cases (Gage 1985;

390 Handelmann and Olton 1981; Jarrad 1978). Accordingly, in

391 Experiment 2, we examined whether the pattern of BTX-A-

392 induced cognitive impairment would be the same if rats

393 were pre-operatively trained for the MWM task. Results

394 were very similar to those obtained in Experiment 1; a

395 decreased MWM performance in the BTX-A-treated group

396 was detected 2 months after the treatment, showing that

397 pre-training does not influence the pattern of the dementia-

398 like deficit in the BTX-A-treated rats as found in Experi-

399 ment 1.

400 Results of both experiments indicate a slow onset of

401 BTX-A-induced memory deficit, regardless of the amount

402 of pre-training to the task. A slow onset may be the reason

403 why the effects of the centrally induced BTX-A on cog-

404 nition were not reported more frequently.

405 This is the first report of long-term memory deficits

406 induced by the central administration of BTX-A. In the

407 neuromuscular junctions, BTX damages the function of

408 cholinergic nerve endings by cleavage of SNAP-25, which

409prevents release of acetylcholine (Jankovic 2004). For the

410reasons which are not completely understood, near non-

411functioning neuromuscular junctions, the sprouting of

412cholinergic nerve endings takes place (Meunier et al.

4132002). Accordingly, in interpreting our results, the first

414assumption could be that in the CNS, like at neuromuscular

415junctions, the function of cholinergic nerves is prevented,

416but if this were the case, we should expect cognitive deficit

417to be detectable much earlier. On the other hand, the lack

418of expected effects on motor performance cannot be

419explained by the difference in the distance of the basal

420ganglia and hippocampus from the cerebral ventricles into

421which the toxin was injected, but it could be a consequence

422of different vulnerability of cholinergic neurons depending

423on their length and myelinisation (Braak et al. 2006).

424However, slow onset of cognitive decline could hardly be

425explained with direct and acute loss of cholinergic func-

426tion. Highly speculative possibilities may be related to a

427misguided slow sprouting after damage of the axonal

428function. However, there is evidence that BTX does not

429only affect the release of acetylcholine but, at least in vitro,

430also some other neurotransmitters like glutamate, GABA,

431dopamine, serotonin, etc. (Ashton and Dolly 1988; Berg-

432quist et al. 2002; Verderio et al. 2007; Najib et al. 1999).

433Our results indicate that additional experiments are

434needed before central application of botulinum toxin type

435A could be recommended as therapy for different CNS

436diseases, as suggested by some authors (Bozzi et al. 2006;

437Verderio et al. 2007). Additionally, icv BTX-A application

438could be used as a new model of memory impairment. At

439present, there are several animal models of dementia, but

440none of them can completely reflect the complexity of the

441human disorder (McDonald and Overmier 1998).

442Although, at present, we cannot offer a complete expla-

443nation of the effects described here. Like some other

444models of animal dementia (Murray and Fibiger 1986; Itoh

445et al. 1997), the BTX-A icv model could also potentially be

446used in assessing the validity of therapeutic interventions

447with cholinergic drugs.

448Conclusion

449Previous research confirmed that BTX type A and type B

450affect cognitive processes in rats and mice. Prolonged

451duration of the effects was determined for BTX-B only.

452This is the first study confirming that an icv administration

453of BTX-A produces long-term damage of memory retrie-

454val. The effect is long-lasting, clearly detectable 2 months

455after the treatment, with no sign of recovery over a longer

456time period (1 year). These results, combined with recent

457evidence indicating an axonal transport of BTX-A after an

458unilateral hippocampal infusion (Antonucci et al. 2008),
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459 seriously compromise the idea of using botulinum toxin in

460 the treatment of CNS disorders, as it was recently sug-

461 gested (Verderio et al.2007; Donovan 2001, 2006; Dono-

462 van and Francis, 2008). On the other hand, the BTX-A-

463 induced cognitive deficit might be a new animal model for

464 research on memory impairment.
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123
Journal : Large 702 Dispatch : 5-8-2009 Pages : 8

Article No. : 285
h LE h TYPESET

MS Code : JNT-D-09-00069 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f




