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Abstract

Column-convex polygons were first counted by area several decades
ago, and the result was found to be a simple, rational, generating function.
The aim of our recent work (summarized in this paper) is to generalize that
result. Let a p-column polyomino be a polyomino whose columns can have
1, 2, . . . , p connected components. Then column-convex polygons are
equivalent to 1-convex polyominoes. The area generating function of even
the simplest generalisation, namely to 2-column polyominoes, is unlikely
to be solvable. We therefore define two classes of polyominoes which
interpolate between column-convex polygons and 2-column polyominoes.
We write down the area generating functions of those two classes and then
give an asymptotic analysis. The growth constants of the both classes are
greater than the growth constant of column-convex polyominoes.

1 Introduction

The enumeration of polyominoes is a topic of great interest to chemists, physi-
cists and combinatorialists alike [16]. In chemical terms, any polyomino (with
hexagonal cells) is a possible benzenoid hydrocarbon. In physics, determining
the number of n-celled polyominoes is related to the study of two-dimensional
percolation phenomena. In combinatorics, polyominoes are of interest in their
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own right because several polyomino models have mathematically appealing
exact solutions.

One very popular polyomino model is that of column-convex polygons 1.
We will consider two versions of column-convex polygons: the first composed
of square cells and the second of hexagonal cells. Both versions have a rational
area generating function. For the version with square cells, the area generat-
ing function was found independently by Pólya [15] in 1938 or 1969 and by
Temperley [17] in 1956. That was perhaps the earliest major result in poly-
omino enumeration. For the version with hexagonal cells, the area generating
function was found by Klarner in 1967 [14]. The growth constant of square-
celled column-convex polygons is µ = 3.205569 . . ., while the growth constant of
hexagonal-celled column-convex polygons is µ = 3.863130 . . . . (By the growth
constant we mean the limit limn→∞ n

√
an, where an denotes the number of n-

celled elements in a given set of polyominoes.) In both cases the area generating
function is a simple pole, so that an ∼ const. × λn.

There exist some models which are supersets of column-convex polygons
and are still solvable. Those models are called m-convex polygons [13], pru-
dent polygons [11], cheesy polyominoes [6], polyominoes with cheesy blocks [7],
column-subconvex polyominoes [9], and simplex-duplex polyominoes [8]. The for-
mer two models can be enumerated by perimeter and area, whereas the latter
four models have been enumerated only by area.

In this paper, we present two models: simple-p-column polyominoes and
column-subconvex polyominoes. In a simple-p-column polyomino, a column
may have 1, 2, . . . , p connected components. However, columns with more
than one component must not be adjacent to one another. In this paper we dis-
cuss the simplest version, simple-2-column polyominoes. In a column-subconvex
polyomino, a column (again) may have one or two connected components. Two-
component columns are allowed to be adjacent to one another, but the gap
within a two-component column must not be greater than m cells in size, where
m is a positive integer which we fix in advance. (If there were no other re-
quirements besides “a column may have one or two connected components”,
the model would still be too hard, i.e., not amenable to exact enumeration.)

Column-subconvex polyominoes are somewhat easier to deal with when cells
are hexagons than when cells are squares. Thus, we computed the area gener-
ating function for simple-2-column polyominoes with square cells and for m = 1
column-subconvex polyominoes with hexagonal cells. Both of those generat-
ing functions are complicated q-series. In our computations, we made use
of Bousquet-Mélou’s [3] and Svrtan’s [10] upgraded version of the Temperley
methodology [17].

The computations are rather long and intricate. Therefore in this paper the
detailed computations are omitted, and will be published elsewhere subsequently
[8, 9]. Preliminary versions can be found at [18].

1We distinguish between polygons and polyominoes in that the former cannot have internal
holes. As a consequence, the perimeter generating function for polygons has a non-zero radius
of convergence, whereas for polyominoes the radius of convergence is zero.
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In Section 2, we define the models. In Section 3, we immediately state the
formula for G(q, w), a generating function for simple-2-column polyominoes.
In Section 4, we discuss the asymptotic behaviour of G(q, w). In Section 5,
we give the formula for C1(q, x), a generating function for m = 1 column-
subconvex polyominoes on the hexagonal lattice. In Section 6, we discuss the
asymptotic behaviour of C1(q, x). In Section 7 we conclude, outlining further
work prompted by our results.

2 Definitions of the models

There are three regular tilings of the Euclidean plane, namely the triangular
tiling, the square tiling, and the hexagonal tiling. We adopt the convention
that every square or hexagonal tile has two horizontal edges. In a regular tiling,
a tile is often referred to as a cell. A plane figure P is a polyomino if P is a
union of finitely many cells and the interior of P is connected. Observe that, if
a union of hexagonal cells is connected, then it possesses a connected interior as
well, as a connected union of hexagonal tiles must be connected through shared
edges. Topologically, a connected union of square cells may be connected only
at a shared vertex. Such unions are forbidden by the definition of polyominoes
however.

Let P and Q be two polyominoes. We consider P and Q to be equal if and
only if there exists a translation f such that f(P ) = Q.

Given a polyomino P , it is useful to partition the cells of P according to
their horizontal projection. Each block of that partition is a column of P . Note
that a column of a polyomino is not necessarily a connected set. On the other
hand, it may happen that every column of a polyomino P is a connected set.
In this case, the polyomino P is a column-convex polygon. See Figure 1.

By a 2-column polyomino, we mean a polyomino in which columns with
three or more connected components are not allowed. Thus, each column of a
2-column polyomino has either one or two connected components.

A simple-2-column polyomino is such a 2-column polyomino in which con-
secutive two-component columns are not allowed. If c is a column of a simple-
2-column polyomino, and c is a (left or right) neighbour of a two-component
column, then c must be a one-component column. See Figures 2 and 4.

A polyomino P is a level m column-subconvex polyomino if the following
holds:

• P is a 2-column polyomino,

• if a column of P has two connected components, then the gap between
the components consists of at most m cells.

Observe that in a column-subconvex polyomino, two-component columns
may be adjacent to one another. See Figures 3 and 4.
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Figure 1: A column-convex polygon.

Figure 2: A simple-2-column polyomino.
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Figure 3: A level one column-subconvex polyomino.

Figure 4: (a) Simple-2-convex polyominoes can have internal holes. (b) The
same holds for level one column-subconvex polyominoes.
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3 The area generating function for simple-2-column
polyominoes with square cells

If a polyomino P is made up of n cells, we say that the area of P is n. Let
P denote the set of all simple-2-column polyominoes with square cells. Let a
denote the area of a polyomino P , and m the number of two-component columns
of P .

In Theorem 1 below, we state a formula for the generating function

G(q, w) =
∑
P∈P

qa · wm.

Theorem 1 The generating function G(q, w) is given by

G(q, w) =
NUM

DEN
, (1)

where

NUM = (1 − q)4(α̃ + γ̃ + 2α̃η̃ − 2γ̃ϵ̃) + q2w(1 − q)2(ι̃ + λ̃ − α̃κ̃ − α̃µ̃

+ β̃ι̃ + β̃λ̃ − γ̃κ̃ − γ̃µ̃ + δ̃ι̃ + δ̃λ̃ − 2ϵ̃λ̃ + 2η̃ι̃ + 2α̃ζ̃λ̃ − 2α̃η̃κ̃

− 2α̃η̃µ̃ + 2α̃θ̃λ̃ − 2β̃ϵ̃λ̃ + 2β̃η̃ι̃ + 2γ̃ϵ̃κ̃ + 2γ̃ϵ̃µ̃ − 2γ̃ζ̃ ι̃ − 2γ̃θ̃ι̃

− 2δ̃ϵ̃λ̃ + 2δ̃η̃ι̃) + 2q2w(1 − q2)(α̃λ̃ − γ̃ι̃),
DEN = (1 − q)4(1 − β̃ + δ̃ − ϵ̃ + η̃ − α̃ζ̃ + α̃θ̃ + β̃ϵ̃ − β̃η̃ + γ̃ζ̃ − γ̃θ̃

− δ̃ϵ̃ + δ̃η̃) − 2(1 − q)3(γ̃ + α̃η̃ − γ̃ϵ̃)
− 2q2w(1 − q)2(κ̃ − β̃µ̃ + δ̃κ̃ − ϵ̃κ̃ + ζ̃ ι̃ − ζ̃λ̃ + η̃κ̃ − α̃ζ̃µ̃ + α̃θ̃κ̃

+ β̃ϵ̃µ̃ − β̃η̃µ̃ − β̃θ̃ι̃ + β̃θ̃λ̃ + γ̃ζ̃µ̃ − γ̃θ̃κ̃ − δ̃ϵ̃κ̃ + δ̃ζ̃ ι̃ − δ̃ζ̃λ̃ + δ̃η̃κ̃)
− 4q2w(1 − q)(β̃λ̃ − γ̃κ̃ + α̃ζ̃λ̃ − α̃η̃κ̃ − β̃ϵ̃λ̃ + β̃η̃ι̃ + γ̃ϵ̃κ̃ − γ̃ζ̃ ι̃)
− 2q3w(1 − q)(ι̃ + α̃κ̃ − α̃µ̃ − β̃ι̃ + δ̃ι̃ − ϵ̃λ̃ + η̃ι̃ − α̃ζ̃λ̃ + α̃η̃κ̃

− α̃η̃µ̃ + α̃θ̃λ̃ + β̃ϵ̃λ̃ − β̃η̃ι̃ − γ̃ϵ̃κ̃ + γ̃ϵ̃µ̃ + γ̃ζ̃ ι̃ − γ̃θ̃ι̃ − δ̃ϵ̃λ̃ + δ̃η̃ι̃)
− 4q3w(α̃λ̃ − γ̃ι̃),

β̃ =
∞∑

i=1

(−3)i−1qi2+2i−2wi−1

(1 − q)2i−2 ·
[∏i−1

k=1(1 − qk)
]4

· (1 − qi)
2

,

γ̃ =
∞∑

i=1

(−3)i−1qi2+4iwi

(1 − q)2i ·
[∏i−1

k=1(1 − qk)
]4

· (1 − qi)
3

,
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ζ̃ =
∞∑

i=1

(−3)i−1qi2+2i−2wi−1

(1 − q)2i−2 ·
[∏i−1

k=1(1 − qk)
]4

· (1 − qi)
2

·

(
2i − 2 + 4 ·

i−1∑
k=1

qk

1 − qk
+

2qi

1 − qi

)
,

η̃ =
∞∑

i=1

(−3)i−1qi2+4iwi

(1 − q)2i ·
[∏i−1

k=1(1 − qk)
]4

· (1 − qi)
3

·

(
2i + 4 ·

i−1∑
k=1

qk

1 − qk
+

3qi

1 − qi

)
,

κ̃ =
1
2
·

∞∑
i=1

(−3)i−1qi2+2i−2wi−1

(1 − q)2i−2 ·
[∏i−1

k=1(1 − qk)
]4

· (1 − qi)
2

·

(2i − 2 + 4 ·
i−1∑
k=1

qk

1 − qk
+

2qi

1 − qi

)2

−2i + 2 + 4 ·
i−1∑
k=1

q2k

(1 − qk)2
+

2q2i

(1 − qi)2

]
,

λ̃ =
1
2
·

∞∑
i=1

(−3)i−1qi2+4iwi

(1 − q)2i ·
[∏i−1

k=1(1 − qk)
]4

· (1 − qi)
3

·

(2i + 4 ·
i−1∑
k=1

qk

1 − qk
+

3qi

1 − qi

)2

−2i + 4 ·
i−1∑
k=1

q2k

(1 − qk)2
+

3q2i

(1 − qi)2

]
.

In the above formulae, it will be noticed that (a) some of the numbers have
an overline, and (b) no result is given for α̃, δ̃, ϵ̃, θ̃, ι̃, and µ̃.

This is both to save space, and to highlight the close similarity between
certain quantities. For all the quantities defined above, the overlines may be
ignored. To obtain the formula for α̃ from the formula for β̃, replace 2 by 1. To
obtain the formula for δ̃ from the formula for γ̃, replace the 3 by 4 and change
(−3)i−1 to (−3)i. To obtain the formula for ϵ̃ from the formula for ζ̃, and also
to obtain the formula for ι̃ from the formula for κ̃, replace each of the 2’s by
1. To obtain the formula for θ̃ from the formula for η̃, and also to obtain the
formula for µ̃ from the formula for λ̃, replace each of the 3’s by 4 and change
(−3)i−1 into (−3)i.
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By setting w = 0, from Theorem 1 we obtain the well known result, discov-
ered independently by Temperley [17] and Pólya [15]:

Corollary 1 The area generating function for column-convex polygons with
square cells is given by

G(q, 0) =
q(1 − q)3

1 − 5q + 7q2 − 4q3
.

4 The asymptotic analysis of G(q, w)

We write [qn]f to denote the coefficient of qn in a power series f = f(q). Note
that G(q, 0) is dominated by a simple pole at the smallest zero of 1 − 5q +
7q2−4q3, which is at q = qc = 0.311957055278 . . . . From the solution above for
G(q, w), it is a straightforward matter to generate many hundreds of terms of the
series G(q, 1), corresponding to the area generating function of simple-2-column
polyominoes. We have G(q, 1) = q + 2q2 + 6q3 + 19q4 + 63q5 + 216q6 + 758q7 +
2693q8 + 9608q9 + 34269q10 + 121946q11 + 432701q12 + 1531246q13 + . . . . The
solution is too complicated to permit an analytic analysis of the asymptotics,
so we resort to numerical methods. Fortunately, in this instance our methods
are able to achieve almost any required accuracy.

One of the simplest things to try is to look at the ratio of successive terms.
In the presence of an algebraic singularity, of the form F (x) =

∑
anxn ∼

A(1 − µx)−γ , one has

rn = an/an−1 = µ(1 + (γ − 1)/n + o(1/n)).

Depending on the nature of the singularity, the correction term o(1/n) can
usually be made considerably sharper.

Writing G(q, 1) =
∑

bnqn, we find b50/b49 = 3.522019842,
b100/b99 = 3.5220198128815885, b150/b149 = 3.52201981288158483006767,
b200/b199 = 3.52201981288158483006752097715664,
and b250/b249 = 3.52201981288158483006752097715686843653. It can be seen
that each additional 50 terms adds approximately 8 significant digits to the
estimate of µ, the limiting value of the ratios. Thus the ratios are approaching
µ when extrapolated against 1/n, with zero slope, corresponding to a simple
pole singularity, as might have been expected by analogy with the behaviour of
G(q, 0).

We can now write the asymptotics much more precisely. We have that

[qn]G(q, 1) = λµn + o(ρ−n)

for any 1 < ρ < ρc, where µ = 3.52201981288158483006752097715686843653 . . . .
We will shortly provide an estimate of ρc. To calculate the amplitude λ, we sim-
ply compute the sequence [qn]G(q, 1)/µn, which is also rapidly convergent, so
that we may write λ = 0.119442870404867084313264237052704329586 . . . where
we are confident that our estimates of µ and λ are correct to all quoted digits.
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By analogy with some other solved polygon models [11] we hoped to identify µ
as an algebraic number, but have been unable to find a convincing representa-
tion in terms of the solution of any polynomial of degree less than 20. We also
consider it likely that λ is a rational function of µ, but have not been able to
identify it.

With the singularity being a simple pole, subdominant terms are exponen-
tially small. We can estimate the location of the first such singularity by the
method of differential approximants [16] and find a conjugate pair of singulari-
ties at q = q∗ = 0.400e±iπ/8.88. Thus ρc defined above is given, approximately,
by 0.400×3.522 ≈ 1.41. Evidence of the phase factor can be seen by calculating
a “correction series”, with coefficients given by [qn]G(q, 1) − λµn. These coeffi-
cients have a periodicity in their sign pattern of about 9 terms, corresponding
to a phase factor close to e±iπ/9, exactly as found.

We can also write G(q, w) as
∑

n Gn(q)wn, where

G0(q) = G(q, 0) =
q(1 − q)3

Λ
,

with Λ = 1 − 5q + 7q2 − 4q3,

G1(q) =
q5(2 + 3q3 − 4q4 + q5 + 2q6 − 7q7 + 4q8 + q9)

(1 − q2)3Λ2
,

G2(q) =
q7(1 + 2q + · · · + 19q25 + q26)

(1 − q2)6(1 − q3)3Λ3
,

G3(q) =
q12(9 + 36q + · · · + 32q41 + q42)

(1 − q2)6(1 − q)2(1 − q3)4(1 − q4)3Λ4
.

From this structure, we can make several remarks. Firstly, note that each term
in the expansion has a pole at the zero of Λ, whereas the sum of the terms
has a pole closer to the origin at q = 1/µ, as shown above. Secondly, note
that Λn+1Gn(q) is a rational function with denominators given by powers of
cyclotomic polynomials of steadily increasing degree. If, as seems likely, this
pattern persists, the zeros on the unit circle in the complex q plane will become
dense. Such a function cannot be differentiably finite in w [4]. While this
does not, in principle, exclude the possibility that G(q, 1) could be D-finite, it
would have to be a pathological function indeed that behaved in this way. Of
course, pathological functions exist, so our argument is just that– a plausibility
argument, and not a proof.

5 The area generating function for level one column-
subconvex polyominoes with hexagonal cells

Let S denote the set of all level one column-subconvex polyominoes with hexag-
onal cells. Let a denote the area of a polygon P , and m the number of columns
of P .
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In Theorem 2 below, we state a formula for the generating function

A1(q, x) =
∑
P∈S

qa · xm.

Theorem 2 The generating function C1(q, x) is given by

C1(q, x) =
∑3

n=1 numn∑6
n=1 denn

, (2)

where

num1 = (q − 8q2 + 28q3 − 56q4 + 70q5 − 56q6 + 28q7 − 8q8 + q9)x
+ (−4q3 + 24q4 − 58q5 + 72q6 − 48q7 + 16q8 − 2q9)x2

+ (5q5 − 12q6 + 12q7 − 6q8 + q9)x3,

num2 = [(−q + 5q2 − 9q3 + 5q4 + 5q5 − 9q6 + 5q7 − q8)x
+ (−4q3 + 18q4 − 32q5 + 28q6 − 12q7 + 2q8)x2

+ (5q5 − 7q6 + 5q7 − q8)x3]β,

num3 = (−2q4 + 8q5 − 12q6 + 8q7 − 2q8)x2δ,

den1 = 1 − 9q + 36q2 − 84q3 + 126q4 − 126q5 + 84q6 − 36q7 + 9q8 − q9

+ (−2q + 10q2 − 16q3 − 2q4 + 40q5 − 58q6 + 40q7 − 14q8 + 2q9)x
+ (7q3 − 36q4 + 69q5 − 60q6 + 21q7 − q9)x2

+ (−10q5 + 10q6 − 6q7 + 2q8)x3,

den2 = [(2q2 − 12q3 + 30q4 − 40q5 + 30q6 − 12q7 + 2q8)x
+ (4q3 − 22q4 + 46q5 − 46q6 + 22q7 − 4q8)x2

+ (−10q5 + 10q6 − 6q7 + 2q8)x3]α,

den3 = [−1 + 8q − 28q2 + 56q3 − 70q4 + 56q5 − 28q6 + 8q7 − q8

+ (2q − 6q2 − 2q3 + 30q4 − 50q5 + 38q6 − 14q7 + 2q8)x
+ (13q3 − 41q4 + 48q5 − 26q6 + 7q7 − q8)x2]β,

den4 = [(2q4 − 8q5 + 12q6 − 8q7 + 2q8)x2 + (−4q6 + 8q7 − 4q8)x3]γ,

den5 = [(6q4 − 22q5 + 30q6 − 18q7 + 4q8)x2 + (4q6 − 4q7)x3]δ,

den6 = [(2q4 − 6q5 + 6q6 − 2q7)x2 + (4q6 − 4q7)x3](αδ − βγ),
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α =
∞∑

i=1

xiq
i(i+5)

2

(1 − q)i
[∏i

k=1(1 − qk+1)
]2 ,

β =
∞∑

i=1

xiq
i(i+5)

2

(1 − q)i
[∏i−1

k=1(1 − qk+1)
]2

(1 − qi+1)
,

γ =
∞∑

i=1

xiq
i(i+5)

2

(
i
q + 2

∑i
j=1

qj

1−qj+1

)
(1 − q)i

[∏i
k=1(1 − qk+1)

]2 ,

δ =
∞∑

i=1

xiq
i(i+5)

2

(
i
q + 2

∑i−1
j=1

qj

1−qj+1 + qi

1−qi+1

)
(1 − q)i

[∏i−1
k=1(1 − qk+1)

]2
(1 − qi+1)

.

Proof. Let S denote the set of all level one column-subconvex polyominoes.
When we build a column-subconvex polyomino from left to right, adding

one column at a time, the intermediate figures need not all be polyominoes, and
therefore need not all be elements of S. We say that a figure P is an incomplete
level one column-subconvex polyomino if P itself is not an element of S, but P
is a “left factor” of an element of S. Notice that, if P is an incomplete level
one column-subconvex polyomino, then the last (i.e., the rightmost) column of
P necessarily has a hole.

Let T denote the set of all incomplete level one column-subconvex polyomi-
noes.

Let P be an element of S ∪T and let P have at least two columns. Then we
define:

• the body of P to be all of P , except the rightmost column of P ,

• the lower pivot cell of P to be the lower right neighbour of the lowest cell
of the second last column of P ,

• the upper pivot cell of P to be the upper right neighbour of the highest
cell of the second last column of P .

We shall deal with the following generating functions:

A(q, t) =
∑
P∈S

qarea of P · tthe height of the last column of P ,

A1 = A(q, 1), B1 =
∂A

∂t
(q, 1),
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C(q, u, v) =
∑
P∈T

qarea of P · u
the height of the upper

component of the last column of P ·

·v
the height of the lower

component of the last column of P ,

D(u) = C(q, u, 1), E(v) = C(q, 1, v), C1 = C(q, 1, 1).

In the above definitions, by the height of a holed column we mean the height
of the upper component plus the height of the lower component plus one. (One
is the height of the hole).

Now we are going to partition the set S into six subsets: Sα, Sβ , Sγ , Sδ, Sϵ

and Sζ . The parts of the series A that come from the sets Sα, . . . , Sζ will be
denoted Aα, . . . , Aζ , respectively.

By Sα we denote the set of level one column-subconvex polyominoes which
have only one column. We have Aα = qt

1−qt .
By Sβ we denote the set of all P ∈ S\Sα which have the following properties:

the body of P lies in S, the last column of P has no hole, and the lower pivot
cell of P is contained in P . We have Aβ = qt

(1−qt)2 · A1.
By Sγ we denote the set of all P ∈ S\Sα which have the following properties:

the body of P lies in S, the last column of P has no hole, and the lower pivot
cell of P is not contained in P . We have Aγ = qt

1−qt · B1.
By Sδ we denote the set of all P ∈ S\Sα which have the following properties:

the body of P lies in S and the last column of P has a hole. We have Aδ =
q2t3

(1−qt)2 · (B1 − A1).
By Sϵ we denote the set of all P ∈ S\Sα which have the following properties:

the body of P lies in T and the last column of P has no hole. We have Aϵ =
q2t2

(1−qt)2 · C1.
By Sζ we denote the set of all P ∈ S\Sα which have the following properties:

the body of P lies in T and the last column of P has a hole. We have Aζ =
2q3t4

(1−qt)3 · C1 − 2q2t3

(1−qt)3 · D(qt).
Inserting the expressions for Aα, . . . , Aζ into the equation A = Aα+. . .+Aζ ,

we obtain

A =
qt

1 − qt
+

qt

(1 − qt)2
· A1 +

qt

1 − qt
· B1 +

q2t3

(1 − qt)2
· (B1 − A1)

+
q2t2

(1 − qt)2
· C1 +

2q3t4

(1 − qt)3
· C1 −

2q2t3

(1 − qt)3
· D(qt). (3)

Similarly, we partition the set T into five subsets: Tα, Tβ , Tγ , Tδ and Tϵ. The
parts of the series C that come from the sets Tα, . . . , Tϵ are denoted Cα, . . . , Cϵ,
respectively.
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By Tα we denote the set of incomplete level one column-subconvex polyomi-
noes which have only one column. We have Cα = q2uv

(1−qu)(1−qv) .
By Tβ we denote the set of all P ∈ T \Tα which have the following properties:

the body of P lies in S, and the hole of the last column of P coincides either
with the lower pivot cell of P or with the upper pivot cell of P . We have
Cβ = 2q2uv

(1−qu)(1−qv) · A1.
By Tγ we denote the set of all P ∈ T \Tα which have the following properties:

the body of P lies in S, and the hole of the last column of P lies either below
the lower pivot cell of P or above the upper pivot cell of P . We have Cγ =

q2uv
(1−qu)2(1−qv) · A1 + q2uv

(1−qu)(1−qv)2 · A1.
By Tδ we denote the set of all P ∈ T \Tα which have the following properties:

the body of P lies in T , and the hole of the last column of P touches the hole
of the second last column of P . We have Cδ = 2q2uv

(1−qu)(1−qv) · C1.
By Tϵ we denote the set of all P ∈ T \Tα which have the following properties:

the body of P lies in T , and the hole of the last column of P does not touch
the hole of the second last column of P . We have Cϵ = q2uv

(1−qu)(1−qv)2 · D(qv) +
q2uv

(1−qu)2(1−qv) · D(qu).
Inserting the expressions for Cα, . . . , Cϵ into the equation C = Cα+ . . .+Cϵ,

we obtain a functional equation for C. For our purposes, it will be enough to
state the case v = 1 of that functional equation. With the notation

F = 1 +
3 − 2q

1 − q
· A1 + 2C1 +

1
1 − q

· D(q), (4)

the case v = 1 of the functional equation for C reads

D(u) =
q2u

(1 − q)(1 − qu)2
·A1+

q2u

(1 − q)(1 − qu)
·F+

q2u

(1 − q)(1 − qu)2
·D(qu). (5)

The iteration of (5) produces

D(u) =


∞∑

i=1

q
i(i+3)

2 ui

(1 − q)i ·
[∏i

k=1(1 − qku)
]2
 · A1

+


∞∑

i=1

q
i(i+3)

2 ui

(1 − q)i ·
[∏i−1

k=1(1 − qku)
]2

· (1 − qiu)

 · F. (6)

Then we set up a system of six linear equations in six unknowns: A1, B1,
C1, D(q), D′(q) and F . One of the six equations is (4), and the other five are
obtained as follows:

• by setting t = 1 in (3),
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• by differentiating (3) with respect to t and then setting t = 1,

• by setting u = 1 in (5),

• by setting u = q in (6),

• by differentiating (6) with respect to u and then setting u = q.

Once the linear system is solved, the proof of the theorem is complete. (To
solve the linear system, we made use of the computer algebra package Maple.)

�

6 The asymptotic analysis of C1(q, x)

Our analysis of the C1(q, x) series parallels that given in Section 4, as the sin-
gularities here are also simple poles. From the solution above for C1(q, x), it is
again a straightforward matter to generate many hundreds of terms of the se-
ries C1(q, 1), corresponding to the area generating function of level one column-
subconvex polyominoes. We have C1(q, 1) = q + 3q2 + 11q3 + 44q4 + 184q5 +
786q6 + 3391q7 + 14683q8 + 63619q9 + 275506q10 + 1192134q11 + 5154794q12 +
22278047q13 + 96250859q14 + . . .. The solution is too complicated to permit an
analytic analysis of the asymptotics, so we again resort to numerical methods.
As above, the ratios of successive terms are rapidly convergent, enabling us to
estimate that the dominant singularity is at
µ = 4.31913924372978822629412518681381898494160081. The asymptotics are
given by

[qn]C1(q, 1) = λµn + o(ρ−n)

for any 1 < ρ < ρc, where µ is given above and
λ = 0.122428100456122243205023911505973633306171383 . . . where we are con-
fident that our estimates of µ and λ are correct to all quoted digits. Again, we
have been unable to find a convincing representation of µ in terms of the solu-
tion of any polynomial of degree less than 20. We also consider it likely that λ
is a rational function of µ, but have not been able to identify it.

With the singularity being a simple pole, subdominant terms are expo-
nentially small. We can estimate the location of the first such singularity
by the method of differential approximants [16] and find a conjugate pair at
q = q∗ = 0.399878e±iπ/9.4864. Thus ρc defined above is given, approximately,
by 0.399878× 4.3191 ≈ 1.727. Evidence of the phase factor can, as in the previ-
ous case, be seen by calculating a “correction series”, with coefficients given by
[qn]C1(q, 1)− λµn. These coefficients again have a periodicity in their sign pat-
tern of about 9 terms, corresponding to a phase factor close to e±iπ/9, exactly
as found.

We can also write C1(q, x) as
∑

n>0 C
(n)
1 (q)xn, where

C
(1)
1 (q) =

q

1 − q
,
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C
(2)
1 (q) =

2q2(1 − q + q3)
(1 − q)5(1 + q)

,

C
(3)
1 (q) =

q3(4 + q + · · · − 2q7 − q8)

(1 − q)8(1 + q)2(1 + q + q2)
,

C
(4)
1 (q) =

2q4(4 + 6q + · · · − 4q12 − 2q13)
(1 − q)11(1 + q)3(1 + q + q2)2(1 + q2)

.

From this structure, we note that C
(n)
1 (q) is a rational function with denomi-

nators given by powers of cyclotomic polynomials of steadily increasing degree.
(Indeed, the increases are very systematic, so that one could readily conjecture
the pattern). If, as seems likely, this pattern persists, the zeros on the unit
circle in the complex q plane will become dense. As noted above, such a func-
tion cannot be differentiably finite in x [4]. As for the previous case, this is a
plausibility argument, rather than a proof, that C1(q, 1) is not D-finite.

7 Further work

Our next goal will be to find the area generating function for simple-2-column
polyominoes with hexagonal cells. That should not be difficult because we
already have a method which works with square cells. It is usually possible to
make such a method work when cells are hexagons as well.

Unlike the simple, rational expression given above for the area generating
function of column-convex polygons, the area generating function of convex
polygons is a sum of rational functions of q-series [2]—not unlike our solution
for the area generating function of simple-2-column polyominoes, though not
as complicated. For convex polygons, it is also possible to find the generat-
ing function by perimeter. This was first given in [5] and was later obtained
independently in [12]. However, if one asks for the perimeter generating func-
tion of simple-2-column polyominoes, it turns out that this has zero radius of
convergence. We show this by a very simple argument.

Consider a square of side 2n+1 sites. This clearly has perimeter 8n+4. Then
construct a simple-2-column polyomino by placing a single square (of perimeter
4) in any of the square cells of the second column, except the top and bottom.
This can be done in 2n − 1 ways. Now repeat this for the fourth column, the
sixth column, up to the 2nth column. We have therefore placed n squares inside
the large square, so the total perimeter of our object, which is a simple-2-column
polyomino, is now 12n + 4. The squares can be placed in (2n− 1)n ways. Thus
if p2n denotes the number of simple-2-column polyominoes of perimeter 2n, we
have p12n+4 ≥ (2n−1)n. The large n limit of 1

2n log p2n diverges, hence the radius
of convergence is zero. While this does not mean that the perimeter generating
function is uninteresting, it would be a whole new research project to study the
nature of the singularity, and its significance, and will not be discussed further
in this article.

In terms of possible extensions of this work, it is probably possible to com-
pute the area generating function of simple-2-column2 polyominoes. Here, by
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a simple-2-column2 polyomino we mean a 2-column polyomino in which runs
of two consecutive two-component columns are allowed, but it is forbidden for
three consecutive columns to each have two connected components. One reason
for doing this is that the growth factor µ is expected to be greater than that for
simple-2-column polyominoes, and may set the benchmark in this regard. At
present the situation is that for column-convex polygons the growth constant is
µ = 3.205569 . . . , while for simple-2-column polyominoes the growth constant
is µ = 3.5220198 . . . . For polyominoes the best lower bound [1] is µ ≥ 3.980137,
which is quite close to the best estimate [16] µ ≈ 4.0625696. The polyomino
model with a growth constant closest to the actual value for polyominoes is a
directed model called multi-directed polyominoes [4] with a growth constant of
µ ≈ 3.58. It would be interesting to compute the area of simple-2-column2 poly-
ominoes to see if they had a growth constant closer still to that for polyominoes.

As regards column-subconvex polyominoes, the above argument may be re-
peated mutatis mutandis to show that the perimeter generating function will
also have zero radius of convergence. The growth constant for this model, when
enumerated by area, is µ = 4.319139 . . . , which may be compared to the best
estimate for hexagonal polyominoes [16] of µ ≈ 5.1831453. The enumeration by
area of the level two model is possible, but takes a lot of effort. We did perform
that enumeration, which will be published subsequently, and the formula for the
area generating function of level two column-subconvex polyominoes is available
at [19]. The growth constant is found to increase to µ = 4.50948 . . . in that case.
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