

Abstract—Digital ecosystems are not "created", they form

and evolve wherever their users guide them. Moreover, usage
patterns within digital ecosystems are not bound to one
particular technology. A computational neurologist, for
instance, may move back and forth between laboratory
experiments, grid infrastructure for simulation and analysis,
collaborative environments and publication platforms.

This paper pinpoints an evolution of various ecosystems that
is currently ongoing, and discusses technological patterns for
mixing and merging infrastructures. In particular it looks at
"repositories" as they overarch scientific infrastructure and
interactive applications. In an analysis covering a series of
experiments, we find an optimal setup in the combination of
grid and web technologies through a REST-based interface,
which opens up a variety of novel architectural patterns.

Index Terms— repository, grid, cloud, pattern.

I. INTRODUCTION

This paper addresses the area between two well-
established technologies that brought a variety of digital
ecosystems into being. Digital infrastructure in scientific
contexts is often associated with virtualizing hardware
resources through grid technologies. Grids have been
working towards maximum performance and automation to
tackle hardware-intense computing challenges of
simulations, major experiments, and the like. However,
scientific infrastructure is increasingly expanding to also
accommodate interactive services. Scientific workflows and
interactive visualizations are just the first step on this path.

Web environments on the other hand have been all about
interactivity, user-generated information and references. To
achieve this, web technologies have been defined by
simplicity to empower non-expert users. Mash-ups and
clouds emerge as part of web environments, which
accommodate increasingly resource-demanding interactive
services on the web.

In the following we enter the space between these two
contexts and usage patterns - infrastructure for large-scale
scientific applications on the one hand, and open
environments for interactivity and user-generated content
and services on the other. We are not pioneers in this space;
we are merely followers of what is out there already: high-
volume video platforms for e-learning, music portals that
analyze audio patterns for listening recommendations, and
many of the other services that populate our digital world
2.0. However, while the two usage patterns are converging
(high-volume and automation vs. simple and interactive),

the technologies are slow in taking up experiences from
each other. We therefore ask the question: As the two
paradigms are starting to converge towards a common view
of the world, how do their technologies interact? How do
you mix grid resources into the world wide pond of mash-
ups?

II. REPOSITORY-BASED ECOSYSTEMS

In our analysis we take "repository" technologies as a
case study and look at possible adoption patterns between
the two worlds. (a) Data repositories in scientific contexts
such as the often-cited large hadron collider experiments
(LHC) [1] are high-volume stores for primary data
implemented on grid resources and embedded in automated
workflows. (b) Repositories for open access publications
are, on the other hand, web portals that guide interactive
deposit processes by authors and consequently preserve a
multitude of digital objects consisting of document-size
files. While following similar terminology, the two
respective world views are unlike each other.

Despite their different origins, both technologies are
converging: (a) Data stored in scientific infrastructure is
being unlocked for open access and interactive applications,
and (b) publication repositories are poised to accommodate
research data and workflows as well.

TextGrid1 embeds interactive functionalities into a
Globus-based grid environment2. Storage is handled by
existing Globus data grid functionalities. Upon this storage
infrastructure, mechanisms for storing and retrieving
metadata, object behaviors, interactive workflows, and the
like were modeled after open access repository systems like
Fedora3. While building on both, grid technologies and
repository concepts yielded a solid, multi-purpose platform,
TextGrid is looking for further technology convergence
between the two contexts.

DARIAH4 establishes a digital research infrastructure
for the humanities in Europe. It is composed of a number of
humanities data archives that aim to federate their holdings
and jointly build a distributed virtual repository. Massive
amounts of data expected from image and video assets are
best stored and replicated in national grid infrastructures.

1 TextGrid. www.textgrid.info
2 Globus. http://www.globus.org/
3 Fedora - Flexible Extensible Digital Object and Repository

Architecture. http://fedora-commons.org/
4 DARIAH - Digital Research Infrastructure for the Arts and

Humanities. http://www.dariah.eu/

Andreas Aschenbrenner1, Flavia Donno2 and Senka Drobac3

1Andreas Aschenbrenner, Goettingen University, Germany, e-mail: aaschen@gwdg.de
2 Flavia Donno, Grid Support Group (IT), CERN, Geneva, Switzerland, e-mail: Flavia.Donno@cern.ch

3 Senka Drobac, Ruder Boskovic Institute, Zagreb, Croatia, e-mail: senka.drobac@irb.hr

Infrastructure for Interactivity -
Decoupled Systems on the Loose

Thus, while DARIAH builds primarily on Fedora and its
content modeling capabilities, it seeks integration with grid-
based storage infrastructure.

These projects - as well as others [2] including Shaman5,
eSciDoc6, and D4Science7 - exhibit the following traits and
more:

(1) work with large volumes of research data that is to be
backed up and replicated across distributed locations in
order to ensure bit-preservation.

(2) require administrative workflows to ensure proper
ingest and indexing of the data as well as long-term
maintenance of the archive.

(3) are open to scientific workflows as well as (external)
interactive applications, possibly as entry-points into a
variety of different virtual environments.

(4) may federate with other repositories and services to
share content through open interfaces such as those
provided by the Open Archives Initiative (OAI)8.

In our search for suitable patterns that combine
infrastructure and repository technologies, we probed
various approaches: using Cleversafe9 as a virtual file
system, iRODS10 integration, as well as a RESTful
abstraction upon the Storage Resource Manager SRM11.
While we cannot provide a silver bullet to all questions
involved, this analysis may help projects confronting
similar questions by offering patterns for integrating
scientific infrastructure with interactive applications.

A. Cleversafe, transparent storage

Cleversafe dubs itself a "dispersed storage" network,
which was available in version 1.1 at the time of writing
(April 2009). Cleversafe is open source software developed
by a company as their key product. At the basis of the
Cleversafe software is an algorithm, which chunks data into
pieces, spreads them over data nodes, and performs error
correction for fault tolerance (a Reed-Solomon Code). This
algorithm displays stability in the face of failing nodes,
good read performance from redundant, distributed nodes,
and increased security as single nodes only merely
accommodate encrypted data chunks. A Cleversafe storage
'vault' can be mounted via iSCSI and hence works as a
virtual file system.

We used an early version of Cleversafe (Version 0.7.8,
November 2007) and installed six virtual CentOS 5 nodes
for the storage network. This purely experimental setup, in
addition to the fact that we used an early version of the
software resulted in rather slow access rates - hence,
performance is no criterion in this experiment. Cleversafe
was used to store the digital objects of a Fedora 2.2

5 SHAMAN - Sustaining Heritage Access through Multivalent

ArchiviNg. http://shaman-ip.eu/
6 eSciDoc. http://www.escidoc.org/
7 D4Science - DIstributed colLaboratories Infrastructure on Grid

ENabled Technology. http://www.d4science.eu/
8 OAI - Open Archives Initiative. http://www.openarchives.org/
9 Cleversafe. http://www.cleversafe.org/
10 iRODS - Integrated Rule-Oriented Data System.

https://www.irods.org/
11 SRM - Storage Resource Manager. http://sdm.lbl.gov/srm-wg/

repository, running on Ubuntu Linux. No adaptation of the
Fedora repository was necessary for this, the Fedora
installation was out of the box.

Regarding the technical requirements formulated above,
Cleversafe promises to scale to any size and offer support
for storage management, and it can be distributed. A single
Cleversafe network can only be shared read-only, since
multiple iSCSI initiators writing data at the same time could
compromise data consistency. Hence, a journaling
configuration with fail-over can be installed easily, yet
multiple entry points for ingest cannot be provided on an
infrastructure level.

Cleversafe offers general purpose, replicated storage, yet
it does not facilitate repository-specific functionality
through administrative workflows or abstraction of
repository data management (folder structure, file naming
conventions, etc.). Moreover, due to the distribution
algorithm, it is hardly possible for adapting Cleversafe
accordingly.

B. Opening up iRODS

Where Cleversafe offers an austere data grid with
transparent replication, iRODS is functionality-wise clearly
at the other end of the spectrum. Developed by the DICE
team12 around Reagan Moore - formerly at the San Diego
Supercomputing Center, now at University of North
Carolina, Chapel Hill -, iRODS is a data grid software
system. So-called rules that are capable of triggering
microservices allow comprehensive adaptation of
administrative workflows and hence of tailoring the data
grid to the respective application environment. Besides low-
level data grid and administration functionality, it intends to
offer graphical applications such as an AJAX-based web
interface as well. As such it offers the whole stack of
repository functionality, from low-level data management to
user interfaces.

Despite this broad spectrum of activities, iRODS has not
yet comprehensively addressed interactive functionalities,
particularly workflows such as ingest procedures for
authors or more sophisticated object modeling capabilities.
For example, the DSpace13 repository offers a
comprehensive user community model, and Fedora offers
more advanced metadata and content modeling
mechanisms. Various projects are hence looking into
combining iRODS with DSpace respectively Fedora.

Various ways on how to integrate iRODS with
repositories such as DSpace and Fedora are conceivable.
The following integration scenarios refer to the four
requirements cited in the introduction to this article:
1. iRODS objects as external datastreams - some

repositories including Fedora are capable of managing
the metadata of digital objects that are outside of their
stores. While this allows for referencing objects stored
in an iRODS data grid and possibly attaching behaviors
to them (e.g. Fedora [3], aDORe DIM [4]), the

12 Data Intensive Cyber Environments Research, DICE. diceresearch.org
13 DSpace. http://www.dspace.org/

repository has no means for managing the object (audit
trails, versioning, etc). - requirement 1 (iRODS); 2, 3, 4
(repository)

2. using iRODS as a repository storage module - instead
of storing data locally on the the repository server,
iRODS provides a distributed storage layer. The Jargon
Java API for iRODS is used for directly implementing
the storage handler into the repository. DSpace offers
support for the Storage Resource Broker14 and iRODS
as part of its general release. Furthermore, in a joint
effort the DSpace and Fedora teams aim to develop a
generic storage handler with a plug-in mechanism [5] to
accommodate iRODS and just any other storage
handler. However, while this possible integration is
acknowledged, it falls short in using available
capabilities in iRODS for rule management. -
requirement 1 (iRODS); 2, 3, 4 (repository)

3. iRODS microservice and rule support - one step
further from a simple virtual storage, iRODS could
define rules for parsing a newly deposited object on
ingest, extract the metadata into the ICAT database, and
hence activate its low level rule support. With all the
features available in iRODS, this is technology-wise a
minor step to take, yet demands a higher level of
coordination between iRODS and the repository:
metadata management is being replicated in both,
iRODS and the repository, and they need to be
synchronized. Behaviors on iRODS and the repository
level must not interfere with each other. - requirement
1,2 (iRODS); 2, 3, 4 (repository)

4. integrating iRODS into the repository landscape -
since iRODS is offering the complete stack of repository
functionality up to user interfaces, iRODS could fully
integrate into the emerging repository landscape.
Standards such as Zing15, OAI-PMH16, and OAI-ORE17
have shaped and will continue to shape an ecosystem of
federated repositories with meta-portals and external
service providers. However, iRODS is not currently
offering any standards-based API's. - requirement
1,2,3,4 (iRODS); 2, 3, 4 (repository)
While there may be other approaches, these four patterns

exemplify various integration levels of infrastructure and
repositories - integration of specific systems as well as
integration in open ecosystems with a variety of
technologies and interests. Please note the dramatic
difference between the first and the last pattern with regard
to openness. While the first pattern is defined by the
openness of the repository, the last one offers standards-
based entry points on an infrastructure level, thus fostering
the emergence of attached repository environments.

It is obvious from the above that infrastructure like
iRODS and repositories like DSpace and Fedora are starting

14 SRB - Storage Resource Broker. http://www.sdsc.edu/srb/index.php
15 Zing, SRU/SRW. Library of Congress.

http://www.loc.gov/standards/sru/
16 OAI-PMH, Open Archives Initiative: Protocol for Metadata

Harvesting. http://www.openarchives.org/OAI/openarchivesprotocol.html
17 OAI-ORE, Open Archives Initiative Protocol: Object Exchange and

Reuse. http://www.openarchives.org/ore/

to overlap functionality-wise. Despite a possible loss of
synergies, overlapping technologies are no problem as such.
On the contrary, if usage patterns and communities overlap
as well, this may be a breeding ground for standards,
mutual services and other components effective ecosystems
build upon.

C. SRM in an S3-like abstraction

Instead of seeking an even larger and even more
comprehensive system, this approach returns to the very
core of scientific infrastructure. The Storage Resource
Manager (SRM)18 [6] stems from the high energy physics
community where it serves as one of the grid middleware
components to distribute the massive data influx from
experiments such as the Large Hadron Collider at CERN19.
The SRM is a standard protocol for initiating transfer
between storage resources. It therefore is capable of
mediating between storage components of various types,
transfer protocols, and other grid components. To sustain
the large amounts of data from experiments, SRM is geared
towards performance and works on a block level, providing
low-level functionality on files and storage space.
Specialized functionalities include pinning of files (i.e.
locking for a defined time), space reservation, and others.

SRM is a versatile, pivotal grid standard, and it is highly
interlinked with its environment. We first evaluated
whether SRM could be plugged into a repository as a
storage handler, similar to how iRODS can be plugged into
DSpace. Since SRM is not a transfer protocol itself but a
mediator, transfer protocols such as GridFTP, DCache
dccp, or globus-url-copy are required as well. When
operating in a grid environment, the user needs a grid
certificate as well as authentication mechanisms such as
grid-proxy-init and the like to authenticate. Hence the
certificate as well as security related protocols have to be
available at the client. The officially supported client library
called GFAL20 - Grid File Access Library - is based on C
and Python21, respectively the package "lcg_util" provides
convenient command-line tools.

As an interface between a grid node (SRM) and a web
server (the repository), we hence looked for a lightweight
interface that is capable of translating between the two
worlds. Usage patterns for repository-based applications
clearly differ from those needed in scientific infrastructure.
Performance requirements are absolutely central in the
latter, whereas in web contexts we can compromise on
some of the tuning parameters in order to simplify
communications. Existing cloud services are a premier
model for translating between infrastructure and the web.
Cloud services like those by Amazon22 offer both, REST
and SOAP-based interfaces. Despite its simplicity, REST-

18 SRM - Storage Resource Manager. http://sdm.lbl.gov/srm-wg/
19 CERN openlab for DataGrid applications. www.cern.ch/openlab
20 Grid File Access Library - GFAL. http://www-

numi.fnal.gov/offline_software/srt_public_context/GridTools/docs/data_gf
al.html

21 respectively other programming languages through SWIG (Simplified
Wrapper and Interface Generator), http://www.swig.org/

22 Amazon Web Services. http://aws.amazon.com/

based protocols satisfy all the needs of the web community.
Instead of defining yet another API, we hence decided to

re-engineer the REST API of the Amazon S3 storage
service as an interface between the grid environment and
the repository. An experimental implementation of the S3
interface uses Python WSGI (Web Server Gateway
Interface)23 and works fine - S3 libraries like Jets3t24 can be
re-rooted from the Amazon cloud to our re-engineered
cloud-like interface. There already is a DSpace storage
handler implemented upon the Jets3t library,25 which is
planned to be implemented upon our re-engineered cloud.
First, however, we will take performance measurements and
analyze the feasibility of this setup in a productive
environment. Further analysis will be made available in the
next few weeks. While also not part of the experimental
setup, authentication, of course, is an important issue. We
are observing closely the progress of projects like IVOM26,
which aim to integrate Shibboleth27 into grid environments.
Shibboleth allows for single sign on of users via their home
institution. The approach for Short Lived Credentials in
IVOM and similar projects appears to be very promising
also for an architecture as sketched here. The S3 protocol
also contains the two configuration options "location" and
"storage_class". While the latter is apparently unused by
Amazon, it offers a mechanism to define replication policies
on a repository level which can then be executed in the
infrastructure accordingly. One possible scenario may be a
storage class "confidential, valuable", which triggers the
infrastructure to replicate the asset in three distributed data
centers with particularly high security measures, rather than
the two copies made in the case of a "standard" storage
class.

The advantages of such a loosely-coupled, HTTP/REST-
based architecture are manifold:

The interface between the repository and the cloud-like
service is obviously very light-weight. Due to the loosely-
coupled architectural paradigm, the interdependencies
between infrastructure and application (in this case: the
repository) are minimized and the two can evolve
separately.

So why not build on Amazon S3 from the outset? Using
S3 is an option, of course, yet most of the research data we
are holding is unique and valuable. While Amazon
promises multiple copies of each file and an uptime of more
than 99%, we don't know whether Amazon will still be
there and offer on-demand storage in 20 years. Even
replicating to and switching between multiple cloud
providers is no option to us. We have substantial storage
resources locally and within the D-Grid national computing
infrastructure. Moreover, we appreciate some control over

23 WSGI - Python Web Server Gateway Interface, PEP 333, v1.0.

http://www.python.org/dev/peps/pep-0333/
24 JetS3t - Java toolkit for Amazon S3. https://jets3t.dev.java.net/
25 DSpace 2.0/Pluggable Storage. DSpace Wiki.

http://wiki.dspace.org/index.php/DSpace_2.0/Pluggable_Storage
26 IVOM - Interoperability und Integration of VO-Management

Technologies in D-Grid. http://www.d-grid.de/index.php?id=314&L=1
27 Shibboleth - authorization/authentication in web environments.

http://shibboleth.internet2.edu/

the infrastructure both organizationally and technologically,
which allows us to advance the interface to include
specialized functionalities as well.

A generic repository storage API and a decoupled
architecture pattern like this enables other services to tie
into the system environment. Multiple repositories can build
on a single storage, and even specialized services e.g. for
format conversion or other administrative tasks are
conceivable to work directly at the level of the S3 API.
Administrative workflows triggered by the repository, yet
executed on the storage level may boost overall scalability
of the system environment considerably. Moreover, this
loosely-coupled approach may trigger the creation of low-
level repository services and hence a variety of agents
interacting in an open repository ecosystem.

III. LOOSELY-COUPLED PATTERNS

The three experiments outlined in the last chapter moved
from a purely localized system, to a tightly integrated
system with a proprietary API, to a light-weight and open
service architecture. This catharsis resonates with similar
experiences in other contexts. Initiatives looking at the big
picture such as the JISC Information Architecture (2005,
[7]) noted that repositories are part of a larger environment
of services, including authentication/authorization services,
format and service registries, and various other components.
Even the components defined in the JISC architecture are
expected to be supplemented with other components over
time. Repositories are by nature open environments, as
opposed to controlled systems with defined borders.

An open interface such as the S3-derivate described
above is, of course, not yet an open environment of loosely-
coupled services. So what kinds of architectural patterns are
conceivable with this generic, HTTP/REST-based
interface? This section describes two patterns building on
the storage interface, which may spawn a variety of
different agents and services.

A. Search and analysis

Search is an extremely important functionality for
repositories, as it is often the primary entry point for users
into the repository collections. The TextGrid project [8], for
example, offers a set of search mechanisms with increasing
sophistication: keyword search in just all the content;
metadata search for specifying authors, title, or other
structured information; as well as XQuery-based search28,
which works on the XML data model underlying a given
document. All of them are directly at the core of the
TextGrid functionality, yet only separation of the search
mechanism from the repository core yielded an architecture
that was sufficiently scalable for the number of digital
objects as well as concurrent users to be expected.

Digital objects ingested into the repository are stored and
preserved in a storage vault, based on the Globus Toolkit.
Each object is assigned a unique identifier (URI) for
retrieval. At the same time, an object's metadata is stored

28 XQuery - an XML Query Language. http://www.w3.org/TR/xquery/

into a metadata database. If an object is in XML format, it is
additionally stored into an XML-database, which allows for
the XQuery-based search mechanism. So, the object is
stored twice (and the metadata three times), once for
preservation and once for analysis, separate from each
other. Consistency between the redundant objects is
maintained since the storage module pushes all incoming
XML-objects directly to the databases.

This approach of redundant storage in separate services
may appear obvious in the days of Google. Or also for the
experiments in high energy physics mentioned above,
which use separate grid nodes for storage and
computational analysis respectively. However, it is only
possible with an open interface directly on the storage level.
Various types of added-value services using this pattern are
conceivable, including text mining, data clustering, and
monitoring.

B. Preservation services

Another core repository responsibility is preservation.
Many of the tasks involved in preservation cannot feasibly
be realized by one repository alone. Subsequently, there are
numerous preservation efforts shared by the repository
community, including the PRONOM format registry29, the
validation and metadata extraction tool JHOVE30, or mass
conversion in the CRiB project31. In various initiatives these
tools are nested into light-weight preservation services to be
attached to repositories.

The preservation services mentioned above exhibit a
variety of different patterns. Many of those services are
outside of the repository, yet are embedded in repository
workflows. For example the metadata extraction for format
identification, which is performed on ingest with the
resulting metadata being passed along with the object to
storage. However, for mass-conversion objects are ideally
taken directly out of the storage, processed at a dedicated
server, and subsequently returned back for storage. While
the action is triggered through the preservation manager
from within the repository, the conversion service is outside
of the repository and communication is for the most part
between the conversion service and the storage environment
directly. Again, this harvesting pattern is only possible
through open interfaces on a storage level and some level of
decentralization.

C. Generic patterns

Looking at the two cases above, both display the traits of
usual push and pull patterns. In the search/analysis
example, the storage infrastructure pushes immediately a
newly ingested object to the external agent. The conversion
service harvests data from the storage infrastructure, thus
pulling the valuable content out of storage.

In web environments, a pull-architecture is very common

29 PRONOM. http://www.nationalarchives.gov.uk/pronom/
30 JHOVE - JSTOR/Harvard Object Validation Environment.

http://hul.harvard.edu/jhove/
31 CRiB - Conversion and Recommendation of Digital Object Formats,

http://crib.dsi.uminho.pt/

in web environments. Roy Fielding, in his dissertation
about networked-based software architectures, even states
that "the scale of the Web makes an unregulated push
model infeasible" [9]. The reason for this is not because
one-to-many communications in web environments are
generally infeasible, but rather since in an uncontrolled
environment the server cannot just push out content to the
world since the largest part of the world is just not
interested. Push models that work in a web environment is
event notification by subscription. Thus, all interested
agents could subscribe at the storage infrastructure e.g. for
the event "creation of new object", or another CRUD
operation (Create, Read, Update, Delete). The subscription
pattern is similar to the XML-database example mentioned
above, and makes push in a web environment feasible.

Faithful to its strong roots in the web environment,
Amazon S3 enables pull, yet no push. S3 offers no event
notification in the sense of subscribing to CRUD operations
outlined above. To benefit from push patterns, subscription
has to be done either on an application respectively a
repository level, or an additional notification service is
retrofitted onto S3. While avoiding complex functionality at
the cost of efficiency or generality, this could be done as an
index of all content in the storage infrastructure. This index
would contain - apart from the name of the object and
maybe few other low-level metadata - also the date of
creation and last update. It is the combination of a light-
weight, loosely-coupled interface with mechanisms to allow
for pull and maybe also push-based patterns, which offers a
fertile breeding ground for independent agents and, hence,
for a healthy ecosystem.

IV. RELATED WORK

Many fields have been infected by the cloud buzz and are
looking for ways to cloud-enable their applications. As this
paper outlines, using RESTful infrastructure services in a
repository ecosystem is not just a cool fad, but a necessary
next step in repository evolution [10]. A RESTful approach
clearly excels over the tighly-coupled approaches analyzed
in Cleversafe and iRODS.
While some repository systems have been looking into
cloud technologies [5, 11], a serious attempt in linking
repositories into national (grid) infrastructure has been
missing. Similarly, the opportunities for repositories in
loosely-coupled patterns have not been explored until
recently.
The grid community has been discussing the rise of clouds
intensely. When it comes to linking grids and clouds, some
grid experts have suggested using clouds as hosts for grid
software [12, 13]. The idea for using cloud-like interfaces
to provide access to grid resources - as suggested in this
paper - has also been picked up, and has been submitted for
discussion at the Open Grid Forum.32

32 Ignacio M. Llorente, Thijs Metsch: Cloud Interface API - BoF.

(March 2009) http://www.ogf.org/OGF25/materials/1567/Presentation.pdf

V. CONCLUSIONS

Requirements and usage patterns in scientific
infrastructure and interactive (web) applications
increasingly share common requirements. The approaches
for bridging the gap between those two contexts presented
here show the way towards decoupling system components.

The Cleversafe experiment was insufficient as to the
requirements initially posed, and is clearly surpassed by an
iRODS approach. iRODS offers a multitude of
functionalities and is designed to support all conceivable
requirements for data-intensive grids. The third experiment
went another route. Rather than exploring systems
combining even more functionality it created an open,
generic interface for just anybody to plug into. While
providing only little functionality in itself, the open and
simple interface potentially triggers the collaboration of
various agents. It has the potential of satisfying all
requirements formulated at the beginning of this paper, and
possibly even more.

As the "Common Repository Interface Group" CRIG33
persuasively cites: "The coolest thing to do with your data
will be thought of by someone else." Openness and
simplicity facilitate the interaction of independent agents
and may hence be the very core of digital ecosystems.
Digital ecosystems of course emerge and evolve over time,
but the repository community has the potential of becoming
an open ecosystem that overcomes community borders.

Lastly, there has been much discussion about grids
versus clouds. This paper shows that grids and clouds may
interact smoothly. After all, they both follow similar goals
in virtualizing resources and simplifying the lives of their
users. While they may address different usage patterns34
and thus offer different user interfaces, they share similar
technical characteristics. From this it seems that merging
grids, clouds, and interactive repositories seems like a small
step away, and the light-weight interfaces on multiple layers
may trigger entirely new patterns and actors in the ongoing
evolution of those digital ecosystems.

VI. REFERENCES

[1] Lana Abadie, et al., "Storage Resource Managers: Recent
International Experience on Requirements and Multiple Co-Operating
Implementations," In: 24th IEEE Conference on Mass Storage
Systems and Technologies (MSST 2007), 2007, pp.47-59.

[2] Andreas Aschenbrenner, Tobias Blanke, Neil P Chue Hong, Nicholas
Ferguson, Mark Hedges, "A Workshop Series for Grid/Repository
Integration", D-Lib Magazine, January/February 2009, Volume 15
Number 1/2.

[3] "Content Model Architecture," Fedora Commons Wiki. http://fedora-
commons.org/confluence/display/FCR30/Content+Model+Architectu
re

[4] Jeroen Bekaert, et al., "Using MPEG-21 DIP and NISO OpenURL for
the Dynamic Dissemination of Complex Digital Objects in the Los
Alamos National Laboratory Digital Library," In: D-Lib Magazine,
February 2004, Volume 10, Number 2.

33 CRIG - Common Repository Interface Group.

http://www.ukoln.ac.uk/repositories/digirep/index/CRIG
34 (homogeneous data in high-performance infrastructure, versus

heterogeneous data through simple, general-purpose interfaces for
interactive applications)

[5] "DSpace Foundation and Fedora Commons Receive Grant from the
Mellon Foundation for DuraSpace," HatCheck Newsletter, November
11th 2008. http://expertvoices.nsdl.org/hatcheck/2008/11/11/dspace-
foundation-and-fedora-commons-receive-grant-from-the-mellon-
foundation-for-duraspace/

[6] Alex Sim, Arie Shoshani (eds.), "The Storage Resource Manager:
Interface Specification". Version 2.2, 24 May 2008.
http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html

[7] Andy Powell, "A 'service oriented' view of the JISC Information
Environment", November 2005, Bath.
http://www.ukoln.ac.uk/distributed-systems/jisc-ie/arch/soa/jisc-ie-
soa.pdf

[8] "TextGrid: A Community Grid for the Humanities". In: German Grid
Initiative, Heike Neuroth, Martina Kerzel, Wolfgang Gentzsch (eds.),
Universitätsverlag Göttingen: 2007, pp. 62-64.

[9] Roy Thomas Fielding, "Architectural Styles and the Design of
Network-based Software Architectures, Chapter 5". Dissertation,
University of California, Irvine: 2000.
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[10] Andreas Aschenbrenner, Tobias Blanke, David Flanders, Mark
Hedges, Ben O'Steen, "The Future of Repositories? Patterns for
(Cross-)Repository Architectures", D-Lib Magazine,
November/December 2008, Volume 14 Number 11/12.

[11] David Flanders, et al., "Fedorazon Final Report to JISC".
http://www.ukoln.ac.uk/repositories/digirep/index/Fedorazon_Project
_Reports

[12] "Grids and Clouds - Evolution or Revolution? An EGEE
Comparative Study." EGEE Report, Mai 2008.
https://edms.cern.ch/document/925013/

[13] Sergio Andreozzi, Luca Magnoni, Riccardo Zappi: Towards the
Integration of StoRM on Amazon Simple Storage Service (S3). In:
Proceedings of the International Conference on Computing in High
Energy and Nuclear Physics (CHEP’07). Journal of Physics:
Conference Series 119 (2008). IOP Publishing, doi:10.1088/1742-
6596/119/6/062011.

