
 

 
 

 
Abstract—Digital ecosystems are not "created", they form 

and evolve wherever their users guide them. Moreover, usage 
patterns within digital ecosystems are not bound to one 
particular technology. A computational neurologist, for 
instance, may move back and forth between laboratory 
experiments, grid infrastructure for simulation and analysis, 
collaborative environments and publication platforms. 

This paper pinpoints an evolution of various ecosystems that 
is currently ongoing, and discusses technological patterns for 
mixing and merging infrastructures. In particular it looks at 
"repositories" as they overarch scientific infrastructure and 
interactive applications. In an analysis covering a series of 
experiments, we find an optimal setup in the combination of 
grid and web technologies through a REST-based interface, 
which opens up a variety of novel architectural patterns. 
 

Index Terms— repository, grid, cloud, pattern. 

I. INTRODUCTION 

This paper addresses the area between two well-
established technologies that brought a variety of digital 
ecosystems into being. Digital infrastructure in scientific 
contexts is often associated with virtualizing hardware 
resources through grid technologies. Grids have been 
working towards maximum performance and automation to 
tackle hardware-intense computing challenges of 
simulations, major experiments, and the like. However, 
scientific infrastructure is increasingly expanding to also 
accommodate interactive services. Scientific workflows and 
interactive visualizations are just the first step on this path. 

Web environments on the other hand have been all about 
interactivity, user-generated information and references. To 
achieve this, web technologies have been defined by 
simplicity to empower non-expert users. Mash-ups and 
clouds emerge as part of web environments, which 
accommodate increasingly resource-demanding interactive 
services on the web. 

In the following we enter the space between these two 
contexts and usage patterns - infrastructure for large-scale 
scientific applications on the one hand, and open 
environments for interactivity and user-generated content 
and services on the other. We are not pioneers in this space; 
we are merely followers of what is out there already: high-
volume video platforms for e-learning, music portals that 
analyze audio patterns for listening recommendations, and 
many of the other services that populate our digital world 
2.0. However, while the two usage patterns are converging 
(high-volume and automation vs. simple and interactive), 

the technologies are slow in taking up experiences from 
each other. We therefore ask the question: As the two 
paradigms are starting to converge towards a common view 
of the world, how do their technologies interact? How do 
you mix grid resources into the world wide pond of mash-
ups? 

II. REPOSITORY-BASED ECOSYSTEMS 

In our analysis we take "repository" technologies as a 
case study and look at possible adoption patterns between 
the two worlds. (a) Data repositories in scientific contexts 
such as the often-cited large hadron collider experiments 
(LHC) [1] are high-volume stores for primary data 
implemented on grid resources and embedded in automated 
workflows. (b) Repositories for open access publications 
are, on the other hand, web portals that guide interactive 
deposit processes by authors and consequently preserve a 
multitude of digital objects consisting of document-size 
files. While following similar terminology, the two 
respective world views are unlike each other. 

Despite their different origins, both technologies are 
converging: (a) Data stored in scientific infrastructure is 
being unlocked for open access and interactive applications, 
and (b) publication repositories are poised to accommodate 
research data and workflows as well.  

TextGrid1 embeds interactive functionalities into a 
Globus-based grid environment2. Storage is handled by 
existing Globus data grid functionalities. Upon this storage 
infrastructure, mechanisms for storing and retrieving 
metadata, object behaviors, interactive workflows, and the 
like were modeled after open access repository systems like 
Fedora3. While building on both, grid technologies and 
repository concepts yielded a solid, multi-purpose platform, 
TextGrid is looking for further technology convergence 
between the two contexts. 

DARIAH4 establishes a digital research infrastructure 
for the humanities in Europe. It is composed of a number of 
humanities data archives that aim to federate their holdings 
and jointly build a distributed virtual repository. Massive 
amounts of data expected from image and video assets are 
best stored and replicated in national grid infrastructures. 

 
1 TextGrid. www.textgrid.info 
2 Globus. http://www.globus.org/ 
3 Fedora - Flexible Extensible Digital Object and Repository 

Architecture. http://fedora-commons.org/ 
4 DARIAH - Digital Research Infrastructure for the Arts and 

Humanities. http://www.dariah.eu/ 
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Thus, while DARIAH builds primarily on Fedora and its 
content modeling capabilities, it seeks integration with grid-
based storage infrastructure. 

These projects - as well as others [2] including Shaman5, 
eSciDoc6, and D4Science7 - exhibit the following traits and 
more: 

(1) work with large volumes of research data that is to be 
backed up and replicated across distributed locations in 
order to ensure bit-preservation. 

(2) require administrative workflows to ensure proper 
ingest and indexing of the data as well as long-term 
maintenance of the archive. 

(3) are open to scientific workflows as well as (external) 
interactive applications, possibly as entry-points into a 
variety of different virtual environments. 

(4) may federate with other repositories and services to 
share content through open interfaces such as those 
provided by the Open Archives Initiative (OAI)8. 

In our search for suitable patterns that combine 
infrastructure and repository technologies, we probed 
various approaches: using Cleversafe9 as a virtual file 
system, iRODS10 integration, as well as a RESTful 
abstraction upon the Storage Resource Manager SRM11. 
While we cannot provide a silver bullet to all questions 
involved, this analysis may help projects confronting 
similar questions by offering patterns for integrating 
scientific infrastructure with interactive applications. 

A. Cleversafe, transparent storage 

Cleversafe dubs itself a "dispersed storage" network, 
which was available in version 1.1 at the time of writing 
(April 2009). Cleversafe is open source software developed 
by a company as their key product. At the basis of the 
Cleversafe software is an algorithm, which chunks data into 
pieces, spreads them over data nodes, and performs error 
correction for fault tolerance (a Reed-Solomon Code). This 
algorithm displays stability in the face of failing nodes, 
good read performance from redundant, distributed nodes, 
and increased security as single nodes only merely 
accommodate encrypted data chunks. A Cleversafe storage 
'vault' can be mounted via iSCSI and hence works as a 
virtual file system. 

We used an early version of Cleversafe (Version 0.7.8, 
November 2007) and installed six virtual CentOS 5 nodes 
for the storage network. This purely experimental setup, in 
addition to the fact that we used an early version of the 
software resulted in rather slow access rates - hence, 
performance is no criterion in this experiment. Cleversafe 
was used to store the digital objects of a Fedora 2.2 

 
5 SHAMAN - Sustaining Heritage Access through Multivalent 

ArchiviNg. http://shaman-ip.eu/ 
6 eSciDoc. http://www.escidoc.org/ 
7 D4Science - DIstributed colLaboratories Infrastructure on Grid 

ENabled Technology. http://www.d4science.eu/ 
8 OAI - Open Archives Initiative. http://www.openarchives.org/ 
9 Cleversafe. http://www.cleversafe.org/ 
10 iRODS - Integrated Rule-Oriented Data System. 

https://www.irods.org/ 
11 SRM - Storage Resource Manager. http://sdm.lbl.gov/srm-wg/ 

repository, running on Ubuntu Linux. No adaptation of the 
Fedora repository was necessary for this, the Fedora 
installation was out of the box. 

Regarding the technical requirements formulated above, 
Cleversafe promises to scale to any size and offer support 
for storage management, and it can be distributed. A single 
Cleversafe network can only be shared read-only, since 
multiple iSCSI initiators writing data at the same time could 
compromise data consistency. Hence, a journaling 
configuration with fail-over can be installed easily, yet 
multiple entry points for ingest cannot be provided on an 
infrastructure level. 

Cleversafe offers general purpose, replicated storage, yet 
it does not facilitate repository-specific functionality 
through administrative workflows or abstraction of 
repository data management (folder structure, file naming 
conventions, etc.). Moreover, due to the distribution 
algorithm, it is hardly possible for adapting Cleversafe 
accordingly. 

B. Opening up iRODS 

Where Cleversafe offers an austere data grid with 
transparent replication, iRODS is functionality-wise clearly 
at the other end of the spectrum. Developed by the DICE 
team12 around Reagan Moore - formerly at the San Diego 
Supercomputing Center, now at University of North 
Carolina, Chapel Hill -, iRODS is a data grid software 
system. So-called rules that are capable of triggering 
microservices allow comprehensive adaptation of 
administrative workflows and hence of tailoring the data 
grid to the respective application environment. Besides low-
level data grid and administration functionality, it intends to 
offer graphical applications such as an AJAX-based web 
interface as well. As such it offers the whole stack of 
repository functionality, from low-level data management to 
user interfaces. 

Despite this broad spectrum of activities, iRODS has not 
yet comprehensively addressed interactive functionalities, 
particularly workflows such as ingest procedures for 
authors or more sophisticated object modeling capabilities. 
For example, the DSpace13 repository offers a 
comprehensive user community model, and Fedora offers 
more advanced metadata and content modeling 
mechanisms. Various projects are hence looking into 
combining iRODS with DSpace respectively Fedora. 

Various ways on how to integrate iRODS with 
repositories such as DSpace and Fedora are conceivable. 
The following integration scenarios refer to the four 
requirements cited in the introduction to this article: 
1. iRODS objects as external datastreams - some 

repositories including Fedora are capable of managing 
the metadata of digital objects that are outside of their 
stores. While this allows for referencing objects stored 
in an iRODS data grid and possibly attaching behaviors 
to them (e.g. Fedora [3], aDORe DIM [4]), the 

 
12 Data Intensive Cyber Environments Research, DICE. diceresearch.org 
13 DSpace. http://www.dspace.org/ 



 

 
 

repository has no means for managing the object (audit 
trails, versioning, etc). - requirement 1 (iRODS); 2, 3, 4 
(repository) 

2. using iRODS as a repository storage module - instead 
of storing data locally on the the repository server, 
iRODS provides a distributed storage layer. The Jargon 
Java API for iRODS is used for directly implementing 
the storage handler into the repository. DSpace offers 
support for the Storage Resource Broker14 and iRODS 
as part of its general release. Furthermore, in a joint 
effort the DSpace and Fedora teams aim to develop a 
generic storage handler with a plug-in mechanism [5] to 
accommodate iRODS and just any other storage 
handler. However, while this possible integration is 
acknowledged, it falls short in using available 
capabilities in iRODS for rule management. - 
requirement 1 (iRODS); 2, 3, 4 (repository) 

3. iRODS microservice and rule support - one step 
further from a simple virtual storage, iRODS could 
define rules for parsing a newly deposited object on 
ingest, extract the metadata into the ICAT database, and 
hence activate its low level rule support. With all the 
features available in iRODS, this is technology-wise a 
minor step to take, yet demands a higher level of 
coordination between iRODS and the repository: 
metadata management is being replicated in both, 
iRODS and the repository, and they need to be 
synchronized. Behaviors on iRODS and the repository 
level must not interfere with each other. - requirement 
1,2 (iRODS); 2, 3, 4 (repository) 

4. integrating iRODS into the repository landscape - 
since iRODS is offering the complete stack of repository 
functionality up to user interfaces, iRODS could fully 
integrate into the emerging repository landscape. 
Standards such as Zing15, OAI-PMH16, and OAI-ORE17 
have shaped and will continue to shape an ecosystem of 
federated repositories with meta-portals and external 
service providers. However, iRODS is not currently 
offering any standards-based API's. - requirement 
1,2,3,4 (iRODS); 2, 3, 4 (repository) 
While there may be other approaches, these four patterns 

exemplify various integration levels of infrastructure and 
repositories - integration of specific systems as well as 
integration in open ecosystems with a variety of 
technologies and interests. Please note the dramatic 
difference between the first and the last pattern with regard 
to openness. While the first pattern is defined by the 
openness of the repository, the last one offers standards-
based entry points on an infrastructure level, thus fostering 
the emergence of attached repository environments. 

It is obvious from the above that infrastructure like 
iRODS and repositories like DSpace and Fedora are starting 

 
14 SRB - Storage Resource Broker. http://www.sdsc.edu/srb/index.php 
15 Zing, SRU/SRW. Library of Congress. 

http://www.loc.gov/standards/sru/ 
16 OAI-PMH, Open Archives Initiative: Protocol for Metadata 

Harvesting. http://www.openarchives.org/OAI/openarchivesprotocol.html 
17 OAI-ORE, Open Archives Initiative Protocol: Object Exchange and 

Reuse. http://www.openarchives.org/ore/ 

to overlap functionality-wise. Despite a possible loss of 
synergies, overlapping technologies are no problem as such. 
On the contrary, if usage patterns and communities overlap 
as well, this may be a breeding ground for standards, 
mutual services and other components effective ecosystems 
build upon. 

C. SRM in an S3-like abstraction 

Instead of seeking an even larger and even more 
comprehensive system, this approach returns to the very 
core of scientific infrastructure. The Storage Resource 
Manager (SRM)18 [6] stems from the high energy physics 
community where it serves as one of the grid middleware 
components to distribute the massive data influx from 
experiments such as the Large Hadron Collider at CERN19. 
The SRM is a standard protocol for initiating transfer 
between storage resources. It therefore is capable of 
mediating between storage components of various types, 
transfer protocols, and other grid components. To sustain 
the large amounts of data from experiments, SRM is geared 
towards performance and works on a block level, providing 
low-level functionality on files and storage space. 
Specialized functionalities include pinning of files (i.e. 
locking for a defined time), space reservation, and others. 

SRM is a versatile, pivotal grid standard, and it is highly 
interlinked with its environment. We first evaluated 
whether SRM could be plugged into a repository as a 
storage handler, similar to how iRODS can be plugged into 
DSpace. Since SRM is not a transfer protocol itself but a 
mediator, transfer protocols such as GridFTP, DCache 
dccp, or globus-url-copy are required as well. When 
operating in a grid environment, the user needs a grid 
certificate as well as authentication mechanisms such as 
grid-proxy-init and the like to authenticate. Hence the 
certificate as well as security related protocols have to be 
available at the client. The officially supported client library 
called GFAL20 - Grid File Access Library - is based on C 
and Python21, respectively the package "lcg_util" provides 
convenient command-line tools. 

As an interface between a grid node (SRM) and a web 
server (the repository), we hence looked for a lightweight 
interface that is capable of translating between the two 
worlds. Usage patterns for repository-based applications 
clearly differ from those needed in scientific infrastructure. 
Performance requirements are absolutely central in the 
latter, whereas in web contexts we can compromise on 
some of the tuning parameters in order to simplify 
communications. Existing cloud services are a premier 
model for translating between infrastructure and the web. 
Cloud services like those by Amazon22 offer both, REST 
and SOAP-based interfaces. Despite its simplicity, REST-

 
18 SRM - Storage Resource Manager. http://sdm.lbl.gov/srm-wg/ 
19 CERN openlab for DataGrid applications.  www.cern.ch/openlab 
20 Grid File Access Library - GFAL. http://www-

numi.fnal.gov/offline_software/srt_public_context/GridTools/docs/data_gf
al.html 

21 respectively other programming languages through SWIG (Simplified 
Wrapper and Interface Generator), http://www.swig.org/ 

22 Amazon Web Services. http://aws.amazon.com/ 



 

 
 

based protocols satisfy all the needs of the web community. 
Instead of defining yet another API, we hence decided to 

re-engineer the REST API of the Amazon S3 storage 
service as an interface between the grid environment and 
the repository. An experimental implementation of the S3 
interface uses Python WSGI (Web Server Gateway 
Interface)23 and works fine - S3 libraries like Jets3t24 can be 
re-rooted from the Amazon cloud to our re-engineered 
cloud-like interface. There already is a DSpace storage 
handler implemented upon the Jets3t library,25 which is 
planned to be implemented upon our re-engineered cloud. 
First, however, we will take performance measurements and 
analyze the feasibility of this setup in a productive 
environment. Further analysis will be made available in the 
next few weeks. While also not part of the experimental 
setup, authentication, of course, is an important issue. We 
are observing closely the progress of projects like IVOM26, 
which aim to integrate Shibboleth27 into grid environments. 
Shibboleth allows for single sign on of users via their home 
institution. The approach for Short Lived Credentials in 
IVOM and similar projects appears to be very promising 
also for an architecture as sketched here. The S3 protocol 
also contains the two configuration options "location" and 
"storage_class". While the latter is apparently unused by 
Amazon, it offers a mechanism to define replication policies 
on a repository level which can then be executed in the 
infrastructure accordingly. One possible scenario may be a 
storage class "confidential, valuable", which triggers the 
infrastructure to replicate the asset in three distributed data 
centers with particularly high security measures, rather than 
the two copies made in the case of a "standard" storage 
class. 

The advantages of such a loosely-coupled, HTTP/REST-
based architecture are manifold: 

The interface between the repository and the cloud-like 
service is obviously very light-weight. Due to the loosely-
coupled architectural paradigm, the interdependencies 
between infrastructure and application (in this case: the 
repository) are minimized and the two can evolve 
separately.  

So why not build on Amazon S3 from the outset? Using 
S3 is an option, of course, yet most of the research data we 
are holding is unique and valuable. While Amazon 
promises multiple copies of each file and an uptime of more 
than 99%, we don't know whether Amazon will still be 
there and offer on-demand storage in 20 years. Even 
replicating to and switching between multiple cloud 
providers is no option to us. We have substantial storage 
resources locally and within the D-Grid national computing 
infrastructure. Moreover, we appreciate some control over 

 
23 WSGI - Python Web Server Gateway Interface, PEP 333, v1.0. 

http://www.python.org/dev/peps/pep-0333/ 
24 JetS3t - Java toolkit for Amazon S3. https://jets3t.dev.java.net/ 
25 DSpace 2.0/Pluggable Storage. DSpace Wiki. 

http://wiki.dspace.org/index.php/DSpace_2.0/Pluggable_Storage 
26 IVOM - Interoperability und Integration of VO-Management 

Technologies in D-Grid. http://www.d-grid.de/index.php?id=314&L=1 
27 Shibboleth - authorization/authentication in web environments. 

http://shibboleth.internet2.edu/ 

the infrastructure both organizationally and technologically, 
which allows us to advance the interface to include 
specialized functionalities as well. 

A generic repository storage API and a decoupled 
architecture pattern like this enables other services to tie 
into the system environment. Multiple repositories can build 
on a single storage, and even specialized services e.g. for 
format conversion or other administrative tasks are 
conceivable to work directly at the level of the S3 API. 
Administrative workflows triggered by the repository, yet 
executed on the storage level may boost overall scalability 
of the system environment considerably. Moreover, this 
loosely-coupled approach may trigger the creation of low-
level repository services and hence a variety of agents 
interacting in an open repository ecosystem. 

III. LOOSELY-COUPLED PATTERNS 

The three experiments outlined in the last chapter moved 
from a purely localized system, to a tightly integrated 
system with a proprietary API, to a light-weight and open 
service architecture. This catharsis resonates with similar 
experiences in other contexts. Initiatives looking at the big 
picture such as the JISC Information Architecture (2005, 
[7]) noted that repositories are part of a larger environment 
of services, including authentication/authorization services, 
format and service registries, and various other components. 
Even the components defined in the JISC architecture are 
expected to be supplemented with other components over 
time. Repositories are by nature open environments, as 
opposed to controlled systems with defined borders. 

An open interface such as the S3-derivate described 
above is, of course, not yet an open environment of loosely-
coupled services. So what kinds of architectural patterns are 
conceivable with this generic, HTTP/REST-based 
interface? This section describes two patterns building on 
the storage interface, which may spawn a variety of 
different agents and services. 

A. Search and analysis 

Search is an extremely important functionality for 
repositories, as it is often the primary entry point for users 
into the repository collections. The TextGrid project [8], for 
example, offers a set of search mechanisms with increasing 
sophistication: keyword search in just all the content; 
metadata search for specifying authors, title, or other 
structured information; as well as XQuery-based search28, 
which works on the XML data model underlying a given 
document. All of them are directly at the core of the 
TextGrid functionality, yet only separation of the search 
mechanism from the repository core yielded an architecture 
that was sufficiently scalable for the number of digital 
objects as well as concurrent users to be expected. 

Digital objects ingested into the repository are stored and 
preserved in a storage vault, based on the Globus Toolkit. 
Each object is assigned a unique identifier (URI) for 
retrieval. At the same time, an object's metadata is stored 
 

28 XQuery - an XML Query Language. http://www.w3.org/TR/xquery/ 



 

 
 

into a metadata database. If an object is in XML format, it is 
additionally stored into an XML-database, which allows for 
the XQuery-based search mechanism. So, the object is 
stored twice (and the metadata three times), once for 
preservation and once for analysis, separate from each 
other. Consistency between the redundant objects is 
maintained since the storage module pushes all incoming 
XML-objects directly to the databases. 

This approach of redundant storage in separate services 
may appear obvious in the days of Google. Or also for the 
experiments in high energy physics mentioned above, 
which use separate grid nodes for storage and 
computational analysis respectively. However, it is only 
possible with an open interface directly on the storage level. 
Various types of added-value services using this pattern are 
conceivable, including text mining, data clustering, and 
monitoring. 

B. Preservation services 

Another core repository responsibility is preservation. 
Many of the tasks involved in preservation cannot feasibly 
be realized by one repository alone. Subsequently, there are 
numerous preservation efforts shared by the repository 
community, including the PRONOM format registry29, the 
validation and metadata extraction tool JHOVE30, or mass 
conversion in the CRiB project31. In various initiatives these 
tools are nested into light-weight preservation services to be 
attached to repositories. 

The preservation services mentioned above exhibit a 
variety of different patterns. Many of those services are 
outside of the repository, yet are embedded in repository 
workflows. For example the metadata extraction for format 
identification, which is performed on ingest with the 
resulting metadata being passed along with the object to 
storage. However, for mass-conversion objects are ideally 
taken directly out of the storage, processed at a dedicated 
server, and subsequently returned back for storage. While 
the action is triggered through the preservation manager 
from within the repository, the conversion service is outside 
of the repository and communication is for the most part 
between the conversion service and the storage environment 
directly. Again, this harvesting pattern is only possible 
through open interfaces on a storage level and some level of 
decentralization. 

C. Generic patterns 

Looking at the two cases above, both display the traits of 
usual push and pull patterns. In the search/analysis 
example, the storage infrastructure pushes immediately a 
newly ingested object to the external agent. The conversion 
service harvests data from the storage infrastructure, thus 
pulling the valuable content out of storage. 

In web environments, a pull-architecture is very common 

 
29 PRONOM. http://www.nationalarchives.gov.uk/pronom/ 
30 JHOVE - JSTOR/Harvard Object Validation Environment. 

http://hul.harvard.edu/jhove/ 
31 CRiB - Conversion and Recommendation of Digital Object Formats, 

http://crib.dsi.uminho.pt/ 

in web environments. Roy Fielding, in his dissertation 
about networked-based software architectures, even states 
that "the scale of the Web makes an unregulated push 
model infeasible" [9]. The reason for this is not because 
one-to-many communications in web environments are 
generally infeasible, but rather since in an uncontrolled 
environment the server cannot just push out content to the 
world since the largest part of the world is just not 
interested. Push models that work in a web environment is 
event notification by subscription. Thus, all interested 
agents could subscribe at the storage infrastructure e.g. for 
the event "creation of new object", or another CRUD 
operation (Create, Read, Update, Delete). The subscription 
pattern is similar to the XML-database example mentioned 
above, and makes push in a web environment feasible. 

Faithful to its strong roots in the web environment, 
Amazon S3 enables pull, yet no push. S3 offers no event 
notification in the sense of subscribing to CRUD operations 
outlined above. To benefit from push patterns, subscription 
has to be done either on an application respectively a 
repository level, or an additional notification service is 
retrofitted onto S3. While avoiding complex functionality at 
the cost of efficiency or generality, this could be done as an 
index of all content in the storage infrastructure. This index 
would contain - apart from the name of the object and 
maybe few other low-level metadata - also the date of 
creation and last update. It is the combination of a light-
weight, loosely-coupled interface with mechanisms to allow 
for pull and maybe also push-based patterns, which offers a 
fertile breeding ground for independent agents and, hence, 
for a healthy ecosystem. 

IV. RELATED WORK 

Many fields have been infected by the cloud buzz and are 
looking for ways to cloud-enable their applications. As this 
paper outlines, using RESTful infrastructure services in a 
repository ecosystem is not just a cool fad, but a necessary 
next step in repository evolution [10]. A RESTful approach 
clearly excels over the tighly-coupled approaches analyzed 
in Cleversafe and iRODS. 
While some repository systems have been looking into 
cloud technologies [5, 11], a serious attempt in linking 
repositories into national (grid) infrastructure has been 
missing. Similarly, the opportunities for repositories in 
loosely-coupled patterns have not been explored until 
recently. 
The grid community has been discussing the rise of clouds 
intensely. When it comes to linking grids and clouds, some 
grid experts have suggested using clouds as hosts for grid 
software [12, 13]. The idea for using cloud-like interfaces 
to provide access to grid resources - as suggested in this 
paper - has also been picked up, and has been submitted for 
discussion at the Open Grid Forum.32 

 
32 Ignacio M. Llorente, Thijs Metsch: Cloud Interface API - BoF. 

(March 2009) http://www.ogf.org/OGF25/materials/1567/Presentation.pdf 



 

 
 

V. CONCLUSIONS 

Requirements and usage patterns in scientific 
infrastructure and interactive (web) applications 
increasingly share common requirements. The approaches 
for bridging the gap between those two contexts presented 
here show the way towards decoupling system components.  

The Cleversafe experiment was insufficient as to the 
requirements initially posed, and is clearly surpassed by an 
iRODS approach. iRODS offers a multitude of 
functionalities and is designed to support all conceivable 
requirements for data-intensive grids. The third experiment 
went another route. Rather than exploring systems 
combining even more functionality it created an open, 
generic interface for just anybody to plug into. While 
providing only little functionality in itself, the open and 
simple interface potentially triggers the collaboration of 
various agents. It has the potential of satisfying all 
requirements formulated at the beginning of this paper, and 
possibly even more. 

As the "Common Repository Interface Group" CRIG33 
persuasively cites: "The coolest thing to do with your data 
will be thought of by someone else." Openness and 
simplicity facilitate the interaction of independent agents 
and may hence be the very core of digital ecosystems. 
Digital ecosystems of course emerge and evolve over time, 
but the repository community has the potential of becoming 
an open ecosystem that overcomes community borders. 

Lastly, there has been much discussion about grids 
versus clouds. This paper shows that grids and clouds may 
interact smoothly. After all, they both follow similar goals 
in virtualizing resources and simplifying the lives of their 
users. While they may address different usage patterns34 
and thus offer different user interfaces, they share similar 
technical characteristics. From this it seems that merging 
grids, clouds, and interactive repositories seems like a small 
step away, and the light-weight interfaces on multiple layers 
may trigger entirely new patterns and actors in the ongoing 
evolution of those digital ecosystems. 
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