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ABSTRACT: After noticing poor rock penetration performance during pile excavation works, contractor induced additional site investigation to support his claim on higher rock strength than previously inspected. Results of 115 point load tests and 97 uniaxial tests were fitted to Weibull and Gamma probability density functions. One-sided confidence interval with confidence level of 95% (CI95) for strength value which is higher than 95% of population (i.e. 95% percentile) was obtained with "Likelihood Ratio Confidence Bounds" method. Suggestion on number of specimens is given for percentile interval estimation in future geotechnical investigation works. 
1 InTroduction 
Poor rock penetration performance plus high wearing of equipment were noted during pile excavation works for a reconstruction of passenger port Dubrovnik, Croatia. Piles of 1800 mm diameter were excavated trough surface deposits, mud, hard to stiff clay and penetrated for 4.50 m in carbonate limestone/dolomite rock. Contractor expressed doubts on range of previously obtained rock strengths from geotechnical report, which gave unconfined compression strength (UCS) of 7 specimens, in range from 31 to 137 MPa. Reported rock strengths, together with rock quality designation (RQD) were basis for excavation equipment selection. To explore his doubts, 11 additional investigation boreholes were performed. 
Ten investigation boreholes were positioned on a zone previously described as compact limestone rock mass were poor excavation performance encountered and one in zone previously described as highly fragmented and weathered limestone/dolomite rock mass (Vrkljan et al. 2007).

Overall 97 cylindrical samples were uniaxially tested in compression with results in range from 21 to 262 MPa. In addition to UCS, 115 point load tests (PLT) were reported (from 15 to 185 MPa UCS equivalent), but tests specimens for both test methods were not all obtained from same locations. All UCS strengths were corrected to L / D = 2 standard specimen ratio (Thuro at al. 2001), and PLT specimens were transformed to UCS strengths with conversion factor 24 (Rusnak et al. 1999). 
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Figure 1. PLT correlated to UCS histogram and applied fits (dash line Weibull and continuous line Gamma).

Excavation performance is mainly influenced by several factors as; excavation method, machinery features, working place (on shore/off shore), periods of breakdown and maintenance, weather conditions, presence of boulders and fissures, slope of bedding planes (rock surface), supervision and motivation, intact rock characteristics, rock mass characteristics and experience (competence) of operator and his crew (Bunning et al. 2007). This article deals only with intact rock characteristics and offers statistical method for estimation of strength value, which is with certain confidence level (e.g. 95%) higher than selected percent of intact rock population (e.g. 95%). Described procedure could be used in future projects where intact rock strength plays important role in excavation equipment selection. 
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Figure 2. PLT correlated to UCS cumulative distribution (dots) and applied fits (dash line Weibull and continuous line Gamma). 

2 Weibull and Gamma distribution functions

Results of PLT and UCS tests were fitted to Gamma and Weibull probability density functions. The probability density functions (PDF) f(x;θ), for both PLT and UCS data are assumed to be continuous, non negative and two parameter. Weibull PDF (Figs 1, 3) is defined with relation: 
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(1)
where x = random variable; e = the base of the natural logarithm; kW > 0 is shape parameter and  > 0 scale parameter. Gamma PDF is defined with relation:
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(2)
where  = Gamma function; kG > 0 is shape parameter and θG > 0 scale parameter. 
The cumulative distribution function (CDF) F(x;θ), is defined as integration of PDF f(s;θ) (Figs 2, 4), from -∞ up to a variable x: 
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where symbol  presents Weibull parameter list values {kW, } or Gamma parameter list values {kG, θG}.
The Weibull and Gamma distributions are used in engineering for reliability analysis which deals with failure times in mechanical systems (i.e. life data analysis). In this article, PLT correlated to UCS and UCS data corresponds to random variable x. 

3 Estimation of parameters for Weibull and Gamma distribution

Parameters of Gamma and Weibull distribution fits (See Figs 1, 3) were estimated by the "Maximum Likelihood" (ML) method, as better estimator of parameters for large samples than "Matching Moments Method" (Lloyd & Lipow 1962). Weibull distribution has better fit than Gamma for PLT correlated to UCS data, while Gamma distribution has better fit than Weibull for UCS data, all in terms of greater likelihood function value. ML parameters for Weibull and Gamma PDF fitted to PLT and UCS data are shown in Table 1, where L is value of likelihood function.
Table 1. Maximum likelihood parameters for Weibull and Gamma PDF fitted to PLT and UCS data.

___________________________________________________

Data sets



PLT corre-




UCS












lated to UCS
















____________


_______________

No. specimens


n = 115





n = 97



___________________________________________________

Weibull fit

A
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Gamma fit
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G = 19.436
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Figure 3. UCS histogram and applied fits (dash line Weibull and continuous line Gamma).

Likelihood L of observed n independent specimen values x1, x2,…, xn, from the same rock type, in volume area of interest, with continuous PDF f(x;), with parameters , is defined with relation:
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Principle of maximum likelihood states that best parameters  are those which maximise probability of observing already observed UCS specimen values. ML parameters are those which satisfy relation:
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where θ* are parameter values which maximize the L function. If derivatives of the likelihood function exist then it can be done using relation:
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Solution of this equation will give ML values of . 
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Figure 4. Cumulative distribution of UCS (dots) and applied fits (dash line Weibull and continuous line Gamma).
4 Likelihood ratio confidence bounds

When some extent of UCS data are collected, then there is natural interest of interval estimation which would, with certain confidence level, "cover" true unknown UCS value, which is higher or lower than certain percent of all expected UCS specimens. UCS variable value which is higher than certain percent of all expected UCS samples is called percentile xF(x;θ) and is commonly represented with cumulative distribution function F(x;θ) (Figs 2, 4). 

For example we are interested in UCS percentile estimation which is higher than 95% (F(x;θ) = 0.95, denoted as UCS95) of all expected UCS values, with confidence level of 95%, for excavation equipment selection. Or, we are interested in UCS value estimation which is lower than 95% (UCS5) of all expected UCS values, with confidence level of 95%, for roof support or pillar design calculations. 

Estimated interval of possible percentile xF(x;θ) values is called Confidence Interval (CI) (Hudson 1997). As width of CI depends of confidence level δ, it is usual to denote it as CIδ. "Confidence bounds" are the lower and upper boundaries/values of a CI. Two-sided confidence bounds, define interval in which wanted percentile xF(x;θ) is likely to lie, while one-sided bounds defines the values from where a certain percentage of the population is either higher or lower. For two examples of interest from previous paragraph, determination of one-sided upper confidence bound estimation is required in former case and one-sided lower confidence bound estimation is required in latter case. 

Likelihood ratio (LR) test statistic with asymptotic Chi-square distribution 2 provides an approximate method for obtaining CI both for parameters as well as for variable estimation around certain percentile:
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where L(θ) = the likelihood function, consisting the true unknown parameter list values θ, from the same rock type, in space volume of interest, L(θ*) = the likelihood function value calculated with parameters estimated by means of ML method, k = the chi-squared statistic with probability  and k degrees of freedom.
For large number of specimens with known parameter values θ, function -2[ln(L(θ)) – ln(L(θ*))] is approximately distributed as 2 random variable with one degree of freedom (k = 1). Chi-square statistics is calculated accordingly to purpose of estimation. When dealing with one set of specimen data and estimating CI, than k = 1. If comparing two data sets to determine whether the two sets are significantly different, than k = 2. Probability  equals confidence level δ for two-sided, and α = (2δ – 1) for one-sided confidence bounds estimation. At the prescribed δ confidence level for parameters estimation, CI consist of all parameter values that would not be rejected at the (δ – 1) significance level. 
The values of the parameters that satisfy Equation 7 will change based on the desired confidence level δ, and degrees of freedom k, but at a given value of δ and k, there is only a certain region of values for θ for which Equation 7 holds true.
4.1 Likelihood Ratio Confidence Bounds on Parameters

Parameters of estimated distribution fits and their confidence intervals are not of great interest for rock engineering purposes, but understanding procedure of calculation could be helpful when dealing with UCS CI. Since the values of the parameter estimates θ* have been calculated using ML methods, the only unknown term in Equation 7 is the L(θ) term in the numerator of the ratio. For Weibull and Gamma distributions with two parameters, the values of these two parameters can be varied in order to satisfy Equation 7. Boundary of region which satisfies Equation 7 could be graphically represented by contour plot. Finding points of contour is an iterative process that requires setting the value of first parameter (e.g. kW) and calculating the appropriate value of other parameter (), and vice versa. Note that 2 is calculated with degrees of freedom k = 1, as dealing with only one set of data. 

4.2 Likelihood Ratio Confidence Bounds on variables (UCS)
For estimation of UCS confidence bounds trough contour plot with certain F(x;θ) value, unknown term L(θ) in Equation 7 should be rewritten in manner that one parameter (e.g. kW) stays in likelihood function and other parameter () should be related trough desired F(x;θ) and UCS value. Finding points of contour is an iterative process that requires setting the value of first parameter (kW) and calculating the appropriate values of UCS for desired F(x;θ), or vice versa. Example of similar procedure for Weibull PDF is shown at "Likelihood Ratio Confidence Bounds" chapter (ReliaSoft Corporation, 2006). In this calculation procedure, set of values in list {kW, UCS} or {kG, θG, UCS} are calculated together for one contour point of wanted CI. For one UCS value on higher or lower boundary of CI, only one set of parameters θ is obtainable, while for UCS values inside of boundaries of CI two sets of variable values are obtainable. 

Figure 5 shows one-sided confidence bounds for PLT and UCS data sets fitted to Weibull (upper) and Gamma (lower graph) distribution. One-sided CI95 are obtained for UCS95 ( = 0.90 and k = 1). Upper graph shows that PLTL = 130.86 MPa is Weibull estimation of one-sided lower bound of which 5% of all PLT correlated to UCS samples are higher, with confidence level of 95%. PLTU = 150.74 MPa presents Weibull estimation of one-sided upper bound of which 95% of all PLT correlated to UCS samples are lower, with confidence level of 95%. Similar statements are valid for UCS sample values with UCSL = 166.66 MPa and UCSU = 195.38 MPa.

Lower graph in Figure 5 shows one-sided confidence bounds for PLT and UCS data sets fitted to Gamma distribution. Values of one-sided confidence bounds for both distributions are given in Table 2. 
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Figure 5. UCS95 one-sided CI95 for two data sets. PLT samples correlated to UCS are presented with dash line and UCS samples with continuous line.
Table 2. Weibull and Gamma estimation of UCS95 one-sided CI95 confidence bounds for two data sets.
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U = one-sided upper bound, L = one-sided lower bound.
4.3 Inspecting difference between two data sets

From presented one-sided CI, differences between two estimated data sets are evident. In order to inspect significance of difference, one parameter (e.g. kW) versus other parameter () CIδ contour plot, for k  2 statistics, should be shown together in the same graph as in Figure 6. Two degrees of freedom is used for allowance of including the two data sets joint confidence region.

If there are no intersection between two plots, than two data sets with the assumed distribution are significantly different at confidence level δ. Increasing confidence level is widening contour plot around ML parameter estimation (centre), thus probability for no-significant difference gets higher i.e. probability of intersection gets higher.
Reason for significant difference, with 95% confidence level, lies in fact that specimens for different test methods were not obtained from same locations, and were not evenly distributed on site of interest.
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Figure 6. Comparing difference between two data sets.
5 Number of specimens discuSSion

What number of specimens n should be taken to obtain enough narrow and accourate CI? Intuitivly, as greater number of specimens, as narrower and accurate CI is. Simple relation between number of specimens and approximate mean value CI for Normaly distributed population is expressed with: 
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where z = represent the point on the standard Normal PDF such that the probability of observing a value greater than z is equal to (1 - ) / 2 (for example, if  = 95%, than z = 1.96 ), and  = standard deviation. 
Often in practice, estimation of UCS95 or any other UCS percentile estimation would be of more interest than mean value CIδ estimation. Rock strength population of interest, in reality has empirical distribution (Pauše 1993), which is neither Weibull, neither Gamma, but is approximately Weibull like, or Gamma like, or from group of any similar non-negative distribution like. Principally, rock UCS population distribution could not possibly be Normal nor of any left-tailed distribution type. Thus, UCS mean value, and standard deviation estimation should be understood only as collected specimens average and measure of spread. 

Gathering several specimens and averaging into samples is not appropriate if percentile estimation is of concern. Averaging would reduce spread of extreme specimen values, and distribution of samples would tend to look like Normal, which is expected outcome due to "Central limit theorem". 
In tribute to number of specimens discussion for UCS95 one-sided CI95 estimation, random sample strengths (n = 50, 100, 200 and 800 samples) which follow the Weibull and Gamma distributions were generated. Parameters of two Weibull and two Gamma distributions for random UCS generation are given in Table 1. Confidence bounds of Weibull generated random specimens are only fitted to Weibull distribution and Gamma generated specimens are only fitted to Gamma PDF. For each independent group of specimens (16 groups) ML estimation of group parameters as well as UCS95 one-sided CI95 was obtained. Figure 7 shows four one-sided CI95 for different number of specimens generated with parameters A from Table 1. As greater number of specimens, as narrower CI95, and closer to true value, but true UCS95 is not always precisely targeted, owing that to allowance of prescribed confidence level and nature of generating random events. Values of obtained CI95 widths in relation to number of specimens are shown as hollow circles in Figure 8. Same procedure was done with parameters B, C and D. 
Widths of UCS95 one-sided CI95 for each independent group of specimens is graphically related to number of specimens in Figure 8. Two hatched areas are bounding spread of Weibull and Gamma confidence intervals. Note that, in general, for same number of specimens Weibull distribution gives narrower confidence interval, as happened for two real data sets from Figure 5, where UCS95 confidence interval CI(A) < CI(C) and CI(B) < CI(D). 
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Figure 7. Contour plots for UCS95 one-sided CI95. Random UCS values are generated from Weibull PDF with parameters A (Table 1). Coordinate position of symbol + is placed on true (UCS95, kW ) value.

Presented graph in Figure 8 could help when planning geotechnical exploration works, as proposition what number of specimens should be prescribed to satisfy stipulated width of UCS95 one-sided CI95. 
Specimen number of 50-100 is minimal when making evaluation of any confidence interval, which could be too wide for reasonable engineering decision making. Range of 100-200 specimens ought to give enough accurate confidence interval for rock excavation equipment selection, and probably for other engineering purposes. More than 200 specimens would give narrower CI, but from there on narrowing of CI would be slow with specimen number growth. Thus, with specimen number growth, economical benefits of cheaper tests like PLT or Schmidt hammer rise.
6 Conclusion

For any percentile estimation in geotechnical investigation works, each possible specimen should have equal chance of being included in analysis. This could be done by planning investigation works in manner that extracted test specimens are evenly distributed in the one rock type volume formation of interest, each representing one volume part. If many specimens are extracted from one volume part than one random should be chosen for further percentile analysis.
Range of 100-200 specimens would be enough for percentile interval estimation. Specimens should be together presented with histogram, cumulative plot and best fitted to non-negative distribution type by means of ML method. Use of Weibull and Gamma two parameter distributions are appropriate. "Likelihood ratio confidence bounds" is recommended method when estimating one-sided or two-sided percentile confidence interval. 
Authors are encouraging engineers in effort to incorporate same method in estimation of other rock and geotechnical natural random properties (e.g. rock block volume distribution). 
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Figure 8. Widths of UCS95 one-sided CI95 for 16 groups of random specimens in relation to number of specimens. Specimens generated from parameters A, B, C and D (Table 1) are denoted as ○, ×, ◊ and □ respectively. Confidence intervals of two real data sets from Figure 5 are denoted as A, B, C and D. 
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