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Abstract: Friction is a very old and universal issue in all mechanical systems. Since friction 
is non-linear, it is an ever challenging problem. Several empirical nonlinear friction 
models have been proposed in the technical literature. This paper does not propose any 
new model but it presents a new, tensor product (TP) based representation of the existing 
friction models which is suitable for control design. The TP model transformation is a 
relatively new method for transforming certain nonlinear models into polytopic model 
form. The main advantage of the TP model transformation is that the most of the linear 
state feedback design methods including Linear Matrix Inequality (LMI) can immediately 
applied to the resulting polytopic models to yield controllers with guaranteed performance. 
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1 Introduction 

Friction is omnipresent and a constant issue in any mechanical system. In high 
precision applications as servo drives for instance, this can be a very annoying 
issue. Positioning can become really challenging. A proper model for friction 
could provide relief. However, mechanisms of friction itself are still not fully 
understood and accurately modelled. Simple linear friction models do not perform 
well in solving this problem. Nonlinear approaches have also been proposed with 
more or less success, many of them being based on empirically collected data. It 
has become obvious that the nonlinear behaviour cannot be modelled using linear 
models. In this paper a novel approach is presented, based on tensor product (TP) 
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transformation. The tensor product (TP) model form is a dynamic model 
representation whereupon Linear Matrix Inequality (LMI) based control design 
techniques [1]-[3] can immediately be executed. It describes a class of Linear 
Parameter Varying (LPV) models by the convex combination of linear time 
invariant (LTI) models, where the convex combination is defined by the weighting 
functions of each parameter separately. The TP model is not a new model in itself; 
it is rather a new representation of nonlinear systems that makes the design of the 
controller much easier. The TP model transformation is a recently proposed 
numerical method to transform LPV models into TP model form [4]-[6], so that 
linear control design methods can be applied for the linear components. An 
important advantage of the TP model forms is that the convex hull of the given 
dynamic LPV model can be determined and analysed by single variable weighting 
functions. Furthermore, the feasibility of the LMIs can be considerably relaxed in 
this representation via modifying the convex hull of the LPV model. 

A large number of theoretical models have been elaborated using TP during the 
last decade; however, few applications have been practically implemented yet, 
using TP transformations. The aim of the authors is to bridge this gap between 
theory and application. 

The paper has the following structure. The next section briefly presents different 
friction models, then section 3 introduces the mathematical framework of the TP 
transformation, section 4 presents the simulations and measured results. Finally 
section 5 sums up the conclusions. 

2 Friction Models Overview 

Friction is a physical phenomenon and expressed in quantitative terms as a force 
Ff, being the force exerted by either of two contacting bodies tending to oppose 
relative tangential displacement of the other [7]. We can differentiate between 
three types of friction as static, sliding and rolling. This paper concentrates on the 
first two forms of occurrence. As apparently no movement occurs we are talking 
about static friction. We talk about sliding friction, when the applied force F is 
great enough to cause sliding. It is found that while the body moves in the 
direction of F, the friction force is smaller than F, collinear with F and pointing to 
the opposite direction. 

The easiest and probably the most well known model is the so-called Coulomb 
friction model. Though it greatly over simplifies the frictional phenomena it is 
widely used in the motion control problems, when dynamic effects are not 
concerned. Also, the Coulomb model is a common piece of all more developed 
models (see Fig. 1a). The Coulomb friction force Fc is a force of constant 
magnitude, acting in the direction opposite to motion )(tv . 
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When :0)( ≠tv ))((sign)( tvFtF cf −=  (1) 

 Nc FF μ= ,    (2) 

where FN is the normal component of the force pressing surfaces together and μ is 
the frictional factor. μ is determined by measurements under certain conditions. 
One of the biggest problems of the Coulomb model is, that it cannot handle the 
vicinity of zero velocity, hence the properties of motion at starting or zero velocity 
crossing, i.e. static and rising static friction Fs. To apply the model for those cases 
a μ0>μ factor has been introduced. 

When :0)( =tv Nsf FFtF 0)( μ=≤  (3) 

At motion start, it replaces μ in (2) until the process arrives to steady state. The 
values of μ and μ0 can be found in any major physics or engineering tabulations 
for different material pairs in both dry and lubricated conditions. The first 
tabulations of those kinds date back to the beginning of 18th century. 

The viscous friction element models the friction force as a force proportional to 
the sliding velocity: 

When :0)( ≠tv )()( tvFtF vf −=  (4) 

where Fv is the coefficient of viscous friction. 

The model is used for the friction caused by the viscosity of the fluids, specifically 
lubricants. A combination with Coulomb friction yields (see Fig. 1b): 

When :0)( ≠tv  )),((sign)( tvvFtF v
vf

δ⋅−=  (5) 

where δv is a geometry-dependent parameter. The model can be refined by adding 
the influence of an external force for the friction at rest. This, however, leads to a 
discontinuous function (see Fig. 1c). Here, an important contribution has been 
made by Stribeck. Armstrong-Hélouvry proposed a model which involves a 
nonlinear [8], but continuous function (see Fig. 1d): 
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where vs is the Stribeck velocity, δ is an empirical parameter, FS is the static 
friction force. A similar model was employed by Hess and Soom [9]. 
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The Stribeck curve is an advanced model of friction as a function of velocity (see 
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Fig. 1d). Although it is still valid only in steady state, it includes the model of 
Coulomb, static and viscous friction as built-in elements. There are several more 
advanced models in the technical literature. This paper does not intend to 
introduce any new friction model. Only a new representation of the existing 
models is proposed which is suitable for controller design. 
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v v
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c)        d) 

Figure 1 
Different friction curves (friction vs. velocity): a) Coulomb friction, b) Coulomb and viscous friction, 

c) influence of an external force in case of friction at rest added to the viscous friction, 
d) Stribeck curve 

3 Theoretical Background of the TP Transformation 

Consider a parametrically varying dynamical system: 

)())(()())(()(

)())(()())(()(
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+=
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with input mt ℜ∈)(u , output lt ℜ∈)(y  and state vector kt ℜ∈)(x . The system 
matrix is a parameter-varying object, where p(t)∈Ω is a time varying N-
dimensional parameter vector, and is an element of the closed hypercube Ω= [a1, 

b1]×[a2, b2]×...×[aN, bN] Nℜ∈ . The parameter p(t) can also include some elements 
of x(t). Given the LPV system description in (8), it can be reformulated using: 
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The final goal of TP model transformation is to express (10) in tensor product 
form considering different optimization and convexity constraints. 

3.1 Basic Steps of TP Model Transformation 

The details are in [4]-[6], here only the main idea is summarized briefly, since an 
open matlab toolbox is available at [10] for performing the numerical calculation. 
The basic idea is illustrated in Fig. 2 for case of N=1. 
 

2211 bb vwvw ⋅+⋅

)(tp)(tp

11 +++ kkkk vwvw

nv

3v
2v

1v

2bv

1bv
 

Figure 2 
Basic idea TP model transformation 

The p(t) is sampled in n points by vectors kv . Between the sampled points, p(t) is 
approximated by interpolation. It is well known that p(t) can be described by two 
orthogonal base vectors 1bv  and 2bv  in a properly selected coordinate system. 
This simple idea is generalized for TP transformation. 

In the first step, the transformation generates a discrete finite element TP model 
form from the system which can be described by analytical formulas, soft-
computing models, or real-world measurement data. For analytical and soft-
computing models it is performed by numerical discretization over a hyper-
rectangular grid, whilst for measurement data the measurement process is 
designed to directly result the discrete finite element TP model. The system is 
known in the discrete points and an interpolation technique is necessary between 
the discrete points. The explicit form of the tensor product then becomes 
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where there are ∏
=

=
N

n
nIR

1
 vertex discrete LTI systems denoted 

l)(km)(k
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+×+ℜ∈,...,, 21
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n
I

nin tpw ℜ∈))((,  is the in
th weighting 

or interpolation function belonging to the nth dimension of Ω and pn(t) is the nth 
element of the p(t) vector. In denotes the number of weighting functions used in 
the nth dimension of Ω. Note that the dimensions of Ω are respectively assigned to 
the elements of the parameter vector p(t). 

The Tensor Product (TP) model transformation is a uniform, numerical method. It 
is capable of transforming uniformly both in a theoretical way and as an applied 
algorithm the linear parameter-varying dynamic models (8) into parameter-
varying weighted combination of parameter independent (constant) system models 
(linear time-invariant systems) (11) taking into account different optimization and 
convexity constraints. Usually, there is no prior information on how the optimal 
LTI vertex systems can be selected, that is why density of the grids of the discrete 
system is usually high at the first step. The next step is the extraction of the 
minimal number of LTI vertex systems by HOSVD-reduction [11]. 

 
Figure 3 

HOSVD decomposition 

It is known from matrix algebra, that each matrix can be written in the form: 

VΛUA ⋅⋅=  (12) 

where A is an arbitrary n x m matrix, U is a matrix that contains the eigenvectors 
of the matrix AּAT; Λ contains the so called singular values in its diagonal. V 
contains the eigenvectors of the matrix ATּA again. Λ is a diagonal matrix, often 
denoted as a vector. The occurrence of zeros in matrix Λ allows us to decrease the 
size of matrix A. In case of a tensor, it has to be unfolded into bidimensional 
space, to form an ordinary matrix (first step in Fig. 3), then the singular value 
decomposition (SVD) can be applied, thus obtaining a simplified system. Finally 
the matrix must be packed back into its original tensor form. The above operations 
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can be performed along every dimension (Fig. 3), ensuring the best possible 
reduction of the system, resulting finally in a higher order singular value 
decomposition (HOSVD). 

4 Application 

The experimental system consists of a conventional DC servo gear motor with 
encoder feedback and variable inertia load coupled by a relatively rigid shaft, as 
shown in Fig. 4. The controller is implemented using a DSP as the computation 
engine detail description is in [12]. 

 
Figure 4 

The experimental system 

During the control design, the flexibility of the shaft was ignored as well as 
friction. The state variables are the shaft position, θ, the shaft angular velocity, ω, 
and the armature current, i, the control signal is the motor voltage u. 
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Here J is the inertia of the motion control system, Kt and Kω are the torque 
constant and the back-EMF constant, respectively, Ra and La are the resistance and 
the inductance of the armature. The effect of massd is considered as a disturbance. 
The viscous, Coulomb and Stribeck frictions were modelled by (7) in the 
following way, 
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where the second two terms are nonlinear and the signum function is 
approximated as 

1
)1(

2)(sign 500 −
+

= − ωω
e

 (15) 

Fv was given in the data sheet of the servo motor, Fc, Fs and ωs were determined 
through testing. Fig. 5 shows the simulated Stribeck curve. The model calculated 
from the rated parameters of the system is: 
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where Ω = [ωmin, ωmax]= [-4 , 4] Since equidistant sampling is applied and the 
sampling density must be high around zero velocity, the interval Ω is sampled at 
1370 grid points (even number is necessary to avoid division by zero). The 
sampled system is arranged into a tensor 

( ) 2x41370x
1370137011 ℜ∈= BABASω , (18) 

where tensor , ωS , has only two singular values (197.32*103 and 10.61*103). That 
is why the above nonlinear system can be modelled by two linear systems (it is a 
significant reduction of 2x41370xℜ∈ωS ): 
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The weightings ( ( )ω1w  and ( )ω2w ) are functions of the velocity as shown in Fig. 
6. The shape of the weighting functions is quite straightforward to explain. The 
nonlinear friction terms are modelled using a varying viscosity coefficient, which 
is represented by the a22 element in the system matrix. A1 with small viscous 
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coefficient dominates at high speed, where the Coulomb friction is relatively 
small. The A2 system matrix with very large viscous coefficient dominates at low 
speed, where the Coulomb friction is comparatively large. 
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       Figure 5                                                                           Figure 6 

       Simulated Stribeck curve                                  The weighting coefficients as function of velocity 

To verify the TP based model, the real and simulated velocities (ωr, ωs) are 
compared in Fig. 7, where the input voltage of the motor is a shifted sinusoid with 
an amplitude of 12 V (open loop response). The value of the input voltage is 
divided by 5 to plot the velocity and input voltage in the same figure. One kind of 
nonlinearity of the system stems from the huge friction of the harmonic gear. It 
can be seen in Fig. 7 that if the motor is at standstill, at least 2 V need to be 
switched across the motor to start it. On the other hand, the motor sticks, if the 
input voltage is under 1.2 V. According to Fig. 7, the simulated model is 
acceptable from an engineering point of view. 

The power electronic PWM unit is saturated at 22 V. It is also a kind of 
nonlinearity which could be handled using a TP model. Because this paper 
concentrates on friction, only the nonlinearity of the friction is considered. 
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Figure 7 

Open loop responses for sinusoidal input voltage 
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Three cases have been examined by simulation. In all cases, the system has the 
following initial state: 

θ=-0.1 rad,  ω=0 rad/sec and i=0 A. 

The aim of the controller is to move all state variables to 0. 

Case 1 (Linear Model-Linear Feedback: LM-LF) 

The servo system is modelled by a simple linear time invariant system ( 11 BA ), 
which models only the linear (viscous) friction. The state feedback controller is 
designed by pole placement. The poles of the closed loop system are selected as 

Pole=[-1 -1750  -2500] (20) 
The feedback gains are arranged in a row vector 

xK linu −= , where ]1.6189    88.7573   94.6970[=linK  (21) 

Case 2 (Nonlinear Model-Linear Feedback: NM-LF) 

The model of servo system is extended by nonlinear Coulomb and Stribeck terms, 
according to (16) and (17) but the controller is the same as in the previous case. 

Case 3 (Nonlinear Model-Tensor Product Feedback: NM-TP) 

The servo system is modelled by (16) and (17) as in the previous case. A TP based 
feedback controller is design for the TP model (19). Two feedback vectors 

21 and KK  are calculated by pole placement for both systems ( 11 BA ) and 

( 22 BA ) in a way that the poles of both closed loop systems are the same as 
(20). The control is calculated as the convex combination of the state-feedbacks of 
the two component systems in the following way: 
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rrwu ω  (22) 

where linKK =1  and ]4.0345-   359.0732  94.6970[2 =K  

The performances of these three cases are compared in Fig. 8. The Case 1, LM-LF 
is considered as the reference, i.e. the performance of a pure linear system with the 
closed loop poles of (20). It is clear that if the same linear state-feedback is 
applied and the model is extended by nonlinear terms, the system response is 
slower in Case 2, NM-LF. Because of the nonlinear terms, the servomotor will get 
stuck before it reaches its desired position and a constant steady state error 
remains. In case of a linear system, the steady state error can be eliminated by an 
integral term but the Coulomb friction might cause the well known stick slip 
phenomenon. The main advantage of the TP based control (NM-TP) is that it can 
eliminate the steady sate error without stick slip phenomenon, see Case 3, NM-TP 
in Fig 8. 
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Figure 8 

Closed loop responses of three systems 
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Figure 9 
Time functions of the weightings 

Conclusion 

This paper proposed a new approach for modelling the friction. It proved that this 
new approach is promising in the sense of the application of a linear control 
design method for a system which has nonlinearity because of the friction. The 
open Matlab toolbox performs the steps of Tensor Product based model 
transformation automatically. 
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