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“Uspjeh neke ideje u praksi, neovisno o njenim unutarnjim kvalitetama, ovisi o tome kakav stav 
prema njoj imaju suvremenici. Ako se pojavi u pravo vrijeme, ljudi je brzo prihvate; ako ne, tada 
je kao mladicu biljke toplina sunca namami iz tla samo s jednim ciljem – da je prvi mraz ozlijedi i 
uspori joj rast.” 
“The practical success of an idea, irrespective of its inherent merit, is dependent on the attitude 
of the contemporaries. If timely it is quickly adopted; if not, it is apt to fare like a sprout lured out 
of the ground by warm sunshine, only to be injured and retarded in its growth by the succeeding 
frost.” 

Nikola Tesla 
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FLERSKALIG UPPLÖSNINGSMETODIK FÖR MODELLERING AV VATTENFLÖDE 

OCH ÄMNESTRANSPORT I  HETEROGENA PORÖSA MEDIER 

 
Markprocesser karakteriseras ofta av fåtaliga fältexperiment, glesa mätningar, heterogenitet på 
olika skalor, slumpmässighet och relaterade osäkerheter, samt beräkningsmässiga svårigheter. 
Under de senaste årtiondena har olika beräkningstekniker och strategier blivit ovärderliga verktyg 
för att förutspå vattenflöde och ämnestransport i heterogena porösa medier. Denna doktorsav-
handling utvecklar ett angreppssätt med flerskaliga upplösningar baserat på Fup basis funktioner 
med kompakt stöd, som möjliggör en effektiv och anpassningsbar procedur, nära relaterad till 
rådande fysiska tolkningar. Alla flödes- och transportvariabler, så väl som heterogeniteten, be-
skrivs av en flerskaligt upplöst representation, i form av linjära kombinationer av Fup basis funk-
tioner. Varje variabel representeras på ett speciellt anpassningsbar gridnät med given noggrann-
het. Metoden appliceras för att lösa problem med skarpa fronter, samt vattenflöde och advektiv 
ämnestransport i starkt heterogena porösa medier. Adaptive Fup collocation metoden tillsam-
mans med den välkända Method of lines, spårar effektivt lösningar med skarpa fronter och löser 
upp positioner och frekvenser på alla rums- och/eller tidsskalor. Metoden ger kontinuerliga has-
tighetsfält och flöden, och möjliggör noggrann och tillförlitlig transportanalys. Analys av advektiv 
transport understöder stabiliteten i första-ordningens transport teori för låg och mild heterogeni-
tet. Utöver detta, som resultat av noggrannheten i den förbättrade Monte-Carlo metodiken, visar 
denna avhandling effekten av hög heterogenitet på ensemble statistiken för flöden och transport-
tider. Skillnaden mellan Eulerisk och Lagrangian hastighetsstatistik och betydelsen av högre  
statistiska moment för transporttider, indikerar hög heterogenitet. Det tredje transporttidsmo-
mentet beskriver huvudsakligen sannolikhetspiken och de långa transporttiderna, medan högre 
moment behövs för de korta transporttiderna, som har den största osäkerheten. En speciell upp-
täckt är linjäariteten i transporttidsmoment, som indikerar att advektiv transport i multi-
Gaussiska fält blir Gaussisk i gränsen. Som jämförelse konvergerar sannolikhetsfunktioner för 
den transversella transportförflyttningen mot en Gaussisk fördelning vid runt 20 korrelations-
längder efter injektion, även för hög heterogenitet. Förmågan i det presenterade angreppssättet 
med flerskalig upplösning, och resultatens noggrannhet, öppnar nya områden för fortsatt forsk-
ning. 
 
Nyckelord: Flerskalig upplösning; anpassningsbar upplösning; Atomic och Fup basis 
Funktioner; Monte Carlo metod; heterogena porösa medier; grundvatten flöde; advektiv 
transport; transporttider. 
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VIŠE-REZOLUCIJSKI PRISTUP ZA MODELIRANJE TOKA I  PRONOSA U 

HETEROGENOJ POROZNOJ SREDINI 

 
Procesi toka i pronosa u podzemlju obično su karakterizirani nedostatkom mjerenja, njihovim 
više-rezolucijskim i stohastičkim opisom te pripadajućom nepouzdanošću i kompleksnom anali-
zom. Posljednjih su nekoliko desetljeća različite računalne tehnike i metode postale nezaobilazni 
alati za predviđanje i analizu procesa toka i pronosa u heterogenim poroznim sredinama. U ovoj 
je tezi razvijen više-rezolucijski pristup temeljen na Fup baznim funkcijama s kompaktnim nosa-
čem, koji omogućava efikasnu i adaptivnu proceduru blisku trenutačno poznatoj fizikalnoj inter-
pretaciji podzemnih procesa. Varijable toka i pronosa u podzemlju opisane su na više-rezolucijski 
način u obliku linearne kombinacije Fup baznih funkcija, pri čemu svaka varijabla ima zaseban 
adaptivni grid (raspored kolokacijskih točaka) i pripadajuću točnost. Razvijena metodologija 
primijenjena je u podzemnim procesima, čija su rješenja određena oštrim frontovima, te u rješa-
vanju toka i advektivnog pronosa u izrazito heterogenim Gaussovim sredinama uslijed jednolikog 
srednjeg toka. Adaptivna Fup kolokacijska metoda, koristeći dobro poznati koncept linija, efikas-
no prati dinamiku frontova na adaptivnom gridu, koji pokazuje položaj i frekvencije svih pros-
tornih i vremenskih skala. Procedura daje kontinuirana polja brzina i flukseva omogućavajući 
točnu i pouzdanu analizu pronosa. Analiza advektivnog pronosa još jedanput dokazuje kvalitetu 
teorije prvog reda za male i srednje heterogenosti kod kojih je sve opisano s prva dva statistička 
momenta. Međutim, zbog točnosti poboljšane Monte-Carlo metode dane u ovoj tezi, analizirani 
su efekti visoke heterogenosti na statistiku toka i pronosa u podzemlju. Razlika između Eulerove i 
Lagrangeove brzine te utjecaj viših momenata vremena putovanja u podzemlju indikatori su 
visoke heterogenosti. Treći moment opisuje maksimum i zadnje dolaske funkcije gustoće vjeroja-
tnosti vremena putovanja, dok viši momenti uglavnom opisuju prve dolaske koji su suočeni s 
najvećom nepouzdanošću, a imaju ključni utjecaj u analizi rizika i regulative o vodama. Prikazana 
analiza otkriva da su svi momenti vremena putovanja linearni, što implicira da advektivni pronos 
konvergira u klasičan Fickov pronos. S druge strane, funkcija gustoće vjerojatnosti transverzalnog 
pomaka konvergira u Gaussovu razdiobu već nakon dvadeset korelacijskih duljina nakon utiski-
vanja, čak i za velike heterogenosti. Svojstva i mogućnosti prikazanog više-rezolucijskog pristupa 
te kvaliteta i točnost dobivenih rezultata otvaraju nove mogućnosti i smjernice za daljnja istraži-
vanja u podzemlju. 
 

Ključne riječi: Više-rezolucijski adaptivni pristup, Atomske i Fup bazne funkcije; Monte-
Carlo metoda; Heterogene porozne sredine; Tok; Pronos; Vrijeme putovanja. 
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ABSTRACT 

Subsurface processes are usually characterized by rare field experiments, sparse measurements, 
multi-resolution interpretations, stochastic description, related uncertainties and computational 
complexity. Over the last few decades, different computational techniques and strategies have 
become indispensable tools for flow and solute transport prediction in heterogeneous porous 
media. This thesis develops a multi-resolution approach based on Fup basis functions with com-
pact support, enabling the use of an efficient and adaptive procedure, closely related to current 
understood physical interpretation. All flow and transport variables, as well as intrinsic heteroge-
neity, are described in a multi-resolution representation, in the form of a linear combination of 
Fup basis functions. Each variable is represented on a particular adaptive grid with a prescribed 
accuracy. The methodology is applied to solving problems with sharp fronts, and to solving flow 
and advective transport in highly heterogeneous porous media, under mean uniform flow condi-
tions. The adaptive Fup collocation method, through the well known method of lines, efficiently 
tracks solutions with sharp fronts, resolving locations and frequencies at all spatial and/or tem-
poral scales. The methodology yields continuous velocity fields and fluxes, enabling accurate and 
reliable transport analysis. Analysis of the advective transport proves the robustness of the first-
order theory for low and mild heterogeneity. Moreover, due to the accuracy of the improved 
Monte-Carlo methodology, this thesis presents the effects of high heterogeneity on ensemble 
flow and travel time statistics. The difference between Eulerian and Lagrangian velocity statistics 
and the importance of higher travel time moments are indicative of high heterogeneity. The third 
travel time moment mostly describes a peak and late arrivals, while higher moments are required 
for early arrivals which are linked with the largest uncertainty. A particular finding is the linearity 
of all travel time moments, which implies that in the limit an advective transport in multi-
Gaussian field becomes Fickian. By comparison, the transverse displacement pdf converges to a 
Gaussian distribution around 20 integral scales after injection, even for high heterogeneity. The 
capabilities of the presented multi-resolution approach, and the quality of the obtained results, 
open new areas for further research. 

Key words: Multi-resolution adaptive approach; Atomic and Fup basis functions; Monte-
Carlo method; Heterogeneous porous media; Flow; Transport; Travel time. 

1  INTRODUCTION 

This section presents general features of flow 
and transport in porous media, as well as an 
overview of numerical and stochastic meth-
ods used in subsurface modeling. Moreover, 
transport concepts, motivations and objec-
tives of the research in this thesis will be 
presented. 

1.1 General features of flow and solute 
transport in heterogeneous porous 
media 

Flow and solute transport in porous media is 
covered in the fields of subsurface hydro-
geology and hydrology, and presents two 
important dilemmas: homogeneous vs. het-
erogeneous porous media, and deterministic 
vs. stochastic approaches. Geological forma-

tions usually exhibit such complex patterns 
of spatial variability of hydraulic conductivity, 
porosity and/or other physical and chemical 
properties that porous media cannot be re-
garded as homogeneous. Because the avail-
able data are usually quite scarce, analysis of 
flow and transport is never certain and abso-
lutely known in the deterministic sense; so 
stochastic quantification remains the only 
rational way to represent uncertainty in pre-
dictions of subsurface processes. Therefore, 
over the past few decades, subsurface hydro-
geology and hydrology has primarily devel-
oped as an applied science based on stochas-
tic approaches, due to uncertainties in the 
basic properties, such as hydraulic conductiv-
ity, of heterogeneous porous media (Dagan, 
1989; Gelhar, 1993; Rubin, 2003). 
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Uncertainty, as a measure of the stochastic 
description of subsurface processes, can be 
divided into two main types: i) intrinsic un-
certainty, caused by natural variability in basic 
physical and chemical properties, and ii) 
parametric uncertainty, caused by simplifica-
tions and assumptions used in conceptual 
models, or errors in measurements of the 
model parameters. The latter type of uncer-
tainty can be reduced or even eliminated by 
employing a more appropriate conceptual 
model supported by additional, more accu-
rate input data. However, the former uncer-
tainty cannot be reduced. The most attention 
has been devoted to the representation of the 
intrinsic variability of hydraulic conductivity 
as a stochastic random field (SRF).    
The hydraulic log-conductivity is usually 
represented by only three parameters: the 
mean value, the variance- 2

Yσ  as a measure of 
spatial variability and the integral scale-IY 
(related to the correlation length) as a meas-
ure of spatial connectivity. This representa-
tion implies the hypothesis of weak statistical 
stationarity. Furthermore, the SRF commonly 
appears as a suitable stochastic concept for 
representing spatial distributions of random 
input variables, such as porosity, hydraulic 
conductivity, sorption, dispersivity, recharge 
or boundary conditions, while also consider-
ing, in a consistent fashion, their influence on 
random output variables, such as head, veloc-
ity, concentration, solute flux, travel time or 
mass transfer parameters. 
Unfortunately, field and laboratory experi-
ments usually do not offer sufficient data for 
comprehensive analyses of flow and trans-
port. Rare, extensive tracer experiments have 
been performed in well-known examples of 
low heterogeneity, the Borden ( 2

Yσ =0.29; 
Mackay et al., 1986) and Cape Cod 
( 2

Yσ =0.26; LeBlanc et al., 1991) aquifers, and 
in the highly heterogeneous Columbus aqui-
fer (MADE-1 and MADE-2 tracer test; 
Boggs et al., 1992) with 2

Yσ  approximately 
equal to 4.5.  Columbus aquifer consists of, 
for instance, alluvial terrace deposits com-
posed of sand and gravel with minor 
amounts of silt and clay, and the measured 

hydraulic conductivity values span over six 
orders of magnitude.  
Moreover, hydraulic and other input proper-
ties are defined on many spatial length scales: 
from pore scale, to some large macro-scale 
appropriate for defining the macroscopic 
governing equations such as Darcy’s law, 
Fick’s Law, or the advection-dispersion-
reaction equation. As a consequence, the 
previously mentioned input and output flow 
and transport variables are also defined on 
different spatial and temporal scales. Fur-
thermore, different measurement techniques 
consider input variables on different scales; 
for instance, core laboratory measurements 
are obtained on scales of 5-10 cm, geo-
electric measurements of resistivity or spon-
taneous potential are on scales of 40-160 cm, 
flow-meter tests are on the scale of meters, 
pumping tests are on scales of tens or hun-
dreds of meters, while seismic measurements 
can capture the influence of very large areas 
and scales. Some of these measurements 
present hard (direct) data, but some of them 
produce soft data (indirect data that can be 
subjected to other descriptive analyses, such 
as geologic descriptions, or expert judges). 
Therefore, the field experiments and physical 
interpretations of subsurface processes pre-
sent its inherent multi-scale, or multi-
resolution, nature (Rubin, 2003).  
Subsurface processes are generally complex, 
and site characterization through a common 
geostatistical analysis is required (Kitanidis, 
1997). These processes can be divided into a 
few main groups: i) single-phase flow, and 
transport of tracers and contaminants where 
velocity and concentration are decoupled 
(mainly discussed in this thesis, papers II-IV; 
Dagan, 1989; Rubin, 2003), ii) flow driven by 
density, viscosity, or temperature, and misci-
ble transport of salts or contaminants where 
velocity and concentration are coupled (paper 
I; Simmons et al, 2001; Diersch and Kolditz, 
2002; Gotovac et al., 2003) and iii) multi-
phase flow or immiscible transport, where 
the saturation of each phase present in the 
porous media is of interest (paper I; Helmig, 
1998). All three types can encompass non-
reactive (conservative, e.g. Bellin et al., 1992) 
and reactive transport (e.g. Cvetković and 
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Dagan, 1994a, b). This general separation of 
flow regimes and their transport counterparts 
allows different conceptual frameworks and 
computational methodologies to be used to 
represent flow and solute transport in het-
erogeneous porous media. Note that the 
influence of heterogeneity on the more com-
plex flow regimes, such as density driven or 
multi-phase flow, is much less understood 
than the cases of single-phase or tracer flow 
and transport. 
Even in cases in which extensive field tracer 
experiments have been performed (MADE-1 
and MADE-2 tracer test; e.g. Boggs et al., 
1992), a computational stochastic description 
is needed for appropriate physical interpreta-
tion and understanding. For instance, MADE 
tracer tests have been explained by employ-
ing a few different conceptual frameworks 
(e.g. Harvey and Gorelick, 2000). Faced with 
the usual scarcity of data and complexity of 
subsurface processes, requirements for novel, 
more efficient methodologies arise due to 
practical and theoretical considerations. 
These methodologies must cover the correct 
physical interpretation of flow regimes in a 
simple and comprehensive manner, relate the 
parameters of the conceptual framework to 
sparse measurements while respecting their 
multi-resolution nature, satisfy the require-
ments of accuracy and convergence and keep 
the computational burden to an acceptable 
level.    

1.2 Review of numerical and stochastic 
methods in the subsurface 
modeling 

A review of numerical and stochastic meth-
ods is presented, mainly for single-phase flow 
and solute transport in heterogeneous porous 
media. The separation of these two methods 
is rather illustrative. Numerical methods are 
usually directly linked with stochastic tools, 
and therefore it is impossible to define a 
sharp interface between them. 

1.2.1 Numerical methods 
As in many other fields, conventional 

methods such as the finite difference (FD), 
finite element (FE) and finite volume (FV) 
methods take an important place in subsur-

face modeling. The flow problem is defined 
by Darcy’s Law  

)()()( xxKxq h∇−=  (1) 
and the continuity equation 

0)( =⋅∇ xq  (2) 
where q is the Darcy specific discharge 
(L/T), K is the conductivity tensor (L/T) and 
h (L) is the hydraulic head. Assuming an 
isotropic log-conductivity field (Y=lnK), the 
2-D steady-state flow equation has the final 
form 
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subject to the corresponding boundary con-
ditions. Note that it is easy to transform Eq. 
(3) to state it in terms of the conductivity K. 
The most widely used flow solver is 
MODFLOW (McDonald and Harbouch, 
1988), based on a 5-point stencil and block-
centered FD approximation to Eq. (3). The 
domain is divided into blocks, each of which 
has a constant conductivity, which varies 
from one block to the next. Therefore, the 
conductivity is represented as the inter-block 
conductivity in the 5-point stencil, obtained 
as the harmonic or geometric mean of two 
adjacent blocks.  
The simple “MODFLOW” procedure has 
become the state of the art for 3-D flow 
solvers (7 point stencil; Ababou et al., 1989). 
The procedure is easy to implement and very 
stable, even in cases with pumping, high 
heterogeneity and transient calculations.  The 
result of the procedure is a continuous veloc-
ity field with constant velocities across the 
block edges. The numerical implementation 
reduces the flow problem (3) to a symmetric 
system of linear equations, which can be 
efficiently solved by the preconditioned con-
jugate gradient algorithm. A recent interpre-
tation of this algorithm, in a parallel, 2-D 
form, was given by de Dreuzy et al. (2007) 
for simulations with high heterogeneity. The 
disadvantages of this approach lie in the low-
order head and velocity approximations, and 
the description of irregular geometries. 
FE techniques use localized basis functions 
to discretize Eq. (3) on finite elements with 
constant conductivity, with the conductivity 
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varying over the mesh. The solution can 
describe irregular geometries, but the stan-
dard FE scheme suffers from velocity dis-
continuities along the element edges. This 
inherent drawback to the FE method can be 
solved by a velocity postprocessor (Cordes 
and Kinzelbach, 1992) or with a mixed hy-
brid FE formulation (e.g. Mose et al., 1994); 
both cases involve additional CPU work or a 
higher number of unknowns (velocities in the 
element edges), significantly detracting from 
the efficiency and robustness of the FE algo-
rithm. Classical FE solutions for 2-D steady 
flow for low and mild heterogeneity have 
been presented by Bellin et al. (1992), and by 
Salandin and Fiorotto (1998) for high hetero-
geneity. The USGS software counterpart to 
MODFLOW is the well-known FE code 
SUTRA (Voss, 1984). Recently, the FE code 
FEFLOW (Diersch and Kolditz, 2002) has 
been developed, which is very powerful and 
reliable, particularly for density driven flow.  
Conventional methods require fine solution 
scales in order to capture all the effects of 
heterogeneity. A common approach to over-
come these difficulties is to use an upscaling 
procedure, which finds effective conductivi-
ties on a coarse scale in an attempt to solve 
the macroscopic properties of flow in porous 
media, defined for all scales (e.g., Kitanidis, 
1990, Durlofsky, 1992). Upscaling methods 
require restrictive assumptions about the 
heterogeneity (Hou and Wu, 1997).  
On the other hand, recent finite-element and 
other multiscale methods have tried to find 
fine scale velocity solutions on a coarse grid, 
using the only most relevant fine scale infor-
mation (e.g. Enquist et al., 2003). Hou and 
Wu (1997) and Hou et al. (1999) first pre-
sented the multiscale finite element method 
(MsFEM) for flow in porous media by con-
structing generalized velocity basis functions 
on a coarse grid, which satisfy local or fine 
scale properties of the differential operator. 
This local solution is not too computationally 
expensive, and can be found in many ways 
(e.g. Jenny et al., 2003; Aarnes, 2004). The 
general methodology of a heterogeneous 
multiscale method was given by Enquist et al. 
(2003) and E et al. (2004). Recently, using the 
multi-scale methodology and the basic prin-

ciples of Hou and Wu (1997), He and Ren 
(2005) presented the finite volume multiscale 
finite element method, where generalized 
velocity basis functions are implemented in a 
macro-scale finite volume implementation, 
for cases with high heterogeneity, pumping 
and transient calculations. 
However, errors in the velocity, due to loss 
of particular fine scale information, can play a 
key role for some important features of flow 
and transport in highly heterogeneous porous 
media, such as early arrivals, travel time peaks 
and tailings, asymptotic dispersivity or high-
er-order moments of solute flux or concen-
tration. Unfortunately, this means that the 
fine scale velocity field is usually required, 
which implies the use of extensive CPU 
resources to extend all aforementioned ap-
proaches to 3-D flows.  
Rare, extensive, 3-D flow numerical simula-
tions in heterogeneous porous media have 
been performed with the analytic element 
method (AEM; Strack, 1989; Janković and 
Barnes, 1999; Janković et al., 2003, 2006), 
using the principles of complex variables and 
boundary elements. Heterogeneity is de-
scribed by a large number of non-overlapping 
homogenous inclusions with mutually differ-
ing conductivities, which are embedded into 
the homogeneous background medium (mul-
ti-indicator structure). This procedure is 
perfectly suited for parallel processing, be-
cause the final solution can be obtained as a 
superposition of all particular solutions for 
each inclusion. The drawback of the AEM is 
that it is only valid for systems with multi-
indicator heterogeneity structure. 
Multi-scale adaptive methods based on wave-
lets and/or splines deserve special attention 
(e.g., Ebrahimi and Sahimi, 2002; Vasilyev 
and Kevlahan, 2005). These methods use the 
wavelet or spline basis functions only for the 
adaptive part of the solution, but the differ-
ential flow equation is solved by finite differ-
ence scheme on an adaptive non-uniform 
grid. There are also a few other promising 
approaches, such as the adaptive FE (e.g. Cao 
and Kitanidis, 1999) or spectral methods 
(Dykaar and Kitanidis, 1992; Van Lent and 
Kitanidis, 1996); however, these algorithms 
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suffer from the same serious disadvantages as 
all other aforementioned approaches. 
The transport problem can be solved in an 
Eulerian approach, in terms of the advection-
dispersion-reaction equation 

)()( cScc
t
c

+∇⋅⋅∇=∇⋅+
∂
∂ Dv  (4) 

where c is a concentration (M/L3), v=q/n is 
a velocity (L/T) obtained from Darcy’s Law 
(Eq. 1), n (-) is a porosity, D (L2/T) is a dis-
persion tensor and S (M/L3T) is a reaction 
term (Helmig, 1998). All aforementioned 
approaches can be implemented for solving 
the transport problem (except AEM). How-
ever, for advection dominated problems with 
high Peclet number (ratio between advective 
and dispersive flux), significant numerical 
dispersion and/or oscillations occur, espe-
cially for more complex flow regimes such as 
the density driven flow examples (e.g. Voss 
and Souza, 1987; Gotovac et al., 2003). 
Therefore, the common practice is to use 
Lagrangian methods, such as particle track-
ing, which only require knowledge of the 
velocity field to obtain the ODE solution, 
according to the following system of equa-
tions (e.g. Hassan et al, 1998; Salandin and 
Fiorotto, 1998) 

( ) yxiyxv
td

Xd
i

i ,;, ==   (5)  

where X is a position vector (L), which can 
easily be transformed into concentration or 
solute flux (M/L2T). Particle tracking de-
scribes only advective transport, and presents 
a sub-model of more general random walk 
methods, which incorporate the influence of 
pore-scale dispersion into system (5)  (Kin-
zelbach, 1988; LeBolle et al., 1996). These 
methods are attractive as they eliminate the 
influence of numerical dispersion, but cannot 
always describe general initial and boundary 
conditions.  

1.2.2 Stochastic methods 
Geostatistical methods have usually been 
employed to characterize the heterogeneity as 
an SRF (Kitanidis, 1997; Deutsch and Jour-
nel, 1998; Christakos, 2000). The spatial 
distribution is represented by the covariance 
(in the case of finite variance), or more gen-

erally by a variogram. A multi-Gaussian het-
erogeneity field is commonly assumed.  This 
field is completely characterized by the first 
two statistical moments, and zones of low 
and high conductivity are practically uncorre-
lated. However, one of the most important 
features of flow and solute transport in het-
erogeneous porous media is a correlation of 
low and high conductivity zones, which can 
be described by indicator kriging (e.g. Go-
mez-Hernandez and Wen, 1998). The degree 
of heterogeneity is closely related to the se-
lection of the variance of the log-
conductivity. Roughly speaking, heterogene-
ity is defined to be low if the variance is less 
than one, mild for variances up to three, and 
high for variances greater than three. Gelhar 
(1993) reported many field experiments, 
some of which exhibited high heterogeneity, 
while Zinn and Harvey (2003) summarized 
field reports with variances as large as 10 or 
even 20. This means that both large and 
small variability’s in the log-conductivity have 
been found in nature.  
Generally, flow and transport in porous 
media have been analyzed mostly by analytic 
perturbations (Green’s function method; e.g. 
Dagan, 1989; Rubin 1990; Neuman and 
Zhang, 1990; or spectral techniques; e.g. Bakr 
et al., 1978; Gelhar and Axness, 1983; Gelhar, 
1993) or Monte-Carlo (MC) methods (using 
one single realization and ergodicity; Ababou 
et al., 1989; Thompson and Gelhar, 1990; 
Janković et al., 2003; or many MC realiza-
tions and ensemble averaging; Bellin et al., 
1992, Cvetković et al., 1996, Salandin and 
Fiorotto, 1998, Hassan et al., 1998; de 
Dreuzy et al., 2007). 
The main result of a flow analysis is velocity 
statistics. Among others, Rubin (1990) and 
Rubin and Dagan (1992) obtained velocity 
covariances for 2-D and 3-D isotropic and 
anisotropic porous media, using first-order 
analytic perturbation methods. More compli-
cated second-order flow results were ob-
tained by Dagan (1994), Deng and Cushman 
(1995), Hsu et al. (1996) and Hsu and Lamb 
(2000). Generally, second-order corrections 
only produce changes in the velocity vari-
ance. Salandin and Fiorotto (1998) numeri-
cally proved the results of first- and second-
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order theory for cases of low and mild het-
erogeneity. Transport analysis will be pre-
sented in the next subsection. 
Analytic perturbation methods are usually 
limited by several assumptions (Rubin, 2003): 
1) small variance of the log-conductivity, 2) 
infinite domain, 3) steady–state flow, 4) uni-
form-in-the-average flow, 5) calculation of 
only the first two moments and 6) multi-
Gaussian heterogeneity structure. While this 
thesis is focused on flow and transport in 
highly heterogeneous porous media, charac-
terized by high lnK variance, the first as-
sumption is the main constraint of the ana-
lytic methods in the present analysis. On the 
other hand, the Monte-Carlo method is the 
most general stochastic concept (without the 
above assumptions) for analyzing flow and 
transport in porous media, and is capable of 
producing the complete probability density 
function (pdf) and all necessary higher-order 
moments of the desired SRF variables. Ana-
lytic methods are mainly focused on evalua-
tion of only the first two moments, assuming 
a Gaussian pdf for the SRF variables.  
The Monte-Carlo method, in the Eulerian-
Langragian formulation, consists of the fol-
lowing steps: 1) generation of as many log-
conductivity realizations as possible, with 
predefined correlation structure, 2) numerical 
approximation of the log-conductivity field, 
3) numerical solution of the flow equation 
with prescribed boundary conditions, in 
order to produce head and velocity approxi-
mations, 4) evaluation of the displacement 
position of a large number of the particles, 5) 
repetition of steps 2-4 for all realizations and 
6) statistical evaluation of flow and transport 
variables such as head, velocity, travel time, 
transverse displacement, solute flux or con-
centration (including their cross-moments). 
Note that all previously mentioned numerical 
methods can be used for deterministic solu-
tions of flow and transport in each realiza-
tion. Therefore, the MC method lies between 
stochastic and numerical methods, because 
each step is solved numerically, but the over-
all solution is completely stochastic. 
Although the MC method is appealing in its 
conceptual simplicity and generality, its bene-
fits should be weighed against the large com-

putational effort it requires for several rea-
sons: large domains, huge linear or nonlinear 
systems of equations, a significant number of 
particles and realizations or extensive mem-
ory storage and CPU time requirements. 
Furthermore, each above mentioned step 
potentially presents a serious source of er-
rors, especially for highly heterogeneous 
aquifers. The first step was successfully 
solved by construction of accurate conductiv-
ity random field generators (Bellin and Rubin, 
1996, Deutsch and Journel, 1998). All other 
steps include numerical errors due to proper-
ties of the chosen method, discretization 
level, different types of averaging, upscaling 
and non-adaptive numerical modeling (with-
out control of the local and global error). 
Particularly, key errors lie in step 3, as very 
fine spatial scales are required to solve de-
tailed properties of the highly heterogeneous 
conductivity field described by the differen-
tial flow equation. In step 4, errors can arise 
due to an insufficient number of particles and 
inappropriate numerical integration of the 
trajectories and in step 6, an insufficient 
number of MC realizations prevents minimi-
zation of the statistical error of the higher 
moments and pdfs (Rubin, 2003).  
A generally accepted conclusion confirms 
very good agreement between perturbation 
theory and MC for log-variances less than 
unity. Acceptable agreement was also shown 
for mild heterogeneity (log-variance up to 2), 
but there is no strong evidence for agreement 
between analytic and MC simulations in 
highly heterogeneous porous media (log-
variance equal or greater than 4).  
Some important moment equation methods  
have been obtained by techniques that ex-
pand equations (3-5) in terms of the first few 
statistical moments of the flow (e.g. Di Fre-
derico and Neuman, 1998; Zhang and Li, 
2004); this also applies to the transport analy-
sis (e.g. Graham and McLaughlin, 1989a, b; 
Andričević, 1998, 2008). The main problem 
is choosing the assumptions needed for clo-
sure of the flow and transport problems. 
Usually, the assumptions employed limit the 
applicability of these results. 
Recently, a few novel stochastic concepts 
have been developed to try to attain the 
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performance of the MC method in a more 
computationally efficient way. The first is the 
BME approach (Christakos, 2000) based on 
Bayesian conditioning and the Maximum 
Entropy principle (Shannon, 1948; Jaynes, 
1957). This approach is divided into three 
steps: i) the prior stage, which generates a 
prior pdf based on epistemic or general 
knowledge (variograms, differential equa-
tions, empirical relationships and so on), ii) 
the metaprior stage, which site-specific 
knowledge in an appropriate stochastic form 
and iii) the posterior stage which incorporates 
the general (i) and the site-specific knowledge 
(ii) into the form of the final posterior pdf at 
each space/time point. The BME approach, 
among others, has been presented for flow 
(Serre et al., 2003) and transport analysis 
(Kolovos et al., 2002). The BME approach is 
theoretically and practically sound, because it 
easily represents both hard and soft data, 
while the stochastic output is as general as in 
the MC case.  
The second important technique is illustrated 
by the probability collocation method (PCM; 
Li and Zhang, 2007; Lin and Tartakovsky, 
2009; Shi et al., 2009), which is directly re-
lated to the MC method. The PCM expands 
the log-conductivity in a Karhunen-Loeve 
(KL) expansion, and a deterministic problem 
is solved for each set of collocation points, 
rather than for sample points/elements in 
each spatial realization, as in a standard MC 
standard. Therefore, the number of simula-
tions can be significantly reduced for flow 
and transport problems, while the accuracy 
of the MC method is maintained. Moreover, 
the computational efficiencies of both of 
these novel stochastic methods, i.e. BME and 
PCM, are significantly decreased in the pres-
ence of high heterogeneity, small correlation 
length (larger domain) or non-Gaussian 
structures, when the number of unknown 
coefficients increases the dimensionality of 
the problem to larger than 50 (Lin and Tar-
takovsky, 2009).  

1.3 Solute transport concepts 

Since flow in heterogeneous porous media is 
conceptually well-defined (e.g. Zhang, 2002), 
solute transport has been formulated in many 

ways. Solute transport analysis presents two 
basic dilemmas: Eulerian vs. Lagrangian 
frameworks, and resident concentration vs. 
solute flux approaches. While the Eulerian 
framework is closely related to the resident 
concentration via the advection-dispersion-
reaction equation (4), the Langrangian 
framework is a more elegant and flexible, and 
is capable of solve both aforementioned 
approaches. Generally, there are a lot of 
important topics in both frameworks, such as 
advective transport (e.g. Salandin and Fiorot-
to, 1998; Janković et al., 2003), concentration 
fluctuations (e.g. Graham and McLaughlin, 
1989; Kapoor and Gelhar, 1994; Kitanidis, 
1994; Andričević, 2008), the influence of  
pore-scale dispersion (e.g. Kitanidis, 1994; 
Dagan and Fiori, 1997; Andričević, 1998; 
Fiori and Dagan, 1999, 2000), reactive trans-
port (e.g. Cvetković and Dagan, 1994a, 
1994b; Cvetković et al., 1998) and risk as-
sessment (e.g. Andričević and Cvetković, 
1996; Maxwell et al., 1999).  
However, most Langrangian transport stud-
ies have been focused on macrodispersion 
(the second derivative of the displacement 
vector X), using analytic (e.g. Gelhar and 
Axness, 1983; Dagan, 1984, 1985, 1987, 
1989; Rubin, 1990; Hsu et al., 1996; Hsu, 
2003) or numerical methods (e.g. Bellin et al., 
1992; Salandin and Fiorotto, 1998; Janković 
et al., 2003, Fiori et al., 2006, de Dreuzy et al., 
2007).  
This thesis focuses on travel time statistics, 
which is the heart of the solute flux ap-
proach, and analysis of three basic Langran-
gian transport variables, such as transverse 
displacement, travel time and Langrangian 
velocity. The general concept of the solute 
flux approach is given in the works of Dagan 
et al. (1992) and Cvetković et al. (1992). Tra-
vel time statistics are discussed analytically in 
Cvetković and Dagan (1994), Destouni and 
Graham (1995), Andričević and Cvetković 
(1998) and Fiori et al. (2002). Numerically, 
particle tracking methods were used to derive 
the travel time statistics, as reported in Bellin 
et al. (1992, 1994), Selroos and Cvetković 
(1992), Selroos (1995), Cvetković et al. 
(1996), Maxwell et al. (1999) and Hassan et 
al. (2001).  
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The classic description of breakthrough 
curves through the control plane can be 
obtained using the classic advection disper-
sion equation (ADE, Kreft and Zuber, 1978). 
Transport is Fickian and Gaussian if the mass 
distribution through the control plane satis-
fies ADE with a finite and constant longitu-
dinal dispersion coefficient. It is worth men-
tioning that different conceptual strategies 
have been developed for non-Fickian or 
anomalous transport, such as the fractional 
diffusion equation (Benson et al., 2000), non-
local transport approaches (Cushman and 
Ginn, 1993; Neuman and Orr, 1993), Boltz-
man transport equation (Benke and Painter, 
2003) and continuous random walk methods 
(Scher et al., 2002, Berkowitz et al., 2002).  

1.4 Motivation and objective of the 
research 

Because of the obvious limitations and diffi-
culties of carrying out physical experiments 
on flow and solute transport in heterogene-
ous porous media, computational method-
ologies have always been an indispensable 
part of theoretical and practical advances. 
Comparison of the advantages and disadvan-
tages of all aforementioned methods show 
that our interpretation cannot be perfect, and 
there is no existing method that satisfies all of 
the requirements.  

Nevertheless, the careful analysis of the last 
few subsections presents the state of the art 
of flow and transport subsurface modeling, 
and possible “room” for improvements. The 
aim of the research in this thesis is twofold. 
The first goal is the development of a gen-
eral, accurate and adaptive multi-resolution 
framework, based on atomic Fup basis func-
tions that can be applied to many subsurface 
problems and is closely related to the under-
stood physical interpretation of the system. 
The second aim is the application of the 
presented methodology to problems with 
sharp fronts and narrow transition zones, 
which are useful for reactive transport, den-
sity driven and multiphase flow problems, 
and implementation of the methodology to 
calculate flow and advective transport in 
highly heterogeneous porous media, consid-
ering the influence of higher moments on the 
ensemble statistics.    
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2  METHODS  

2.1 Eulerian and Lagrangian approach 

Flow and transport in heterogeneous porous 
media can be considered with the Eulerian or 
Lagrangian approach (Rubin, 2003). The 
Eulerian approach considers mass conserva-
tion in arbitrary control volumes, elements or 
points and naturally describes deterministic 
problems using classic numerical methods 
(flow equation (3) and/or transport equation 
(4); e.g., Helmig, 1998) or moment stochastic 
equations using the closure assumptions (e.g., 
Graham and McLaughlin, 1989a, b; Andriče-
vić, 2008). The main feature of the Eulerian 
approach is a consideration of all flow and 
transport variables in the global static coordi-
nate system. 
On the other hand, the Lagrangian approach 
considers particles and their displacements 
and/or travel times in a moving coordinate 
system that “travels” with them. This frame-
work is ideal for advection-dominated prob-
lems where particles move only along stream-
lines, without any influence from classical 
numerical dispersion. Since pore-scale disper-
sion can be added as a random movement to 
the particles between streamlines (Fiori and 
Dagan, 2000) or reactions in the t-τ domain 
(Cvetković and Dagan, 1994a, b), the La-
grangian approach is used for transport anal-
ysis, while flow problem is considered with 
the Eulerian approach in order to obtain 
velocity statistics. 

2.2 Solute flux conceptual framework 

In this thesis, the solute flux conceptual 
framework will be used due to its generality 
and simplicity in transport analysis. This 
framework can replace the classical resident 
concentration framework (related to Eq. 4) 
and naturally supports the beauty of the 
Lagrangian approach, providing a strong 
relation with measurements and real-site 
applications (Shapiro and Cvetković, 1988; 
Dagan et al., 1992; Cvetković et al., 1992). 
Without loss of generality, 2-D transport is 
considered under mean uniform flow (Figure 
1) in terms of solute flux q(y, t; x), defined as 
the mass of solute per unit time and unit area 

through a control plane (CP) perpendicular 
to the mean flow direction.  
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Figure 1. Simulation domain needed for global flow 
analysis and inner computational domain needed for 
flow and transport ensemble statistics. 

Solute flux is regarded as a random variable 
of the transverse displacement y and travel 
time t for any control plane-x, due to random 
velocity field as a direct consequence of the 
natural uncertainty of hydraulic conductivity. 
The associated solute flux ∆q(y, t; x, a, t0) for 
a particle with mass ∆m injected at x=0 and 
y=a is defined as the rate of solute transfer 
through the CP (at x) at position y and time t  

( ) )()(,,;, 0 τδηδ −−Δ=Δ tymtaxtyq   (6)  
where η is the transverse displacement in 
which the particle crosses the CP and τ is the 
travel time at which the particle crosses the 
CP. This means that the pdf of the solute 
flux is completely determined by the pdf of 
transverse displacement and travel time. For 
instance, the expected value of solute flux is 
defined as follows: 

( )01 ,,;,
0

taxtygmddqq
t

Δ=Δ=Δ ∫ ∫
∞ ∞

∞−

τη       (7) 

where solute flux is proportional to the joint 
pdf of transverse displacement and travel 
time (g1). For advective transport, transverse 
displacement and travel time are independ-
ent. It will require general definitions for τ 
and η along streamlines using the total veloc-
ity in order to account for backward flow and 
multiple-crossings (paper III).  
Let l denote the intrinsic coordinate (length) 
along a streamline/trajectory originating at 
y=a and x=0; I shall omit a in the following 
expressions for simplicity. The trajectory 
function can be parameterized using l as 
[Xx(l),Xy(l)], and it can be written as 
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τ(x) =
1
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(where λ , which is always greater than one 
for a heterogeneous aquifer, is the dimen-
sionless ratio of the length of the streamline 
and the distance x between the source line 
and the control plane) for any x>0 will give 
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where w(ς) ≡ v / λ  is the Lagrangian velocity 
and vy(ς) is its velocity transverse component. 
(I refer to w(ς) as the “Langrangian veloc-
ity”.) In (10), α is referred to as the “slow-
ness”, while in (11), β is referred to as the 
streamline slope function, or simply “slope”. 
It should be noted that in this approach, all 
Lagrangian quantities depend upon space 
rather than time, as in the traditional Lagran-
gian approach (e.g., Taylor, 1921; Dagan, 
1984).  
The first two moments of τ and η are com-
puted as 

ξξαττ dEx
x
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0
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xx

∫∫=≡    (12) 

Furthermore, higher moments of the travel 
time and transverse displacement are com-
pletely defined by the statistics of the slow-
ness and slope. The travel time pdf and high-
er moments can be obtained more efficiently 
with the aid of the cumulative distribution 
function-CDF (Ezzedine and Rubin, 1996) of 
the travel time (the same for transverse dis-

placement and other Lagrangian transport 
variables) 

)))(((1);(
0 1

xtH
nN

xtF
P MCN

i

n

jMCP

ττ −= ∑∑
= =

  (13) 

where H is the Heaviside function, NP is the 
number of particles, and nMC is the number 
of Monte-Carlo realizations. Travel time in 
(13) has the form (10) for each particular 
particle and realization; therefore, expectation 
in (13) is made over all realizations and parti-
cles from the source. The probability density 
function is obtained simply 
as fτ (t;x) = ∂(Fτ (t;x)) /∂ t . The travel time 

mean is computed as ∫
∞

=
0

);()( tdxtftxA ττ . 

Higher travel time moments (such as vari-
ance) are obtained directly from the pdf as 

( )∫
∞

∞=−=
0

.,...,3,2;);()()( itdxtfxtxM i
Ai τ

τ τ  

2.3 Atomic basis functions 

In this thesis, adaptive multi-resolution me-
thodologies based on Fup basis functions are 
developed and presented. Since Fup basis 
functions belong to the family of atomic 
basis functions, the aim of this subsection is 
to provide a general presentation of these 
types of basis functions with compact sup-
port, which allow for the development of 
promising new methodologies in subsurface 
hydrology and related applied sciences. 
Therefore, this subsection describes Fup 
basis functions, but also gives an overview of 
other atomic basis functions.  

2.3.1 Definition 
Atomic basis functions are compactly sup-
ported and infinitely differentiable functions 
(Rvachev and Rvachev, 1971; Gotovac and 
Kozulić, 1999). Atomic functions are defined 
as solutions of differential-functional equa-
tions of the following type 

∑
=

−=
M

k
kkDD baxyCxyL

1

)()( λ  (14)

where LD is a linear differential operator with 
constant coefficients, λD is a non-zero scalar, 
Ck are coefficients of the linear combination, 
a>1 is a parameter defining the length of the 
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compact support and bk are coefficients that 
determine the displacements of the basis 
functions. Different linear operators and 
related parameters define different types of 
atomic basis functions.   
Rvachev and Rvachev (1971) in their pioneer 
work called these basis functions “atomic” 
because they span the vector spaces of all 
three fundamental functions in mathematics: 
algebraic, exponential and trigonometric 
polynomials. Additionally, atomic functions 
can be divided into an infinite number of 
small pieces that maintain all of their proper-
ties, implying a so-called “atomic structure”. 
 

2.3.2 Up(x) and Fup n (x) basis functions 
The simplest function, which is the best 
studied among atomic basis functions, is the 
up(x) function. The up(x) function is a 
smooth function with compact support [-1,1] 
obtained as a solution of the differential-
functional equation 

)12(2)12(2)(' −−+= xupxupxup  (15) 

with the normalized condition  

∫
∞

∞−

= 1)( dxxup , while Rvachev (1982) and 

Gotovac and Kozulić (1999) provided a 
tractable means for calculating the up(x) 
function instead of using its Fourier trans-
form 
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where the coefficients Cjk are rational num-
bers determined according to the following 
expression 

∞==

+−= −−+

,...,, ;     k .., k,, j 

up
j

C jkjj
jk

21.10

)21(2
!

1 )(2)1(   ;   
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Calculation of [ ]∞∈+− − ,0);21( rup r  in the 
binary-rational or characteristic points of a 
dyadic grid and all of the details regarding the

 calculation of up(x) function values are pro-
vided in Gotovac and Kozulić (1999). The 
argument (x-0, p1 ... pk) in Eq. (16) is the 
difference between the real value of coordi-
nate x and its binary form with k bits, where 
p1 ... pk are digits, 0 or 1, of the binary devel-
opment of the coordinate x value. Therefore, 
the accuracy of the coordinate x computa-
tion, and thus the accuracy of the up(x) func-
tion at an arbitrary point, depend upon ma-
chine accuracy. From Eq. (15), it can be seen 
that the derivatives of the up(x) function can 
be calculated simply from the values of the 
function itself.  
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Figure 2. Function Fup2(x) and its first two derivatives.  

The Fupn(x) function satisfies the following 
differential-functional equation 
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where n is the Fup order. For n=0, 
Fupn(x)=up(x) since Fupn(x) and its deriva-
tives can be calculated using a linear combi-
nation of displaced up(x) functions instead of 
using their Fourier transforms 

∑
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k
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where )(nCk
∗  are auxiliary coefficients ob-

tained from a suitable recursive formula 
(Gotovac and Kozulić, 1999). Fupn(x) is 
defined on the compact support [-(n+2)2-n-1, 
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(n+2)2-n-1]. Figure 2 shows the Fup2(x) func-
tion and its first two derivatives, which are 
primarily used in this thesis (papers I-V).  
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Figure 3. Function y10(x) and its first two derivatives. 

Index n also denotes the highest degree of 
the algebraic polynomial which can be ex-
pressed exactly in the form of a linear com-
bination of n+2 Fupn(x) basis functions 
displaced by a characteristic interval n2− . 
Thus, a quadratic polynomial on a character-
istic interval n2−  can be exactly presented as 
follows 
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kxFupkx  (20) 

2.3.3 Exponential and trigonometric atom-
ic basis functions 

Exponential basis functions satisfy the fol-
lowing differential-functional equation 
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where ω is a frequency defined on the com-

pact support [-1, 1], 
)2(

)2exp(
ω

ωω
ω sh

a −
=  and 

)exp(ωωω ab =  are related parameters. Note 
that Eq. (21) can be generalized for any h. 
They can be calculated using their Fourier 
transform 
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An exponential basis function with its first 
two derivatives and ω=10 is presented in 
Figure 3.  
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Figure 4. Function yω,h(x) with h=1 and a) ω=1, b) ω=5 
and c) ω=8. 

Trigonometric basis functions satisfy the 
following differential-functional equation 
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defined on the compact support [-h, h]. Pa-

rameters 
)32(cos12

3 2

, h
a h ω

ω
ω −

=  and 

)3/2(cos2 ,, hab hh ωωω =  completely define 
Eq. (23). They can be calculated using their 
Fourier transform 
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 (24)              

Trigonometric basis functions with h=1 and 
ω=1, 5 and 10 are presented in Figure 4. 
Exponential and trigonometric atomic basis 
functions are defined by frequency and are 
directly related to the spectral Fourier analy-
sis. They exactly describe exponential and 
trigonometric polynomials with frequency ω 
on the compact support [-h, h] with a linear 
combination of displaced basis functions. 
The original idea, which came from the ap-
plication of atomic basis functions, is that the 
type of the basis function is chosen depend-
ing upon the problem and vector space that 
spans its exact solution (Gotovac, 1986).  

2.3.4 Multi-dimensional radial atomic basis 
functions 

Generalization of the atomic basis functions 
with compact support to many dimensions 
leads to the following type of functional-
differential equations (Kolodyazhny and 
Rvachev, 2007) 
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where Ω∂  is a closed contour (i.e., the 
boundary of a general convex domain). Ko-
lodyazhny and Rvachev (2007) particularly 
generalized two- and three-dimensional basis 
functions for Laplace and bi-harmonic linear 
operators. These multi-dimensional basis 
functions are closely related to other radial 
basis functions (e.g., Kansa, 1990). Finally, 
they also presented a complete overview of 
atomic basis functions. 

2.4 Adaptive Fup methodology 

Subsurface processes are usually very com-
plex and can be divided into many different 
types of flow and transport, such as density-
driven and multiphase flow or non-reactive 
and reactive transport. Therefore, there is no 
universal methodology which describes all 
subsurface processes. In this thesis, an adap-
tive Fup multi-resolution methodology suit-
able for many groundwater flow and trans-
port problems is developed and will be 
briefly presented in the sequel. A detailed 
description is given in the Appendix (related 
papers I-V).  

2.4.1 Fup transformations 
Fup transformations are versatile tools for 
the description of heterogeneity, pumping or 
recharge, as well as all other flow and trans-
port variables that consist of different spatial 
and/or temporal scales. First, I present here 
the Fup Collocation Transform (FCT), 
which is an efficient numerical tool for de-
scribing various types of data, signals and 
functions using a linear combination of the 
Fup basis functions (paper I). The main 
feature of the FCT is that specific frequencies 
and corresponding Fup coefficients are asso-
ciated with a particular resolution level and 
spatial location, which is not possible in the 
classic discrete Fourier transform. The zero 
level is the starting (coarsest) level, which is 
always present in the grid. The FCT satisfies 
function values at all collocation points and 
related derivatives at boundary collocation 
points. The key step in the FCT is the trans-
fer from the current level to the next level. 
The residual between the true function and 
the previous level approximation is checked 
and the points with a residual below the 
prescribed threshold are dropped from the 
grid. This procedure presents an a-priori 
adaptive criterion for defining the new collo-
cation points at the next level. For the first 
and each subsequent level, the collocation 
algorithm should only satisfy the residual 
between the true function and its approxima-
tion from the previous levels. In other words, 
all Fup coefficients from previous levels are 
“frozen” and only Fup coefficients at the 
current level should be found. Higher levels 
include only higher frequencies and provide a 
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more detailed description of the chosen 
function.  
The multi-resolution 2-D FCT of the func-
tion u(x,y) can be presented as 

( )yxdyxu
J
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where J is an arbitrary chosen maximum 
level, jZ  is the irregular grid at each level, 
which contains only the significant colloca-
tion points and Fup basis functions needed 
for the Fup presentation in Eq. (26) with the 
desired accuracy defined by the threshold ε, 

j
lkd ,  are Fup coefficients, j

lk ,ϕ  are Fup basis 
functions and k and l represent the indexes of 
collocation points at the current level for the 
x and y directions, respectively. The zero 
level is defined by a chosen resolution level 
jminx for the x-direction and by jminy for the y-
direction. Generally, a sparse linear system of 
equations can be obtained at each level j 

jjjjj

j
q

j
pj

j
q

j
p

j
lk

Zlk

j
lk

yx

j

qpZqp

yxyxd

++

∈

≤≤≤≤∈

Δ=∑
minmin 20,20:,

,),(),(,
,

, ϕ
 (27) 

)00(
)20

20(:,

,),(),(

min

min

),(),(
,

,
,

>>
==

==∈

Δ=

+

+

∈
∑

yx

jj

jjj

j
q

j
p

mm
j

j
q

j
p

mmj
lk

Zlk

j
lk

mormand
qorqor

porpZqp

yxyxd

y

x

yxyx

j

ϕ

(28) 

where mx and my are the orders of the deriva-
tive in the x and y directions, respectively. 
System (27-28) presents conditions for satis-
fying function values within the domain (27) 
and partial derivatives at the boundary points 
(28). The residual vector on the right side 
presents the residual between the real func-
tion and its approximation, including all 
previous levels. 

The main drawback of the FCT is the solving 
of the sparse linear system of equations at 
each level (27-28). The Fup Regularized 
Transform (FRT) has the same purpose and 
uses the exact same adaptive strategy as the 
FCT, but directly connects function or data 
values with Fup coefficients (without solving 

the system 27-28), using at each collocation 
point the local equivalence between the Fup 
and a polynomial approximation (paper II). 
Therefore, FRT exactly describes polynomi-
als up to the Fup order. FCT requires a 
slightly less number of collocation points 
than FRT for a general function.  
The two Fup transformations used in this 
thesis are only two selected choices, and 
many other transformations are possible to 
create by utilizing different conditions for 
system (27-28). For instance, two more im-
portant transformations can be very appeal-
ing in practice: i) the Fup Galerkin Trans-
formation, which uses Fup basis functions as 
test functions, and ii) the Maximum Entropy 
Fup Transformation, in which system (27-28) 
is replaced with a nonlinear system of Fup 
moment equations utilizing the maximum 
entropy principle (related to paper V).  

2.4.2 Adaptive Fup Collocation Method 
Kozulić and Gotovac (2000) and Gotovac et 
al. (2003) developed non-adaptive collocation 
solutions for boundary-value problems in 
structural mechanics and density-driven flow, 
respectively. Moreover, initial value problems 
have been presented by Gotovac and Kozulić 
(2002). This thesis develops two suitable 
forms of the Adaptive Fup Collocation Me-
thod (AFCM).  
First, AFCM that are well suited for spatial-
temporal solutions with sharp fronts were 
developed through the method of lines (pa-
per I). An AFCM consists of three com-
monly used basic steps (Figure 5; e.g., Va-
silyev and Bowman, 2000; Cruz et al., 2003) 
a) Spatial grid adaptation, 
b) Calculation of spatial derivatives, 
c) Time integration.  
The spatial adaptive procedure is performed 
after each time step according to the pre-
sented FCT and the corresponding adaptive 
strategy. This procedure dynamically changes 
the grid and significantly reduces computa-
tional cost. A solution from the initial condi-
tions or previous time step is described by 
FCT. All FCT points are called basic points 
since they create the basic grid. Apart from 
basic points (which are related to the FCT a-
priori adaptive criterion), additional points 
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are needed for consistent approximation of 
the system dynamics (temporal solution 
changes) during the calculated adaptive time 
step, Δt. Basic and additional points create 
the total grid needed for the description of 
the system dynamics from time T to time 

tT Δ+ . The basic hypothesis behind the 
algorithm (during the time step Δt) is that the 
solution does not “move” outside the border 
of the adapted non–uniform grid. Finally, the 
total grid needs to be transformed into an 
effective grid suitable for time integration. 

START

EFFECTIVE GRID

T = t0

ADDITIONAL
POINTS

CALCULATE BASIC
GRID VIA FCT

TOTAL GRID

INITIAL CONDITIONS
u(0,X)

1. GRID ADAPTATION

GET NEWVECTOR
u(T,X) AT TIME - T+ dt

2. CALCULATION SPACE
DERIVATIVES AND WRITE

EQUATIONS IN THE
GENERAL FORM

3. TIME INTEGRATION

FIND ADAPTIVE
TIME STEP - dt

T = T + dt

T<TMAX

END

YES

NO

Figure 5. Flow chart of the AFCM (paper I). 

Time integration is obtained by solving a 
system of differential-algebraic equations, 
written in a general form suitable for 
groundwater flow and transport problems (in 
each time step): 

( ) ( ))(,,,, muuxtF
t
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( ))(,,,0 muuxtG=  (30) 

where u is the solution, m is the order of 
derivatives and A, F and G are linear or non-
linear operators, depending upon the consid-
ered problem. The spatial derivatives in op-
erators F and G must be written in a form 
that contains only function values closely 
related to the well-known finite-difference 
stencils. Equation (29) represents time–
dependent partial differential equations 
which describe the time evolution of the 
solution, while the algebraic equations (30) 

present the boundary conditions (Dirichlet, 
Neumann or Chauchy mixed type). 
The second application of the AFCM (papers 
II-III) solves the flow problem (3) with only 
Fup basis functions at each level using the 
collocation framework and an adaptive strat-
egy similar to the FCT in the following way  
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with boundary conditions: 
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for a given FRT approximation of the log-
conductivity field Y. Each non-zero level 
solves only the residual of the flow equation 
and corresponding boundary conditions from 
all previous levels (“frozen” Fup coefficients) 
and gives particular head corrections (Fup 
coefficients at the current level). The adaptive 
criterion adds new collocation points in the 
next level only in the zones where the head 
correction is greater than the prescribed 
threshold. 

2.4.3 Adaptive Fup Monte-Carlo Method 
The Adaptive Fup Monte Carlo Method 
(AFMCM, paper II) follows the Eulerian-
Lagrangian formulation, separates the flow 
from the transport problem and consists of 
the following common steps (see subsection 
1.2.2; Rubin, 2003).  
Figure 6 shows the flow chart of the 
AFMCM, which represents a general frame-
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work for flow and transport in heterogeneous 
porous media (paper II).  
AFMCM uses the random field generator 
HYDRO_GEN (Bellin and Rubin, 1996) for 
step 1 due to its accuracy and generality. Log-
conductivity approximation (step 2) is solved 
by FRT, reproducing very accurately pre-
scribed ensemble statistics. Step 3 uses an 
AFCM for the differential flow equation (3) 
in order to get an accurate and continuous 
velocity field in each realization. The posi-
tions of particles and related travel times are 
calculated with a new particle-tracking strat-
egy (step 4) using the high-order Runge-
Kutta-Verner (8-5:6) time integration scheme 
(Verner, 1978) and FRT. In that way, travel 
time and transverse displacement fields are 
described as continuous functions with pre-
scribed accuracy. Finally, it is possible to 
extract an unlimited or desired number of 
particles from these solutions in order to 

eliminate statistical fluctuations in ensemble 
statistics. Ensemble statistics are described in 
a multi-resolution way (26) as all other men-
tioned fields in each realization (step 6; Fig-
ure 6). All mentioned MC methodology steps 
are detailed in paper II. 
 

2.4.4 Inexact Fup Maximum Entropy 
algorithm  

The maximum entropy (MaxEnt) principle is 
a versatile tool for statistical inference of the 
pdf from its moments as the least biased 
estimation among all other possible distribu-
tions. It maximizes Shannon entropy, sub-
jected to the moment constraints (Shannon, 
1948; Jaynes, 1957) 
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where μi are moments of an arbitrary set of 
basis functions (hi(x); i=0,…,m), while f is an 
unknown pdf. The MaxEnt algorithm trans-
forms the original constrained optimization 
problem to the unconstrained convex dual 
optimization problem using the Lagrangian 
multipliers. The classic moment problem 
uses algebraic power moments as basis func-
tions and yields the pdf in the following form 
of Lagrangian multiplications 

∑−−−=
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j

j
j xxf

1
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This procedure is characterized by strong 
nonlinear system (combining Eq. 35 and 
system 36), which causes typical conventional 
numerical methods to fail for higher-order 
moments (m>5-10) due to different sensitivi-
ties of the Lagrangian multipliers and their 
unbalanced nonlinearities (Mead and Papani-
colaou, 1984).  
Classic MaxEnt algorithms overcome these 
difficulties by using orthogonal polynomials 
that enable roughly the same sensitivity as all 
Lagrangian multipliers (Turek, 1988; Ban-
dyopadhyay et al., 2005; Abramov, 2007, 
2009). Paper V presented a principally differ-
ent idea, using the low order Fup2 basis func-

Figure 6. Flow chart of the AFMCM (paper II).
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tions with compact support which exactly 
describe algebraic polynomials up to the 
second order, but approximately describe 
other polynomials of higher order. Now, the 
related nonlinear system becomes numeri-
cally very efficient due to localized properties 
of the Fup basis functions, but consequently 
these basis functions approximately describe 
all moments of polynomials with order high-
er than the Fup order. Therefore, this algo-
rithm is called the Inexact Fup Maximum 
Entropy Algorithm (IFMEA). 
This algorithm is based on the following 
relation  

mixxFupdx i

m

j
jij

i ,.,0);()(
0

2 =+= ∑
=

ε  (37) 

where εi(x) are residual functions that repre-
sent differences between monomials and 
their Fup2 approximations. Furthermore, the 
relationship between their moments repre-
sents the iterative scheme of IFMEA 

∑
=

− =Δ−
m

j

lFup
jij

l
ii d

0

)()1( 2μμμ  (38) 

where i=0,…,m is a moment index, 
l=1,2,…,∞ is an iteration step, while  

)()1( 2,, lFup
j

l
ii μμμ −Δ are moments of  mono

mials, residual functions and Fup2 basis func-
tions, respectively. Since the moments of 
residual functions and Fup2 basis functions 
are unknown, the algorithm assumes residual 
moments from the initial pdf guess (l=0) or 
previous step (l>0). Then, the moments of 
the Fup2 basis functions are calculated from 
the system (38). Thus, the classic moment 
problem is now reduced to the maximum 
entropy problem over the Fup2 moments, 
which yields an approximation of the exact 
MaxEnt pdf (36) 

))(1(exp)(
0

2
* ∑

=

−−=
m

j
jj xFupxf γ  (39) 

The iterative algorithm is repeated until the 
convergence of respected Fup2 moments. 
The final moment error is presented by 

∫ −=−
max

min

))()(()( **
x

x
iii xdxfxfxεμμ  (40) 

Since the two integral functions are small 
relative to the monomials and the exact pdf, 
respectively, and they fluctuate around zero 
or very close to zero, the actual moment 
error is negligible for all practical papers 
(paper V). 
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3  RESULTS  

3.1 Introduction 

This Section represents the main thesis re-
sults and application of adaptive Fup multi-
resolution methodology in the short and 
straightforward way, while more detailed 
presentation is given in related papers I-V in 
Appendix. 

3.2 Description of solutions with fronts 
and narrow transition zones (paper 
I) 

Many groundwater flow and transport prob-
lems, especially those with sharp fronts, 
narrow transition zones, layers and fingers, 
require extensive computational resources. In 
paper I, AFCM based on Fup basis functions 
and method of lines (MOL) is presented. 
Procedure enables the adaptive multi-
resolution approach to solve problems with 
different spatial and temporal scales with a 
desired level of accuracy using the entire 
family of Fup basis functions.  
Procedure can be presented on classic multi-
phase benchmark example - Buckley-Leveret 
problem. The problem is characterized by 
strong nonlinearities and a narrow saturation 
front. Moreover, the nonlinear system (29-
30) is very stiff and requires short time steps. 
There is no analytic solution, but the problem 
has been solved numerically by Kurganov 
and Tadmor (2000) and Cruz et al. (2003) 
using a high resolution finite difference 
scheme.  
Figure 7 shows a multilevel adaptive solution 
for the moving saturation front. Initial condi-
tions are relatively simple except at one point 
where the saturation front has a discontinu-
ous derivative. Therefore, five levels are 
needed for this simple bilinear function. At 
the early stages of the process the saturation 
front moves very slowly and at t = 0.1 reach-
es the final steepness and sharpness with 
eight levels and nearly 140 collocation points. 
After that, the front travels toward the right 
boundary, while adaptive grid follows its 
movement. 
This example presents the efficiency of the 
method in handling strong nonlinear prob-

lems and the narrow saturation front with 
changes in sharpness and location, both in 
space and time. The adaptive grid follows the 
system dynamics and displays a wide range of 
different spatial and temporal scales that 
characterize this complex problem. The 
efficiency of the method is usually described 
by the compression coefficient (CC) which is 
defined as a ratio between the number of 
collocation points in the non-adaptive and 
adaptive algorithm ( AD

jj
C NC += min2 ). 

Namely, a non-adaptive algorithm would 
require all points at the maximum level in 
order to obtain the same accurate solution as 
the solution described by AFCM. The com-
pression coefficient is about 30 which clearly 
show the efficiency of the proposed AFCM.  
The method was also tested and verified 
(Figure 7) by comparison, at t = 0.2, between 
solutions obtained by AFCM and those by 
Cruz et al. (2003). Figure 7 shows an almost 
perfect match between the two solutions. 
Final example is a 1-D density driven prob-
lem. Initial conditions are very demanding 
and show that the domain is filled by fresh 
water with a hydrostatic distribution. The 
pulse concentration boundary condition on 
the left side consists of the salt water source 
which enters the domain during the first part 
of the simulation (t* = 0.15). After that, the 
concentration is zero (fresh water). The con-
centration boundary condition on the right 
side is defined by no-dispersion flux bound-
ary. Both boundary pressure conditions are 
constant Dirichlet boundary conditions. 
Solution dynamics is presented in Figure 8. 
AFCM solution uses four different concen-
tration thresholds in order to present conver-
gence test to the unknown exact solution, 
while Zegeling et al. (1992) used 100 points 
which are adaptively located inside the do-
main (Figure 8). However, AFCM and their 
solution are not in the close agreement due to 
a significant difference in the backward front. 
Reasons are twofold: a) Zegeling et al. (1992) 
considers a fixed number of points (e.g. N = 
100). After the injection time their algorithm 
redistributes points around two fronts and 
loose accuracy and more important  
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steps. Comparison between AFCM and Cruz et al. (2003) at t=0.2. 
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b) description of the shock concentration 
boundary condition at the start and end of 
the injection time due to creating very steep 
concentration front.  
After the injection time, the backward front 
is steeper than the upward front due to the 
influence of the left concentration boundary 
condition. For threshold 410−=Cε , at t* = 
0.16 Figure 9 shows that the grid follows two 
fronts while the backward front requires two 
additional resolution levels. After some time 
both fronts need the same resolution (t* = 
0.30).  
During the simulation time the compression 
coefficient fluctuates between 20 and 40. 
Peclet number is a very high (Pe~20), since 
solution is stable and accurate (oscillations 
are 100 times less frequent than the pre-
scribed threshold 410−=Cε ).  
This procedure can be particularly attractive 
for reactive transport and other related prob-

lems with sharp fronts which exhibit a wide 
range of spatial and temporal scales. 
3.3 Description of heterogeneity (paper 

II) 

A single realization of the hydraulic conduc-
tivity obtained by HYDRO_GEN (Bellin and 
Rubin, 1996) is illustrated in Figure 10. A 
discrete set of generated log-conductivity 
values are transformed to the continuous 
function by the Fup collocation transform 
(FCT). FCT satisfies exactly generated grid 
values and elsewhere interpolation is closely 
related to the polynomial approximation of 
the n order if n is a Fup order (Fup2 basis 
functions). Figure 10 shows a multi-
resolution FCT approximation of the log-
conductivity field in one chosen realization 
for 62 =Yσ . HYDRO_GEN generates 32 grid 
values per integral scale with conductivity 
differences over seven orders of magnitude. 
Zero level satisfies minimum requirement of 
2 collocation points per integral scale (nY=2). 
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tween AFCM and Zegeling et 
al. (1992) for 1-D vertical 
density driven flow and 
transport problem at a) 
t*=0.02 and 0.1 and b) t*=0.2 
and 0.4 with dispersion (αL = 
0.001 m) and the pulse con-
centration boundary condi-
tion at the left side. 
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First level is two times denser, 4 points per 
integral scale (nY=4, Fig. 10a), while second, 
third and fourth levels consist of nY=8, 16 
and 32 (Fig. 10b) collocation points per inte-
gral scale, respectively. Final, fourth level 
exactly reproduces all HYDRO_GEN values, 
but interestingly visual inspection does not 
reveal any difference between the first and 
fourth levels. However, in cross section A-A 
(Fig. 10c) differences between different reso-
lution levels exist only at higher level points.  
Accuracy of the HYDRO_GEN and FCT is 
shown on Figure 11 for 500 MC realizations 
and 62 =Yσ . Prescribed and reproduced cor-
relations (Figure 11a) and distributions (Fig-
ure 11b) are identical due to collocation na-
ture of the algorithm. On the other side, FRT 
slightly modifies HYDRO_GEN statistics 
due to averaging and regularization of the 
generated values. Figure 11a shows that FRT 
actually does not significantly change the 

correlation structure, but slightly decreases 
lnK variance and modifies the log-normal 
distribution close to the origin (Figure 11b). 
Therefore, lnK variance is 3-4% reduced for 
the high heterogeneity cases ( 2

Yσ =6-8), but 
for smaller 2

Yσ  differences are negligible. 
Although FCT exactly reproduces log-
conductivity ensemble statistics, I choose 
FRT in this thesis due to its computational 
efficiency and comparatively high accuracy. 
Note that FRT retains all aforementioned 
properties of the FCT and also shows signifi-
cant advantage due to more stabilized flow 
solver and particle tracking algorithm. 

3.4 Flow in heterogeneous porous 
media (paper II and III) 

Figure 12 presents a multi-resolution head 
and streamline solution at the highest level 4 
(nh=32) for different resolutions of the log-
conductivity field (nY=4-32; realization from 

Figure 10. Multi-resolution Fup approximation of the (log)-conductivity field (one chosen multi-Gaussian realization) 

obtained by FCT with exponential covariance and 
2
Yσ =6 for different resolution levels (domain is 64IY *32IY): a) 

conductivity field for nY=4; j=1 , b) conductivity field for nY=32; j=4 which is also HYDRO_GEN resolution level and 
c) log-conductivity field for section A-A, nY=4 and nY=32. 
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Figure 10; mean uniform flow). Although 
there are small differences between different 
log-conductivity resolutions, they cause small 
head differences, but larger streamline or 
velocity differences. Generally, flow or 
streamline patterns are similar for all log-
conductivity resolutions, characterized by 
preferential flow channels (Moreno and 

Tsang, 1994), but shape, position and num-
bers of channels are slightly different.  
Moreover, Figure 12 presents streamline 
fields that are obtained from the AFCM 
continuous velocity approximation which is 
necessary for accurate and reliable particle 
tracking that will be explored in the sequel. 
Relative accuracy of the velocity is lower, 
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Figure 11. Log-conductivity ensemble statistics: a) autocorrelation of the log-conductivity field and b) log-conductivity 
pdf obtained by HYDRO_GEN, FCT and FRT using nY = 8, 500 Monte-Carlo realizations, exponential covariance and 

2
Yσ =6. 

Figure 12. Multi-resolution Fup approximation of the head and streamline field (one chosen realization from the 

Figure 10) with exponential covariance and 
2
Yσ =6 for different resolution levels of the generated conductivity field 

(nh=32 and domain is 64IY *32IY): a) nY=4; j=1 , b) nY=8; j=2, c) nY=16; j=3, d) nY=32; j=4.
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around one order of magnitude compared to 
the head accuracy, due to strong Fup correla-
tion with the polynomial type of approxima-
tion.  
Velocity statistics can be described in terms 
of first two moments, correlations and re-
lated pdf’s. Figure 13 represents mean and 
variance for Eulerian velocity, but also for 
Lagrangian velocity and their other two vari-
ants: slowness and slope. Figure 13a illus-
trates how different dimensionless mean 
velocities change with increasing 2

Yσ .  

Arithmetic mean of vx/u and vy/u is unity 
and zero, respectively (Dagan, 1989). Geo-
metric mean of the dimensionless Lagrangian 
velocity uw /  increases linearly, while Eule-
rian geometric mean decreases nonlinearly 
with increasing 2

Yσ , due to the formation of 
preferential flow “channels”. An empirical 
expression for geometric mean of Lagrangian 
velocity suggested by Cvetković et al. (1996) 
appears as a good estimator, even for 

42 >Yσ . Note that arithmetic mean of αu and 
β is unity and zero, respectively. Finally, 
arithmetic mean of uw /  is unity. 
  

Figure 13. First two Eulerian and Langrangian velocity moments as a function of 
2
Yσ : a) Arithmetic and geomet-

ric means, variance values of b) vx/u and ln(w), c) vy/u and β and d) αu and w/u.  
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In Figures 13b-d the dependence of velocity-
related variances on 2

Yσ  is illustrated. The 
Eulerian velocity variance is bounded by the 
first (Rubin, 1990) and second (Hsu et al., 
1996) order results as lower and upper limit, 
respectively (Figures 13b-c). The first order 
solution is accurate for low heterogeneity 
cases 12 <Yσ  and acceptable for mild hetero-
geneity with 22 ≤Yσ  (relative error less than 
10% for longitudinal velocity, but up to 34% 
for transverse velocity). The second order 
solution is accurate and robust for low and 
mild heterogeneity, but not appropriate for 
high heterogeneity (for 42 =Yσ  relative error 
is around 19% for transversal velocity).  

Generally, both analytic solutions better 
approximate longitudinal than the transverse 
velocity variance. Numerical results of Salan-
din and Fiorotto (1998) agree quite well with 
our results up toσY

2 ≤ 4 , especially for trans-
verse variance. Their longitudinal variance is 
a slightly higher than the second order theory 
which may be a consequence of the small 
numerical error. Recent numerical results of 
de Dreuzy et al. [2007] which used 92 ≤Yσ are 
in a close agreement with Salandin and Fi-
orotto (1998) for 2

Yσ  up to 4, but they did 
not report results for 42 >Yσ . De Dreuzy et 
al. (personal communication) calculated flow 
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Figure 14. Correlation functions for different 
2
Yσ  in the streamline longitudinal direction: a) Langrangian 
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Figure 15. Velocity pdf’s in log-log scale: a) Eulerian and Langrangian velocity pdf for a) 12 =Yσ and b) 62 =Yσ , 

inverse Langrangian velocity or slowness (α) pdf for c) 12 =Yσ  and d) 62 =Yσ . Comparison with log-normal distribu-

tions is also included. Pdf’s of slope (β) in semi-log scale for e) 12 =Yσ  and f) 62 =Yσ . Comparison with normal 
distributions is also included. 
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statistics in a single realization of a large  
domain (409.6*409.6IY and nY=10). They 
obtained 6-8 % smaller variances than pub-
lished MC results with 100 realizations (de 
Dreuzy et al., 2007) explaining this difference 
due to a lack of the extreme velocity values in 
the single realization. Furthermore, Zinn and 
Harvey (2003) reported smaller variance 
values than de Dreuzy et al. (2007) although 
they used the same block-centered finite 
difference procedure. Nevertheless, I can 
conclude that our velocity variances are in a 
good agreement with de Dreuzy et al. (per-
sonal communication) for high heterogeneity 
in a wide range of [ ]8,02 ∈Yσ . Estimators 
presented in paper III (their Eq. 12 and 13) 
appear as a robust predictor for all 2

Yσ  and 
both variances. Figure 13b shows dimen-
sionless variance of log-Lagrangian velocity 
for which empirical expression given by 
Cvetković et al. (1996) appears as a good 
estimator, even for 42 >Yσ .  
Figure 13c presents variance of the slope 
function which is smaller than one and in-
creases as 2

Yσ  increases due to more variable 
flow in transversal direction. Figure 13d 
presents dimensionless variances of Lagran-
gian velocity and slowness which are signifi-
cantly larger than Eulerian velocity variances.  
Figures 14a-d illustrate correlation functions 
of Lagrangian velocity w, slowness α and 
slope β, for different 2

Yσ . Lagrangian velocity 
correlation function increases with increasing 

2
Yσ  (Figure 14a) contrary to the Eulerian 

longitudinal velocity component (Salandin 
and Fiorotto, 1998). Thus the opposing ef-
fect of increasing 2

Yσ  on the correlation 
function of vx and w clearly demonstrates the 
effect of increasingly persistent flow along 
preferential channels.  
Correlation of the slowness α decreases with 
increasing of 2

Yσ  (Figures 14b-c), which has 
direct effect on the longitudinal dispersion 
quantified by the travel time variance. Fur-
thermore, travel time variance is a completely 
defined by the covariance of the slowness 
(Eq. 12). Figures 14b-c indicates a relatively 
small slowness correlation length and integral 

scale, approximately equal to the integral 
scale of log-conductivity. Therefore, integra-
tion of Eq. (12) yields only after a few IY a 
near linear travel time variance. After 30IY, 
slowness correlation reaches zero for all 
considered 2

Yσ . The travel time variance as-
ymptotically reaches a linear form after about 
60IY due to properties of Eq. (12). 
Figure 14d presents slope correlation for high 
heterogeneity cases 2

Yσ ≥4. The slope correla-
tion shows “hole effect” with integral scale 
which converges to zero. Correlation does 
not change significantly with increasing 2

Yσ , 
approaching zero correlation between 4 and 
5IY. By definition of Eq. (12), transverse 
displacement variance asymptotically reaches 
constant sill if integral scale of the slope 
function converges to zero.  
Eulerian and Lagrangian velocity pdf’s are 
illustrated on a log-log plot in Figures 15a-b 
for a low and highσY

2 . The two pdf’s are very 
close for small heterogeneity as assumed by 
first-order theory (Dagan, 1989), but signifi-
cant differences arise for high heterogene-
ity )3( 2 >Yσ  (Figure 15b). Once again, the 
divergence of the vx and w pdf’s with increas-
ing σY

2  indicate preferential flow or channel-
ing (Moreno and Tsang, 1994, Cvetković et 
al., 1996): The Lagrangian velocity pdf re-
flects a higher proportion of larger velocities 
pertinent to the trajectories. By contrast, 
Eulerian velocity pdf reflects a significant 
part of low velocities, since preferential flow 
channels occupy only a relatively small por-
tion of the domain. Thus, differences be-
tween Eulerian and Lagrangian velocity pdf, 
as well as pdf deviations from the log-normal 
distribution are indicators of preferential flow 
and channeling.  
Slowness (α) pdf shows similar characteristics 
as the Lagrangian velocity (w) pdf concerning 
its shape, deviations from the log-normal 
distribution and its tailing (Figure 15c and 
15d). Slope (β) pdf shows symmetric and 
nearly normal distribution for low heteroge-
neity (Figure 15e). High heterogeneity (Figure 
15f) causes strongly non-normal behavior 
implying a more uniform pdf and different 
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shape of the tailings in comparison to the 
normal distribution.  

3.5 Advective transport based on travel 
time approach (paper III and IV) 

Advective transport simulations are per-
formed in the inner computational domain in 
order to avoid non-stationary influence of the 
flow boundary conditions (Figure 1). Injec-
tion tracer mass is divided to the certain 
number of particles which all carry the equal 
fraction of total mass. Particles are injected 
along the source line and followed down-
stream such that transverse displacement and 
travel time are monitored at arbitrary control 
planes denoted by x. There are two different 
injection modes: uniform resident and uni-
form in flux (Kreft and Zuber, 1978, Demmy 
et al., 1999). Resident mode injects particles 

uniformly along the source line, while in flux 
mode injects particles non-uniformly, i.e. 
proportional to the velocity field in the 
source. All input data are given in paper III. 
The first moment of the transverse displace-
ment η is close to zero with maximum abso-
lute values less than 0.1·IY. Figure 16a shows 
dimensionless transverse displacement vari-
ance ση

2  for all control planes and consid-
ered 2

Yσ . Variance ση
2  increases non-linearly 

with distance and its form as a function of x 
is in qualitative agreement with the first-order 
solution. The magnitude of ση

2  is underesti-
mated by the first-order results with relative 
error of 12.8% for 2

Yσ =0.25 and 39.4% for 
high heterogeneity.  
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Figure 16. Dimensionless transverse displacement: a) variance for all considered
2
Yσ , pdf’s in semi-log scale for differ-

ent control planes and b) 
2
Yσ =1, c) 

2
Yσ =4 and b) 

2
Yσ =8.  
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Figures 16b-d show transverse displacement 
pdf ( 2

Yσ =1, 4 and 8) at three different con-
trol planes (x/IY=1, 5 and 40). Generally, the 
transverse displacement pdf shows a higher 
peak and wider tailings compared to the 
normal distribution, mainly due to streamline 
fluctuations around the mean and flow chan-
neling. These deviations are more significant 
for very close control planes (x/IY<10) and 
high heterogeneity cases ( 2

Yσ ≥4). Moreover, 
for x/IY>20 transverse displacement is found 
to be very close to the normal distribution, 
even in a case of high heterogeneity 
(Cvetković et al., 1996).  

 
Figure 17. The dimensionless travel time mean for in 

flux and resident injection mode and for 
2
Yσ =1, 4, 6 

and 8. 

The dimensionless mean travel time is pre-
sented in Figure 17. It is closely reproduced 
with YIxx /´=  for in flux injection mode and 
all considered 2

Yσ  according to the Demmy 
et al. (1999) and paper III. Second order 
prediction by Guadagnini et al. (2003) is quite 
accurate for low and mild heterogeneity 
( 2

Yσ <3) and resident injection mode. Initial 
nonlinearity is caused by an injection of trac-
er particles to the mainly low velocity zones 
and therefore produces larger mean travel 
time. However, after 5-15IY all curves be-
come linear with nearly the same slope be-
cause particles are almost transferred and 
located in the preferential flow channels.    
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Figure 18. Dimensionless travel time variance of 

AFMCM and analytic solutions for: a) =2
Yσ 1 and 4, 

b) =2
Yσ  6 and 8. 

The dimensionless travel time variance as a 
function of distance is illustrated in Figure 18 
where a comparison is made with the first-
order solution. The simulated variance for in 
flux mode is a nonlinear function of the 
distance from the source only say up to about 
5IY, after which it attains a near linear de-
pendence. Interestingly, the non-linear fea-
tures of 2

τσ with distance diminish as σY
2  

increases: The discrepancy of the simulated 
2
τσ  from a line set at the origin is larger for 

say 12 =Yσ  (Figure 18a) than for σY
2 = 8 

(Figure 18b); this 2
τσ  behavior was explained 

above with respect to the slowness correla-
tion (Eq. 12).  
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Figure 20. Travel time pdf (AFMCM and ADE solutions) for in flux mode, three different control planes and 
2
Yσ =1, 

4, 6 and 8 in log-log scale. 
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Yσ (a). Pre-asymptotic transverse dispersion for high 

heterogeneity as a function of x/IY (b). 
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Resident injection mode changes the form of 
variance from the familiar concave predicted 
by the first-order theory to a convex form for 
a case of high heterogeneity ( 2

Yσ >3) accord-
ing also to Cvetković et al (1996). In this 
case, due to tracer injection mostly to slow 
streamlines, slowness as well as Lagrangian 
velocity is non-stationary for the first 5-15IY, 
until the particles do not reach the nearly 
asymptotic Lagrangian velocity which is the 
same as flux averaged Eulerian velocity im-
posed by in flux injection mode (see discus-
sion of Le Borgne et al., 2007, 2008; paper 
III). The comparison with analytic solutions 
indicates, consistent with earlier studies, that 
up to 12 =Yσ , the first-order theory repro-
duces simulated values reasonably well, al-
though some deviations are visible even for 

25.02 =Yσ  (see paper III). With increas-
ingσY

2 , the deviations are significantly larger, 
especially for high heterogeneity and resident 
injection mode. Consequently, all other high-
er moments demonstrate the same behavior 
for both modes and σY

2  attaining the linear 
behavior after the first 5-15IY (paper IV).  

Using travel time variance and its relation 
with covariance of the slowness (Eq. 12), it is 
possible to obtain asymptotic longitudinal 
dispersivity. Comparison with first order 
theory (Dagan, 1989) and recent simulations 
results for normalized longitudinal asymp-
totic effective dispersivity of de Dreuzy et al. 
(2007); their average fitted curve 

42 2.07.0 YY σσ +  compares reasonably with 
AFMCM estimator, especially for high het-
erogeneity around 2

Yσ =4 (Figure 19a). Small 
deviations occur for mild heterogeneity 
( 2

Yσ =1-2) and extremely high heterogeneity 
(relative error for 2

Yσ =8 is around 14%).  
Asymptotic transverse dispersion depends 
only on the second moment of the slope 
function; more precisely on its variance and 
integral scale. Figure 14d shows that integral 
scale of the slope function converges to the 
zero which means that transverse macrodis-
persion value also goes to zero. However, I 
can show only pre-asymptotic behavior be-
cause asymptotic distance outperforms our 

current computational capacity. Figure 19b 
presents pre-asymptotic behavior of the 
transverse dispersion (flow domain 128*64 
IY) within the first 60IY in which maximum 
value is reached after only 4-5IY, followed by 
a decreases for σY

2≥4, but with a slower rate 
for increasingσY

2 . 
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Figure 21. MaxEnt travel time pdf for in flux mode and 

=2
Yσ 1 using the first four travel time moments and 

two control planes: a) x/IY=10, and b) x/IY=40. 

The travel time probability density functions 
(pdf’s) are illustrated on a log-log plot for in 
flux injection mode, three chosen control 
planes and σY

2 =1, 4, 6 and 8 in Figure 20. 
Comparison between AFMCM and ADE 
(Kreft and Zuber, 1978) is also included. 
From low to moderate variability (σY

2≤3) 
inverse Gaussian pdf reproduces reasonably 
well the actual pdf (Figure 20a) in particular 
for x/IY ≥10. For high heterogeneity (σY

2 >3) 
and small distances from the source area 
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(x/IY ≤ 20) inverse Gaussian pdf deviates 
from the simulated pdf in the first part of the 
breakthrough curve.  
However, with increasing distance, the differ-
ence between simulated and modeled curves 
decreases, while after around 40IY the inverse 
Gaussian pdf reproduces well the peak and 
later part of the experimental pdf (Figure 
20b-d). Therefore, advective transport in 
highly heterogeneous porous media is a non-
Gaussian for the first 40IY.  
Figures 21-23 show the Monte-Carlo experi-
mental AFMCM pdf as well as its MaxEnt 
approximation pdf (paper IV) which uses the 
travel time moments up to the 6-th order, 
both modes, different control planes and 2

Yσ . 

Generally, deviations from a symmetrical 

distribution (e.g., log-normal) or MaxEnt pdf 
with first two moments decrease with dis-
tance from the source area, and increase 
significantly with increasing σY

2 .  

For low and mild heterogeneity (for instance 
σY

2 =1, in flux mode, Figure 21) small devia-
tions from a symmetric distribution occur 
only within the first 10-20 integral scales, 
while almost complete symmetry is attained 
after 40 integral scales. It means that the 
higher travel time moments only slightly 
change pdf close to the source area. Fur-
thermore, this is very strong evidence jointly 
with paper III (see their Figure 2 and pdf 
results for σY

2 =0.25) that the first order 
theory presents robust and efficient tool for 
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Figure 22. MaxEnt travel time pdf for in flux mode 

and =2
Yσ 8 using the first six travel time moments 

and two control planes: a) x/IY=5, and b) x/IY=40. 

Figure 23. MaxEnt travel time pdf for resident

mode and =2
Yσ 8 using the first six travel time 

moments and two control planes: a) x/IY=5, and b) 
x/IY=40. 
 



Hrvoje Gotovac  TRITA LWR PhD Thesis 1051 

 

32 
 

travel time analysis in low heterogeneous 
media (σY

2 <1) where mean and variance 
completely describes advective transport. For 
mild heterogeneity (1≤σY

2≤3) asymmetry of 
the travel time pdf becomes larger, while the 
first order theory is only partially adequate 
due to variance error (see paper III). Mild 
heterogeneity range presents a transition 
zone where the higher travel time moments 
start to play a more important role. Pdf re-
sults for resident mode are practically the 
same due to similar travel time moments 
(Figures 17-18). 
For high heterogeneity and in flux mode (e.g. 
σY

2 =8, Figure 22) the computed AFMCM 
pdf is increasingly asymmetric, with both the 
early and late arrivals are shifted to later times 
with respect to the log-normal pdf (MaxEnt 
with two moments). Although the asymmetry 
in the pdf diminishes with increasing dis-
tance, for high heterogeneity it is still 

maintained over the entire considered do-
main of 40·IY. Generally, the main influence 
has the third moment which represents pdf 
skewness. Four and other higher travel time 
moments only improve MaxEnt pdf with 
respect to early arrivals, but peak and last 
arrivals remain almost the same.  
Figure 23 presents that travel time pdf for 
very high heterogeneity case with σY

2 =8 and 
resident injection mode requires between 
three and four moments for both: peak and 
late arrivals. Late arrivals in resident injection 
mode depend on certain number of particles 
which considerably slow down in the low 
conductivity zones due to injection and needs 
long time to come into the preferential flow 
channels. Therefore, pdf of the resident 
injection consists of significantly longer tail-
ing than in flux mode and therefore requires 
additional fourth moment for its accurate 
describing.  



A multi-resolution approach for modeling flow and solute transport in heterogeneous porous media   

 

33 
 

4  DISCUSSION  

Since detailed field experiments are very rare, 
the scarcity of data and uncertainty of input 
and output variables mean that stochastic 
computational methodologies are usually key 
tools in explaining complex subsurface proc-
esses. Even in rare cases, for instance the 
Cape Cod site (LeBlanc et al., 1991), it is im-
possible to completely reduce uncertainty and 
get a complete deterministic description of 
flow and transport in porous media. Unfor-
tunately, it is not realistic to expect that we 
will find some futuristic type of scanner that 
can accurately measure all heterogeneous 
physical and chemical properties of porous 
media and precisely record the movement 
and behavior of the flow and solute trans-
port. However, even in that unrealistic case, 
computational methodologies represent the 
only way to scientifically describe and explain 
these recorded subsurface processes. Finally, 
and more realistically, different computa-
tional methodologies need to describe sub-
surface processes while honoring the intrinsic 
uncertainty in our analysis. 
It has already been discussed in the Introduc-
tion that there is no universal methodology 
that solves all subsurface problems. This 
thesis tried to develop a novel computational 
approach that is based on atomic basis func-
tions, respects the multi-resolution nature of 
measurements and their physical interpreta-
tion and enables an adaptive and accurate 
procedure that can work with different nu-
merical and stochastic approaches and be 
applied to many different subsurface proc-
esses. Therefore, this section will discuss 
properties of the methodology and its par-
ticular application to groundwater problems 
with sharp fronts as well as to single-phase 
flow and advective transport problems pre-
sented in this thesis. Furthermore, some 
attention will be devoted to future advance-
ments and improvements that are possible 
based on the results of this thesis. 

4.1. An adaptive multi-resolution 
methodology 

In this thesis, different computational tools 
are developed based on adaptive multi-

resolution methodology, such as Fup trans-
formations for multi-resolution representa-
tion, AFCM for flow problems and tracking 
of solutions with sharp fronts, AFMCM for 
stochastic modeling of flow and advective 
transport and IFMEA for statistical descrip-
tion of Monte-Carlo or other related pdf´s in 
terms of a few first statistical moments. The 
presented methodology is appropriate for 
many types of subsurface processes. There-
fore, this subsection will discuss atomic basis 
functions, general properties of the method-
ology and its relation to other methodologies. 

4.1.1 Atomic basis functions 
Atomic basis functions with compact support 
are the heart of the presented methodology 
because all of their properties are closely 
related to the properties of basis functions. 
Indeed, practically all other numerical and 
stochastic methods are closely related to the 
basis functions. Consider the following two 
typical examples: a) the multi-scale finite 
element method is completely described by 
multi-scale basis functions that are defined 
on a coarse grid, incorporating as much fine-
scale heterogeneity as possible and b) the 
maximum entropy algorithm, based on or-
thogonal polynomials, shows significantly 
better numerical properties than if it provides 
monomials as basis functions.  
Atomic basis functions have a strong ma-
thematical background as the exact solutions 
of differential-functional equations (14). In 
principle, each type of atomic basis function 
is related to a particular linear differential 
operator. This means that, theoretically, each 
problem can be exactly defined by certain 
types of atomic basis functions. However, the 
mathematical theory for defining atomic basis 
functions is not so simple and straightfor-
ward, and special cases have been developed 
that exactly describe algebraic (Fupn), expo-
nential (yω) and trigonometric (yω,h) polyno-
mials. Since all possible mathematical solu-
tions can be represented by combinations of 
only these three basic polynomials, the main 
idea behind the presented methodology is to 
use certain types of atomic basis functions 
that directly span the solutions (its vector 
space) of some particular problem. In that 
way, computational methodology becomes 
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optimal and efficient due to the small num-
ber of basis functions used, and it also creates 
synergy between mathematical and physical 
interpretations.  
The most commonly used basis functions in 
computational sciences are algebraic polyno-
mials or functions that exactly describe them, 
such as splines, wavelets or Fupn basis func-
tions. It is interesting to note that there have 
been only a few attempts with non-classic 
choices such as radial basis functions (e.g., 
Kansa, 1990). The reason for that lies in the 
simplicity of algebraic polynomials, which are 
easy to use on the computer and have a long 
history. Thus, scientists try to find new tech-
niques only if they cannot solve new physical 
challenges with old methods. This is one of 
the reasons why the finite element methods 
are still the most frequently used computa-
tional technique in applied science. Further-
more, in this thesis Fupn basis functions are 
used, which are also closely related to the 
algebraic polynomials. However, these func-
tions are the most widely known atomic 
functions with well-defined properties, and 
they provide a solid foundation for the me-
thodology and applications proposed in this 
thesis. Nevertheless, I believe that future 
applications of other atomic basis functions 
will significantly improve the ability to solve 
some subsurface problems. In order to show 
such potential applications, the 1-D steady-
state advection dispersion equation is consid-
ered 

02

2

=
∂
∂

−
∂
∂

x
cPe

x
c  (41)        

where DvPe x /=  is the Peclet number, and 
c(0)=0 and c(1)=1 are the Dirichlet boundary 
conditions. The exact solution is  

1)exp(
1)exp()(

−
−

=
Pe

xPexc  (42) 

This solution is characterized by a sharp 
front at the right boundary if the Peclet 
number is high. For Pe=1000, the AFCM 
requires a few hundred Fupn basis functions, 
while only a few exponential basis functions 
are needed for the exact solution with fre-
quency equal to the Peclet number (y1000). 
This simple example shows that appropriate 

basis functions can dramatically reduce the 
computational burden. Moreover, the Peclet 
number as a measure of the relation between 
advection and dispersion is the key parameter 
(frequency) of the exponential basis function. 
It means that each physical problem has a 
simple mathematical solution (in spirit of 
Einstein, 1905), but achieving this is some-
times more art than science. The real ques-
tion remains whether it is better to find a bad 
solution with an old approach many times or 
a good solution with a new approach only 
once. My opinion is that many computational 
methods possess inherent problems, mainly 
due to forcing classic basis functions for all 
possible physical problems. In the following, 
some relevant properties of the presented 
methodology, which uses Fup basis func-
tions, will be discussed.  

4.1.2 General properties 
The main properties of the Fup methodology 
presented in this thesis are: 1) computational 
capabilities of Fup basis functions with com-
pact support, 2) multi-resolution presentation 
of heterogeneity as well as all other input and 
output variables, 3) accurate, adaptive and 
efficient strategy and 4) semi-analytical prop-
erties. 
Fup basis functions, wavelets and splines are 
similar mainly due to their compact support 
and possible numerical implementation. 
Generally, approximation properties of all 
these basis functions are related to the devel-
opment of algebraic polynomials. Fup and 
other atomic basis functions can be regarded 
as generalized splines of infinite smoothness 

∞C (Rvachev, 1982). In the spirit of wavelet 
and multi-resolution analysis, atomic basis 
functions can be regarded as scaling func-
tions that enable a direct relationship with 
wavelets (Mallat, 1989). It should be noted 
that the importance of the atomic function 
up(x) in the functional-theoretical sense fol-
lows from its “atomic role” in the space of 

∞C functions, which is similar to that played 
by wavelet functions in the space )(2 RL . 
Kravchenko et al. (1995) developed wavelet 
basis functions with aid of the atomic basis 
functions, consisting of superior approxima-
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tion properties in comparison to other 
known wavelet functions. 
The basic difference between Fup and atomic 
basis functions on the one hand and wavelets 
and splines on the other hand is that, gener-
ally, atomic basis functions present exact 
solutions of differential-functional equations, 
but splines and wavelets are obtained from 
particular types of mathematical transforms. 
This is the reason why Fup basis functions 
have an infinite number of derivatives and 
non-vanishing moments. Therefore, Fup and 
atomic basis functions are appropriate for 
efficiently solving boundary-initial value 
problems as well as for designing promising 
new mesh-free numerical approaches.  
Fup basis functions support multi-resolution 
analysis originally developed by wavelet basis 
functions that enables representation of all 
spatial and temporal scales for flow and 
transport variables. This is particularly impor-
tant for log-conductivity heterogeneous fields 
and the contribution of different scales to 
head, velocity or travel time ensemble statis-
tics. Furthermore, sparse measurements are 
usually obtained on different scales. It is very 
important to incorporate all measurements 
with original scales for a more reliable estima-
tion of flow and transport in porous media. 
The main computational idea behind this 
approach is to separately find the minimum 
number of basis functions and resolution 
levels necessary to describe each flow and 
transport variable with the desired accuracy 
on a particular adaptive grid. Therefore, each 
variable is separately analyzed, and the adap-
tive and multi-scale nature of the methodol-
ogy enables not only computational effi-
ciency and accuracy, but it also describes 
subsurface processes closely related to their 
understood physical interpretation. The 
methodology inherently supports a mesh-free 
procedure, avoiding the classical numerical 
integration, and yields continuous velocity 
and flux fields, which is vitally important for 
flow and transport simulations. 
Thus, all variables and ensemble statistics are 
described only by a few basis functions (Eq. 
26) and the appropriate Fup transformation 
(e.g., FCT or FRT). Therefore, final ensemble 

statistics can be regarded as semi-analytical 
solutions because they are represented only 
by a finite number of Fup basis functions 
obtained with the prescribed accuracy. These 
solutions can be transformed into any appro-
priate relation with standard mathematical 
functions. For example, paper III presented 
MC ensemble solutions for Eulerian velocity 
variance, travel time variance and longitudinal 
macrodispersivity. Moreover, the travel time 
pdf in paper IV is simply represented by the 
analytic form of the maximum entropy pdf. 
These results can be regarded as semi-
analytical solutions as well as many other 
first-order perturbation results, especially 
because they use a significantly smaller num-
ber of approximations and assumptions.      

4.1.3 Relation with other numerical meth-
ods 

The presented methodology (AFCM) com-
bines the most desirable properties of exist-
ing numerical methods: 1) localized basis 
functions as in conventional FE, 2) the appli-
cation of a strong formulation and simple 
procedure as in conventional FD, 3) accuracy 
and continuity of basic variables and their 
derivatives and the use of Fup transforma-
tions as in spectral methods, and 4) adaptive 
and efficient procedures with error estima-
tion as in all modern numerical approaches.  
Paper II presented a flow solver in heteroge-
neous porous media and discussed its advan-
tages and disadvantages in relation to other 
common numerical methods. MODFLOW 
(McDonald and Harbouch, 1988) is still the 
most simple, but also the most reliable, flow 
solver. AFCM offers a multi-resolution de-
scription of heterogeneity in a more transpar-
ent way and enables adaptive and more accu-
rate solutions than MODFLOW (especially 
for the velocity field), but it requires a more 
expensive flow solver and a higher head 
resolution level than lnK field. The main 
reason for this inefficiency in terms of the 
number of head unknowns lies in the colloca-
tion nature of the algorithm, which does not 
exactly satisfy mass balance. One possibility 
for further improvement is the Fup Galerkin 
method, made through the weak integral 
formulation, which would keep all mentioned 
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AFCM properties but also ensure exact mass 
balance on compact support.  
Presented methodology is currently not suit-
able for the description of irregular geome-
tries. Irregular geometry can be solved by R-
functions, or Rvachev functions—a special 
numerical framework that exactly describes 
boundary conditions on domains with irregu-
lar boundaries independently on atomic basis 
functions (Rvachev et al., 2000; Tsukanov 
and Shapiro, 2005). Furthermore, a combined 
algorithm of R-functions and atomic basis 
functions could be a particularly efficient 
methodology that uses R-functions for the 
exact treatment of boundary conditions, 
while the chosen atomic basis functions use 
an adaptive strategy that accurately describes 
the solution inside the domain.  
The FE and FV methods eliminate this ge-
ometry problem but have the inherent disad-
vantage that in order to produce the continu-
ous velocity field needed for reliable random 
walk methods, they require velocity postpro-
cessors, hybrid formulations and additional 
CPU work. A recent new formulation of 
MsFEM (Hou and Wu, 1997) tried to obtain 
a continuous velocity field on a coarse grid by 
utilizing the fine-scale heterogeneity effects 
through the multi-scale coarse basis func-
tions. Unfortunately, all these methods, in-
cluding the AFCM, require a very fine grid 
and extensive computational resources, espe-
cially for larger lnK variance. In order to 
obtain more efficient flow solutions in het-
erogeneous porous media and retain the 
accuracy of the AFCM, the computational 
strategy should definitely be changed. From 
the perspective of atomic basis functions, a 
promising approach could use exponential 
basis functions. The key task is to define the 
frequencies of basis functions with respect to 
heterogeneity variations of the log-
conductivity field. This means that heteroge-
neity properties directly define the character-
istics of basis functions, which can signifi-
cantly decrease number of basis functions 
and improve the efficiency of the flow solver.     
Eulerian transport analysis with the advec-
tion-dispersion-reaction equation (4) is usu-
ally influenced by numerical dispersion if 
classic numerical methods are applied. Paper 

I presented the AFCM, which supports the 
method of lines and very efficiently tracks 
sharp fronts or narrow transition zones, 
resolving all spatial and temporal scales via an 
adaptive grid. Moreover, this method is 
closely related to wavelet methods (e.g., Va-
silyev and Bowman, 2000) and does not 
show any sensitivity to numerical dispersion, 
even in a case of a high Peclet number. An 
adaptive grid with Fup basis functions finds 
frequencies of solution in the principally 
same way as exponential atomic functions 
used that frequencies for their construction.  
Particle-tracking and random-walk methods 
inherently eliminate numerical dispersion, 
following particles according to the continu-
ous velocity field. The presented adaptive 
Fup methodology (paper II) enables very 
efficient tracking of particles due to its accu-
rate velocity fields and the use of Fup trans-
formations, which can follow an unlimited 
number of particles with prescribed accuracy. 
Thus, the presented methodology has many 
advantages over existing procedures, but it 
also opens many other possibilities for devel-
oping promising new methodologies that 
could solve the mentioned problems in fun-
damentally different ways.   

4.1.4 Relation with other stochastic meth-
ods 

The Monte-Carlo method is still the best-
known stochastic methodology for flow and 
transport in heterogeneous porous media. 
The AFMCM presented in paper II improved 
MC methodology based on advancements 
discussed in the last subsection, particularly 
as they apply to high heterogeneity and ad-
vective transport (papers III and IV). How-
ever, the basic problem for MC methods is 
that each flow realization must deal with large 
heterogeneity variations, which is challenging 
for all existing methods, as discussed earlier. 
Even the adaptive strategy of AFMCM can-
not significantly improve the efficiency of the 
flow calculations, especially if heterogeneity is 
defined in the classic way, with the finite 
variance and integral scale statistically uni-
formly distributed throughout the domain (as 
in this thesis and similar generic studies). I 
currently see the possibility for development 
of more efficient methodologies in two prin-
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cipally different ways: a) using totally new 
numerical approaches in each realization, as 
Janković et al. (2003) with AEM or men-
tioned promising methods with exponential 
atomic basis functions, and b) providing new 
stochastic methods that directly solve en-
semble statistics (pdf and related moments). 
Two such novel stochastic methods are PCM 
(Zhang and Lu, 2007; Shi et al., 2009) and 
BME (Christakos, 2000). 
PCM presents the log-conductivity field in 
terms of the Karhunen-Loeve (K-L) expan-
sion and reduces a stochastic problem to 
many decoupled deterministic problems of 
the same form as the original equations (3) or 
(4). In that way, PCM is conceptually similar 
to MC methods, but it requires fewer deter-
ministic solutions or “realizations” for each 
set of collocation points. However, each 
deterministic equation is still very demanding, 
with the same discussed problems, and the 
presented methodology can be applied as in 
the MC case. Also, K-L expansion is not 
currently developed for non-Gaussian and 
other arbitrary heterogeneity structures. 
BME uses two strong stochastic tools: the 
Bayesian conditioning and maximum entropy 
principle. The first step in BME for finding a 
prior pdf can also be used for stochastic 
modeling of flow and transport based only 
on epistemic knowledge, including not only 
differential equations (3) and (4) but also 
many other types of physical laws (empirical 
relationships, histograms, moments and so 
on). This theoretically very sound approach 
very easily incorporates soft and hard data 
and different relations and directly yields pdf 
results. However, computational implementa-
tion is still complicated due to multi-
dimensional integrals and high nonlinearity. 
Paper V presented the first application of the 
maximum entropy algorithm (IFMEA) with 
Fup basis functions for solving a univariate 
pdf. The IFMEA is used for complete char-
acterization of the travel time pdf, combining 
MC analysis and the MaxEnt principle (paper 
IV). The possible extension of the algorithm 
to the multivariate pdf and combination of 
Fup multi-resolution approach with versatile 
BME properties could lead to a more com-
putationally efficient stochastic methodology. 

More specifically, moments of differential 
equations (3) and/or (4) are zero and can be 
transformed into multi-dimensional Fup 
moments. Then, the IFMEA presented in 
paper V would be extended to multi-
dimensional problems in order to obtain the 
final multivariate pdf. 

4.2 Flow in heterogeneous porous 
media 

Contrary to transport analysis, which is usu-
ally linked with many different concepts, 
computational frameworks and theories, the 
flow problem in heterogeneous porous me-
dia, as the most demanding Monte-Carlo 
step, is conceptually straightforward but 
computationally extremely difficult, as was 
discussed in the last subsection. Challenges 
for all current flow solvers include problems 
with: 1) complex flow regimes, 2) relatively 
large lnK variance and high heterogeneity, 3) 
3-D large domains with irregular boundaries 
and 4) non-Gaussian heterogeneity struc-
tures. The presented adaptive Fup methodol-
ogy (AFMCM, papers II-IV) was concen-
trated mainly on the second problem in this 
thesis. Paper I also discussed multiphase flow 
and density-driven flow, but in homogeneous 
porous media. Last two problems are very 
important for real applications, field experi-
ments and tracer tests, because usually only 
3-D analysis can capture many flow and 
transport effects (Janković et al., 2003, 2009), 
while real heterogeneous structures often 
contain connected low and/or high conduc-
tivity zones, which means that they are rarely 
multi-Gaussian (e.g., Gomez-Hernandez and 
Wen, 1998). Unfortunately, extensive 3-D 
simulations are very demanding and some-
times outperform even existing parallel su-
percomputer capabilities and computationally 
present an open problem due to a large linear 
system of equations (O(109-1011)).  
Flow statistics in low and mild heterogeneity 
are similar for Eulerian and Lagrangian ve-
locities. The most important consequence of 
the high heterogeneity is a change in the flow 
patterns in the form of preferential flow 
channels, which is reflected by a significant 
difference between the Eulerian and Lagran-
gian velocities (Figure 15a-b). Preferential 
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flow channels connect highly conductive 
zones and concentrate the main portion of 
the flow rate to a few flow paths. Therefore, 
Lagrangian velocity records the higher values, 
in contrast to the Eulerian velocity, which 
contains a significantly larger fraction of low 
velocities (paper III; Cvetković et al., 1996). 
Both pdfs exhibit strongly non-log-normal 
behavior for high heterogeneity.  
High heterogeneity also introduces significant 
changes to the correlation structure of all 
Eulerian and Lagrangian flow variables (vx, 
vy, w, α and β). For example, vx, w and α have 
essentially the same correlation structure for 
low heterogeneity. High heterogeneity 
strongly affects the correlation structure for 
vx, w and α due to increasingly dramatic 
meandering and consequently decreases the 
correlation length and integral scale, except 
for the Lagrangian velocity w, which attains a 
non-zero correlation over many log-
conductivity integral scales due to persistency 
of channeling. On the other hand, vy and β 
show the ‘hole effect’, and its integral scale in 
the longitudinal direction converges to zero. 
Furthermore, correlation of the slowness, 
slope and its integral scales determines as-
ymptotic dispersion behavior and plays a key 
role in advective transport, as quantified by 
the travel time approach (Dagan et al., 1992).  

4.3 Advective transport 

In this thesis, application of the AFMCM and 
its abilities were presented mainly to com-
pletely describe advective transport in het-
erogeneous porous media under mean uni-
form flow. In this subsection, the main 
properties of advective transport results, 
presented in the third section, will be dis-
cussed.   

4.3.1 Transverse displacement 
It has been found that transverse displace-
ment is normal for low heterogeneity under 
the first-order framework (Dagan, 1989). 
Due to the accuracy and robustness of the 
presented methodology, simulations showed 
that transverse displacement is not normal 
for distances close to the source. For 
x/IY>20, transverse displacement was found 
to be very close to the normal distribution, 

even in a case of high heterogeneity (paper 
III). Therefore, kurtosis is relatively high for 
very close control planes, implying a sharper 
peak around the mean, while for x/IY>20, 
kurtosis is close to 3, implying convergence 
to the normal distribution. 

4.3.2 Travel time 
Since transverse displacement becomes near-
ly normal after only x/IY=20, even for high 
heterogeneity, travel time shows more com-
plex behavior depending on the injection 
mode, heterogeneity level and influence of 
the higher moments (papers III and IV). 
These results show that all travel time mo-
ments beyond a certain distance from the 
source or injection control plane are linear. 
The most important reason for the initial 
non-linearity is the influence of the injection 
mode, where in flux injection preserves the 
linearity due to direct injection of tracer into 
the preferential flow channels, since the 
resident injection mode has a strong initial 
nonlinearity within the first 5IY for high het-
erogeneity due to the injection of the greatest 
number of tracer particles into the slow 
streamlines, which requires that distance to 
transfer them to the preferential flow chan-
nels. 
The combination of Monte-Carlo simulations 
and the MaxEnt principle enables the ex-
perimental pdf to be described by only a few 
first travel time moments in the form of the 
MaxEnt pdf (papers IV and V). Particularly, 
the MaxEnt pdf enables an analysis of three 
basic parts of the travel time pdf: peak and 
early arrivals, which are important for risk 
assessment, and late arrivals, which are 
needed, for instance, for remediation. Gener-
ally speaking, mean and variance completely 
describe the travel time pdf for 2

Yσ <3, skew-
ness is dominant for 2

Yσ =4, and kurtosis and 
the fifth moment are needed for 2

Yσ =6 and 
8. The resident injection mode requires more 
moments due to the initial nonlinearity of the 
travel time moments. It is particularly true for 
late arrivals, which require the fourth mo-
ment for 2

Yσ =6 and 8. Therefore, for de-
scription of the peak and late arrivals, the 
most important moment is the third mo-
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ment, which means that high heterogeneity 
mostly changes the skewness of the travel 
time pdf.  
Since early arrivals require more moments 
than other parts of the travel time pdf, they 
are also related to the largest uncertainty with 
respect to the maximum entropy principle. 
Early arrivals predicted by the MaxEnt pdf 
are always shorter than the first arrivals calcu-
lated by the AFMCM, which is positive and 
conservative from a risk assessment point of 
view. Indeed, the actual error is small relative 
to the mean travel time. For example, the 
difference between first arrivals predicted by 
the AFMCM and MaxEnt with four mo-
ments relative to the mean travel time is less 
than 3% for all cases and modes (Table 4 in 
paper IV), which means that four moments 
quite accurately describe the early arrivals and 
significantly reduce estimation uncertainty. 

4.3.3 Macrodispersion and Fickian trans-
port 

Detailed analysis of advective transport in 
multi-Gaussian fields enables the determina-
tion of two basic terms of classic stochastic 
theory: macrodispersivity and Fickianity. 
Advective transport is Fickian if the longitu-
dinal dispersivity after a sufficiently long time 
or distance tends to a constant value, which 
is usually called macrodispersion. This is 
required, but not a sufficient condition for 
Fickianity. Paper III developed the connec-
tion between slowness correlation and travel 
time variance, the slope of which can define 
longitudinal macrodispersion. The correlation 
of slowness decreases with increasing 2

Yσ , 
implying that after a 60IY, the travel time 
variance attains a linear shape and reaches 
asymptotic longitudinal dispersion, given by 
the following empirical relationship (paper 
III, Figure 19a) 
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 (43)                  
Moreover, for high heterogeneity, after only a 
few integral scales variance attains a near-
linear shape, without indications of anoma-
lous transport. On the other side, transversal 
macrodispersivity is related to the correlation 

of beta, which requires a considerably larger 
distance, so that its value converges to zero 
as predicted by perturbation theories (e.g., 
Hsu et al., 1996) and MC simulations (de 
Dreuzy et al., 2007) for 2-D cases. However, 
Janković et al. (2009) proved using simula-
tions that in 3-D domains the transversal 
macrodispersivity is considerably smaller than 
the longitudinal, but greater than zero. They 
defined such mixing as a special type of “ad-
vective mixing” due to streamtube stretching, 
which is not present in two dimensions, 
showing that some effects are only visible in 
a real 3-D domain. 
Advective transport is Fickian if mass distri-
bution through the control plane satisfies 
ADE with constant longitudinal dispersivity. 
This is additional, sufficient condition for 
Fickianity. Since for instantaneous injection 
mass distribution is proportional to the travel 
time pdf, results show that advective trans-
port for low and mild heterogeneity becomes 
Fickian after the first 40IY, proving the ro-
bustness of the first-order theory. However, 
advective transport is non-Fickian for a long 
distance in the case of high heterogeneity. 
Paper IV showed that in the limit (x/IY→∞), 
the travel time pdf can be described by only 
the first two moments and also coincides 
with the ADE solution (Kreft and Zuber, 
1978). In the limit, advective transport in a 
multi-Gaussian field converges to Fickian 
transport. 

4.4   Other transport issues 

This subsection will discuss a few transport 
issues that are important for applications and 
may be successfully solved and/or verified by 
the presented adaptive multi-resolution ap-
proach. 

4.4.1 Field scale experiments and related 
heterogeneity structures 

Despite the usual scarcity of data and inevi-
table presence of the uncertainty, field ex-
periments are still very important for real 
applications as well as theoretical and compu-
tational developments. The key task for a real 
field experiment is to collect all possible data, 
including different hard and soft data such as 
core measurements, pumping and injection 
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tests, as well as usually soft geophysical data 
such as electrical resistivity, spontaneous 
potential or seismic records, geological re-
ports or even expert judgments in order to 
characterize heterogeneous porous media as 
well as possible. Moreover, different non-
reactive and reactive tracer tests give different 
measurements of concentration, fluxes or 
travel times. In that way, computational 
simulations can relate heterogeneous effects 
and output results, improve heterogeneity 
characterization using inverse modeling and 
correlate hard and soft data in order to de-
crease the number of measurements in the 
next experiment or investigate different 
transport concepts to correctly match ex-
perimental and simulated data. Finally, the 
presented methodology should be applied in 
new or existing field experiments in order to 
attain some of these goals.  
Most related studies (including this thesis) 
discuss flow and transport in multi-Gaussian 
heterogeneity structures that are completely 
characterized by the first two moments and 
their lack of correlation of low and high 
conductivity values.  Many field experiments 
show that multi-Gaussian fields may not be 
realistic, mainly due to neglect of significant 
correlations between highly connected zones 
[e.g., MADE-1 and MADE-2 tracer test; 
Boggs et al., 1992]. Moreover, the differences 
between multi-Gaussian and some selected 
non-Gaussian fields are discussed with re-
spect to the travel time [Gomez-Hernandez 
and Wen, 1998], macrodispersion [Wen and 
Gomez-Hernandez, 1998], mass transfer 
[Zinn and Harvey, 2003] and especially the 
influence of the highly connected conductiv-
ity zones on flow and transport analysis 
[Zinn and Harvey, 2003, Liu et al., 2004, 
Knudby and Carrera, 2005]. Particularly, 
Gomez-Hernandez and Wen [1998] and Zinn 
and Harvey [2003] argued that first arrivals 
can be ten times faster in non-Gaussian 
fields, which are important for risk assess-
ment, for instance. Moreover, Wen and Go-
mez-Hernandez [1998] proved that even in a 
case of low heterogeneity, macrodispersion 
could be considerably different in non-
Gaussian fields. Furthermore, the presented 
methodology, due to its accuracy and general-

ity, can resolve all flow and transport proper-
ties in non-Gaussian structures in a similar 
way as for multi-Gaussian fields, including 
fractal fields, bi-modal heterogeneity and 
structures with connected low and/or high 
permeability zones.   

4.4.2 Pore-scale dispersion 
Apart from advective transport influenced by 
velocity variations due to heterogeneity of 
porous formations, pore-scale dispersion 
(PSD) is always present and can be the do-
minant transport force under certain condi-
tions. The advective velocity field pulls and 
stretches the solute plume by conveying the 
released mass through lenses and fingers of 
higher velocities. This process creates the 
concentration or solute flux gradient, along 
which the PSD acts as a diffusion process, 
diluting high concentrations and fattening the 
lenses and fingers (Andričević, 2008). As 
transport time progresses, these two proc-
esses balance each other at some effective 
scale. Although the Peclet number is usually 
high, values between 100 and 10,000 cause 
that PSD significantly changes the plume 
spreading. Since first-order analysis decouples 
the advective and dispersive displacements 
(e.g., Fiori and Dagan, 2000), random-walk 
simulations simultaneously follow particles 
with advective and dispersive steps that are 
modeled as Gaussian random processes (e.g., 
Kinzelbach, 1988, Le Bolle et al., 1996). 
Random-walk simulations in the presented 
AFMCM can potentially resolve the influence 
of the PSD on concentration and solute flux 
pdf and its higher related moments. These 
simulations also provide the possibility of 
simulating the relationship between the PSD 
and higher travel time moments. Finally, 
these MC random-walk simulations can re-
solve the influence of the PSD in high het-
erogeneity formations and verify the assump-
tions in the recent model of Andričević 
(2008), which very efficiently finds all con-
centration moments in a recursive way. 

4.4.3 Reactive transport 
Paper I shows that the AFCM inside the 
method of lines is well suited for problems of 
reactive transport, which are usually faced 
with sharp fronts, many spatial and temporal 
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scales, high nonlinearity and many variables. 
Each variable is defined on a particular adap-
tive grid with a prescribed threshold, enabling 
a very efficient computational approach. 
Reactive transport can be defined in an Eule-
rian framework utilizing the coupled classic 
advection-dispersion-reaction system of 
equations of type (4) for all species. Further-
more, reactive transport in heterogeneous 
porous media may be efficiently solved in a 
Lagrangian framework utilizing the approach 
of Cvetković and Dagan (1994a, b), where 
advection is solved with particle tracking, 
while the reactive part is solved in the t-τ 
domain from the 1-D coupled system of 
equations as in the Eulerian case. The advan-
tage of this approach lies in adopting efficient 
particle-tracking for advection and reducing 
the reactive 3-D problem in Eulerian coordi-
nates to only 1-D in Lagrangian coordinates, 
where AFCM efficiently tracks all species 
fronts and significantly compresses the num-
ber of collocation points on the adaptive grid. 

4.4.4 Density-driven flow and multiphase 
flow 

As for reactive transport, paper I presented 
the AFCM (also see Kozulić et al, 2007) as a 
very efficient methodology for density-driven 
flow (see Gotovac et al., 2003) and multi-
phase flow (see Gotovac et al., 2005). How-
ever, all mentioned papers considered homo-
geneous media. The real challenge and a 
question that remains open for density-driven 
problems is the consideration of heterogene-
ity effects on seawater intrusion stable prob-
lems (such as the Henry problem) related to 
the width of the transition zone, salt and 
freshwater fluxes and seawater boundary 
conditions (Diersch and Kolditz, 2002). Of 
particular interest is the consideration of 
instability problems such as the Elder prob-
lem (Elder, 1966; Souza and Voss, 1987), in 
which heterogeneity is a key factor for the 
onset of instabilities and development of 
fingers (e.g., Simmons et al., 2001). These 
instability problems require more powerful, 
modern computational methodologies, but 
they also require new physical formulations 
other than the classic ADE equation. On the 
other hand, there have recently been many 
successful implementations of multi-scale 

finite element methods to multiphase flow 
problems in heterogeneous porous media 
(e.g., Enquist et al., 2003), especially in oil 
and gas problems where the central variable 
of interest is a quantity of oil and water in a 
production well.  

4.4.5 Transport theories 
Different conceptual strategies (as an exten-
sion of classic Fickian transport and ADE) 
for modeling transport in heterogeneous 
porous media have been presented in the 
literature, such as the trajectory approach 
(Dagan, 1984; Cvetković and Dagan, 1994a, 
b), fractional diffusion equation (Benson et 
al., 2000), non-local transport approaches 
(Cushman and Ginn, 1993; Neuman and Orr, 
1993) and continuous random-walk methods 
(Scher et al., 2002, Berkowitz et al., 2002). 
Very often, the lack of real field experiments 
leads to the development of many theories 
that try to explain transport phenomena in a 
relatively simple way using the sparse avail-
able input data. Thus, the presented method-
ology offers the ability to produce many 
synthetic simulations for verification of the 
mentioned theories and bridges the gap be-
tween these theories and real applications.  
In spite of these theoretical advances, our 
main problem is still the understanding of the 
flow velocity and its Lagrangian variants 
(such as slowness), their transport variables 
and consequently their relationship with the 
statistics of hydraulic conductivity.  

4.4.6 Risk assessment 
Many recent environmental regulatory initia-
tives stipulate that in order to improve risk 
characterization, ecological risk analysis needs 
to identify and conduct the probabilistic risk 
assessment. The potential toxicity of con-
taminated groundwater and the associated 
health risks depend directly on exposure 
parameters, contaminant concentration 
and/or solute flux values (Andričević and 
Cvetković, 1996; Maxwell et al., 1999; An-
dričević, 2008). It is recognized that high 
concentration values, along with duration and 
frequency of appearance, are responsible for 
severe health risks and need to be predicted 
probabilistically. The fundamental concept in 
all methods used in probabilistic risk assess-
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ment consists of estimating the exposure 
concentration distribution and confront it 
(using different methods) to the distribution 
of effects obtained from the eco-toxicological 
studies. For example, a new quantitative 
microbial risk assessment formulation con-
sidering the entire chain of events, from 
pathogen introduction into the source, their 
migration through the aquifer pathway, to 
ingestion at the receptor, and finally the 
potential infection in the human host (Molin 
and Cvetković, 2009; Molin et al., 2009). The 
description of magnitude and temporal dis-
tribution of pathogen exposure resulting 
from relevant hazardous events will benefit 
from the exhaustive description of the pdf of 
concentration or solute flux realized through 
this methodology, in conjunction with the 
maximum entropy principle. In particular, 
risk assessment of aquifers with high affinity 
for formation of preferential flow (e.g. highly 
heterogeneous), where large fraction of the 
introduced pathogens exhibit early arrival 
times, the contribution of the presented 
methods will prove particularly valuable. 

5  CONCLUSIONS  

This thesis developed an adaptive Fup multi-
resolution approach for solving the flow and 
transport problems in heterogeneous porous 
media. The application of this methodology 
is presented for the multi-resolution descrip-
tion of solutions with sharp fronts as well as 
for flow and advective transport in highly 
heterogeneous porous media under mean 
uniform flow conditions. The main conclu-
sions are summarized as follows: 

 The methodology is based on Fup basis 
functions with compact support, which 
allows for the construction of different 
mesh-free and other promising concepts 
which can work with numerical as well as 
stochastic methods.  

 All flow and transport variables as well as 
ensemble statistics are described using a 
multi-resolution representation in the 
form of linear combinations of Fup basis 
functions utilizing different Fup trans-
formations. These transformations sup-
port a well-known wavelet type of multi-
resolution analysis, resolving locations 

and frequencies at all spatial and/or tem-
poral scales.  

 Fup transformations are particularly 
efficient for the description of heteroge-
neity and the log-conductivity field, ena-
bling an analysis of different scales and 
their contribution to flow and transport 
ensemble statistics. 

 The main characteristic of this method-
ology is a simple and efficient computa-
tional procedure that only adds Fup basis 
functions with the appropriate length of 
compact support in order to accurately 
describe solutions on a particular adap-
tive grid with a prescribed threshold.  

 Paper I presented the AFCM, which 
utilizes the well-known method of lines 
such that Fup transformations are used 
for spatial adaptive approximations, while 
high-order time integration schemes track 
the solution through the spatial lines. 
This is particularly important for efficient 
modeling of density-driven and multi-
phase flow as well as reactive transport. 

 Each variable is characterized on a par-
ticular adaptive grid, which not only re-
sults in the computationally more effi-
cient algorithm, but also describes 
subsurface processes closely related to 
their understood physical meaning. The 
methodology inherently yields continuous 
velocity fields, which are important for 
accurate transport analysis.  

 Paper II presented the improved Monte-
Carlo methodology AFMCM for advec-
tive transport in multi-Gaussian hetero-
geneous fields combining a chain of me-
thods for analysis of heterogeneity, flow, 
transport and MC ensemble statistics. 
Accuracy and efficiency of this method-
ology enables the consideration of high 
heterogeneity effects on flow and travel 
time statistics (paper III and IV). 

 Accuracy and convergence analysis indi-
cated that resolutions nY=8 and nh=32 
yield quite accurate flow solutions and 
around 4,000 particles enabled reliable 
travel time statistics. First order theory is 
robust and accurate for low heterogeneity 
and partially so for mild heterogeneity. 
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All necessary flow and transport variables 
require up to 500 Monte-Carlo realiza-
tions in order to stabilize fluctuations of 
the ensemble statistics in highly hetero-
geneous formations with σY

2 ≤ 8. 
 The Lagrangian and Eulerian velocity 

statistics and correlation functions di-
verge for increasing 2

Yσ  due to preferen-
tial flow, with the pdf of Lagrangian ve-
locity shifted to higher values and an 
increasing/more persistent correlation. 
Both pdfs are strongly non-log-normal 
for high heterogeneity, while the asymp-
totic Lagrangian velocity pdf is equal as a 
flux-averaged Eulerian velocity distribu-
tion.  

 The transverse displacement is non-
Gaussian for all 2

Yσ  and control planes 
close to the injection source line, with a 
higher proportion of zero values. How-
ever, the distribution converges to a 
Gaussian distribution even for high 2

Yσ  
after x/IY=20 because kurtosis conse-
quently goes to three.  

 Comparison of the experimental travel 
time pdf with the inverse Gaussian pdf 
(ADE solution) in a semi-infinite domain 
as well as with the log-normal distribu-
tion shows that transport in highly het-
erogeneous porous media may deviate 
from these models for the first 40(100)IY, 
in particular regarding the early arrivals. 
Under these conditions, the first two 
moments are insufficient for a complete 
description of travel time arrivals, peak 
and tailings.   

 Paper V presented the inexact Fup max-
imum entropy algorithm (IFMEA), which 
efficiently solves the classic maximum en-
tropy moment problem by direct 

connection of the Fup basis functions 
and polynomials. The algorithm was ap-
plied to the travel time pdf, which dem-
onstrated the significance of the higher 
moments in its complete characterization 
(paper IV).  

 All travel time moments become linear 
after certain distance from the source. In-
itial nonlinearity is caused mainly by the 
resident injection mode and injection of 
mass into the zones with low velocity.  

 The number of moments needed for an 
accurate description of the travel time 
pdf mainly depends on the heterogeneity 
level. Mean and variance completely de-
scribe the travel time pdf for 2

Yσ <3, 
skewness is dominant for 2

Yσ =4, and 
kurtosis and the fifth moment are needed 
for 2

Yσ =6 and 8. 
 The highest uncertainty is seen for the 

early arrivals because they require more 
moments than other parts of the travel 
time pdf. In particular, quantitative analy-
sis between the first arrivals for crossing 
10-4 of the total injected mass predicted 
by MaxEnt and AFMCM pdf showed 
that four moments quite accurately de-
scribe the first arrivals, which are a key 
factor for risk assessment. 

 Correlation of slowness decreases with 
increasing 2

Yσ , implying that after 60IY, 
travel time variance becomes linear and 
reaches the asymptotic longitudinal dis-
persion estimated by Eq. (43). Correla-
tion of slope exhibits a “hole effect” with 
integral scale converging to zero, which 
appears that the asymptotic transverse 
dispersion converges to zero as predicted 
by de Dreuzy et al. (2007). 

 In the limit, advective transport in multi-
Gaussian heterogeneity structures con-
verges to Fickian transport.   
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6  FUTURE DIRECTIONS  

The capabilities of the presented multi-
resolution approach and the quality of ob-
tained results discussed in this thesis open 
new questions and possibilities for future 
work: 

 Application of other atomic basis func-
tions, not only those necessary in sub-
surface modeling.   

 Extension of the presented methodol-
ogy to 3-D flow and transport prob-
lems using massive parallel processing. 

 Improvement to the flow solver, the 
most demanding AFMCM step, by: a) 
exponential atomic basis functions de-
fining the relationship between fre-
quencies of these basis functions and 
properties of the heterogeneous log-
conductivity field and b) new stochastic 
methods that directly solve ensemble 
statistics (pdf and related moments). 

 A new stochastic approach may be 
found as an extension of the IFMEA to 
the multivariate pdf, thus combining 
the multi-resolution nature of Fup basis 
functions and the versatility of the 
BME approach (Christakos, 2000) for 
real applications. 

 
 

 Flow and travel time statistics in non-
Gaussian heterogeneity structures (re-
lated to Zinn and Harvey, 2003). 

 Influence of the pore-scale dispersion 
on concentration and solute flux pdf 
and related, possibly higher, moments 
(Andričević, 2008). 

 Reactive transport simulations using 
the approach of Cvetković and Dagan 
(1994a, b), where advection is solved 
with particle tracking, while the reactive 
part is solved in the t-τ domain from 
the 1-D coupled system of advection-
reaction equations. 

 Density-driven flow in heterogeneous 
porous media and find out relationship 
between lnK variance and correlation 
length on the one side and physical pa-
rameters that govern the onset of in-
stabilities and existence of fingers on 
the other side. 
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