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Overview of Jensen’s inequality
1.1. Overview of Jensen’s inequality
Classical Jensen’s inequality

3 J.L.W.V. Jensen, Sur les fonctions convexes et les ingalits entre les
valeurs moyennes, Acta Mathematica 30 (1906), 175—193:

If f is a convex function on an interval [m, M) for some scalars m < M,
then

K k

Y 1) < Y 4f(x)- (1)

J=1 J=1

holds for every x1,xz,--- ,xx € [m,M] and every positive real numbers
b,b, -t Wl'thzll-(:1 i=1.
An operator version of (1): Let A be a self-adjoint operator on a
Hilbert space H with Sp(A) C [m,M] for some scalars m < M. If f is a
convex function on [m, M), then

F((AX, X)) < (f(A)X,x) )

for every unit vector x € H.
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Introduction Overview of Jensen’s inequality

Jessen’s inequality

[3 B.Jessen, Bemaerkinger om konvekse Funktioner og Uligheder
imellem Middelvaerdier I, Mat.Tidsskrift B (1931), 17-28:

Let E be a nonempty set and £ ={g; 9 : E — R} satisfying:

L1: a,peR AN g,hef = oag+Bhel,
L2: 1€ L.

If f is a convex function on an interval | € R and & is a unital positive
linear functional, then

f(®(g)) < ®(f(9))- 3)

holds for every g € £.
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Schwarz operator inequality

[4 C.Davis, A Schwartz inequality for convex operator functions, Proc.
Amer. Math. Soc. 8 (1957), 42—44:

If f is an operator convex function defined on an interval | and

®: 4 — B(K) is a unital completely positive linear map from a

C*-algebra A to linear operators on a Hilbert space K, then

f(®(x)) < @ (f(x)), (4)
holds for every self-adjoint element x in 4 with spectrum in |.

B
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Introduction Overview of Jensen’s inequality

Schwarz operator inequality

[4 C.Davis, A Schwartz inequality for convex operator functions, Proc.
Amer. Math. Soc. 8 (1957), 42—44:

If f is an operator convex function defined on an interval | and

®: 4 — B(K) is a unital completely positive linear map from a

C*-algebra A to linear operators on a Hilbert space K, then

f(®(x)) < @ (f(x)), (4)
holds for every self-adjoint element x in 4 with spectrum in |.

Subsequently in

[{ M. D. Choi, A Schwarz inequality for positive linear maps on
C*-algebras, lll. J. Math. 18 (1974), 565-574.

noted that it is enough to assume that ¢ is unital and positive. In fact,

the restriction of ® to the commutative C*-algebra generated by

self-adjoint x is automatically completely positive by Theorem 4 in

[{ W. E.Stinespring, Positive functions on C*-algebras, Proc. Amer.
Math. Soc. 6 (1955), 211-216.
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Introduction Overview of Jensen’s inequality

[ FHansen and G.K. Pedersen, Jensen'’s inequality for operators
and Léwner’s theorem, Ann. Math. 258 (1982), 229-241.

proved

a Jensen type inequality:

If f is an operator convex function defined on an interval | = [0, o) (with
o < oo andf(0) <0) then

f <i a}‘x,-a,~> < i aif(x)a; (5)
i=1 '

i=1

holds for every n-tuple (x1,...,xn) of bounded, self-adjoint operators
on an arbitrary Hilbert space H with spectra in | and for every n-tuple
(ai,...,an) operatorson H with Y7, afai=1.

The inequality (5) is in fact just a reformulation of (4) although this was
not noticed at the time.
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Introduction Overview of Jensen’s inequality

The restriction on the interval and the requirement f(0) < 0 in (5) was
subsequently removed by

A B.Mond and J.Pecari¢, On Jensen’s inequality for operator convex
functions, Houston J. Math., 21 (1995), 739-753.

[1 FHansen and G.K.Pederson, Jensen’s operator inequality, Bull.
London Math. Soc., 35 (2003), 553—-564.
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Introduction Overview of Jensen’s inequality

The restriction on the interval and the requirement f(0) < 0 in (5) was
subsequently removed by

@ B.Mond and J.Pegari¢, On Jensen’s inequality for operator convex
functions, Houston J. Math., 21 (1995), 739-753.

[l FHansen and G.K.Pederson, Jensen’s operator inequality, Bull.
London Math. Soc., 35 (2003), 553—-564.

Indeed, consider an arbitrary operator convex function f defined on
[0,1). The function f(x) = f(x) — f(0) satisfies the conditions of (5) and
it follows

f(i afx,-a,-) —f(0)1 < i a (f(x;)—f(0)1)a = Z a;f(x;)a;—f(0)1.
i=1 1 i=1

By setting g(x) = f((B — a)x + &) one may reduce the statement for
operator convex functions defined on an arbitrary interval [a, ) to
operator convex functions defined on the interval [0, 1).

Jadranka Mici¢ Hot () Jensen'’s inequality and its converses MIA2010 7188



Introduction Overview of Jensen’s inequality

[§ B.Mond and J.Pe&arié, Converses of Jensen’s inequality for several
operators, Rev. Anal. Numér. Théor. Approx. 23 (1994), 179-183.
proved

Jensen’s operator inequality:

f (i W,-<I>,-(x,-)> < Zn‘, w;®;(f(x;))
i=1 =1

holds for operator convex functions f defined on an interval I, where
®;: B(H) — B(K) are unital positive linear maps, x1,...,xn are
self-adjoint operators with spectra in | and wy, ..., wy are non-negative
real numbers with sum one.
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Introduction Overview of Jensen’s inequality

In

@ FHansen and G.K.Pederson, Jensen’s operator inequality, Bull.
London Math. Soc., 35 (2003), 553-564.
a version of (5) is given for continuous fields of operators.

Next, we review the basic concepts of continuous fields of (bounded
linear) operators on a Hilbert space and fields of positive linear
mappings, which will recur throughout the talk.
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Introduction Overview of Jensen’s inequality

Let T be a locally compact Hausdorff space and let 2 be a
C*-algebra of operators on some Hilbert space H. We say that a
field (x;);c7 of operators in 4 is continuous if the function t — x; is
norm continuous on T. If in addition i is a Radon measure on T
and the function { — || x;| is integrable, then we can form the
Bochner integral [; x; du(t), which is the unique element in 2

such that
(P</Xtdu > /(PXt ) du(t)

for every linear functional ¢ in the norm dual 2.

Assume furthermore that (¢;);. 7 is a field of positive linear
mappings $;: 4 — B from 4 to another C*-algebra B of operators
on a Hilbert space K. We say that such a field is continuous if the
function t — ®;(x) is continuous for every x € 4. If the C*-algebras
include the identity operators, and the field { — (1) is integrable
with integral equals 1, we say that (¢;);.7 is unital.

[m] =1 = =
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Introduction Overview of Jensen’s inequality
Finally,

[3 F.Hansen, J.Pecari¢ and |.Peri¢, Jensen’s operator inequality and
its converse, Math. Scad., 100 (2007), 61—73.

find an inequality which contains the previous inequalities as special

cases:

Theorem

Let f: I — R be an operator convex functions defined on an interval I,
and let 4 and B be a unital C*-algebras. If (®;):c1 is a unital field of
positive linear mappings ¢; : 4 — B defined on a locally compact
Hausdorff space T with a bounded Radon measure u, then

</<Dtxf ) du(t) > /cb, (%)) du(2) (6)

holds for every bounded continuous fields (x;):c7 of self-adjoint
elements in A with spectra contained in |.
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Overview of the Kantorovich inequality
1.2. Overview of the Kantorovich inequality

The story of the Kantorovich inequality is a very interesting example
how a mathematician makes mathematics. It provides a deep insight
into how a principle raised from the Kantorovich inequality develops in
the field of operator inequality on a Hilbert space, perhaps more
importantly, it has given new way of thinking and methods in operator
theory, noncommutative differential geometry, quantum information
theory and noncommutative probability theory.

Classical Kantorovich inequality

[§ L.V.Kantorovich, Functional analysis and applied mathematics (in
Russian), Uspechi Mat. Nauk., 3 (1948), 89—185.
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Introduction Overview of the Kantorovich inequality

The inequality
2 —1,2 m 2
Yowug Yviui<s Wyl | L vk (7)
k=1 k=1 alvm VM| \Z
holds, where m and M being the bounds of the numbers vy
0<m< Yk < M.
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Introduction Overview of the Kantorovich inequality

2 2
M m =
Vo Ty M] (l(; Ul%) (7)
holds, where m and M being the bounds of the numbers vy
0< m< vy < M.

The inequality

Y owug Y vluE<
k=1 k=1

In the same paper he gave an operator version of (7):

If an operator A on H is positive such that m1 < A< M1 for some
scalars 0 < m< M, then

(x, %)

(Ax, x)(A-1x,x) [\er\/»}

holds for every nonzero vector x in H.
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Overview of the Kantorovich inequality
Kantorovich says in the footnote of his paper that (7) is a special case
of Pélya-Szegd inequality given in the book about problems and
theorems from calculus; Aufgaben 92 in:

[§ G.Polya and G.Szegd , "Aufgaben und Lehrsdtze aus der
Analysis”, Springer-Verlag, 1, Berlin, 1925.

If the real number ax and by (k =1,...,n) fulfill the conditions
O0<my<a,<M;and0 < ms < by <M then

1< Yho18 i bE < (M Mp + my mp)?
[2221 akbk]2 - AmimoMi M,
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Overview of the Kantorovich inequality
Kantorovich says in the footnote of his paper that (7) is a special case
of Pélya-Szegd inequality given in the book about problems and
theorems from calculus; Aufgaben 92 in:

[4 G.Pdlya and G.Szegé , "Aufgaben und Lehrsétze aus der
Analysis”, Springer-Verlag, 1, Berlin, 1925.

If the real number ax and by (k =1,...,n) fulfill the conditions
O0<my<a,<M;and0 < ms < by <M then

Zk 1@ Yh 2<(/\/’1/\/72~|-f7”'1'772)2
[Zk 1akbk] - 4m1 m2M1 M2

We remark that the Kantorovich constant has the form

(Ve ) -
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Introduction Overview of the Kantorovich inequality

In the first paper which is devoted to Kantorovich inequality

[1 W.Greub and W.Rheinboldt, On a generalization of an inequality of
L.V. Kantorovich, Proc. Amer. Math. Soc., 10 (1959), 407—415.

it is written: “Examining the relation between the two inequalities more

closely we found that this remark is well justified and can be made

even more specific in that the inequality of Pdlya - Szeg6 in the form

(9) is special case of the Kantorovich inequality (7).”
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Introduction Overview of the Kantorovich inequality

In the first paper which is devoted to Kantorovich inequality

[1 W.Greub and W.Rheinboldt, On a generalization of an inequality of
L.V. Kantorovich, Proc. Amer. Math. Soc., 10 (1959), 407—415.

it is written: “Examining the relation between the two inequalities more

closely we found that this remark is well justified and can be made

even more specific in that the inequality of Pdlya - Szeg6 in the form

(9) is special case of the Kantorovich inequality (7).”

They proved that the generalized Pélya-Szegd inequality:

(My Mo + mymo)?
4m1 m2M1 Mg
where A and B are commuting self-adjoint operators on a Hilbert
space Hsuchthat0 < m1 <A< M;1and 0 < me1 < B < M1

is equivalent to the Kantorovich inequality:

(Ax, Ax)(Bx, Bx) < (Ax,Bx)? holds for all x € H,

(M+m)?
4Mm
where A is a self-adjoint operator on H such that, 0 <.ml1 < A < M1.

Jadranka Mici¢ Hot () Jensen’s inequality and its converses MIA2010 15/88
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Introduction Overview of the Kantorovich inequality

After the paper due to Greub and Rheinboldt was published,
mathematicians concentrated their energies on the generalization of
the Kantorovich inequality and the way to an even simpler proof. We
will cite only some of them.

B
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Introduction Overview of the Kantorovich inequality

After the paper due to Greub and Rheinboldt was published,
mathematicians concentrated their energies on the generalization of
the Kantorovich inequality and the way to an even simpler proof. We
will cite only some of them.

In 1960, one year after, in

W W.G.Strang, On the Kantorovich inequality, Proc. Amer. Math.
Soc., 11 (1960), p. 468.
proved a generalization:

If T is an arbitrary invertible operator on H, and ||T|| = M, || T~ || = m,
then

~ M + m)?
1 <(7
e T < W (yy) foralxy e m

Furthermore, the bound is best possible.
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Introduction Overview of the Kantorovich inequality

[d A.H. Schopf, On the Kantorovich inequality, Numerische
Mathematik, 2 (1960), 344-346:

LetT be any nonzero complex number, let R = ||, and let0 < r < R.
Let A be an operator on H such that |A—T[A]|? < r?[A], where [A] is
the range projection of A. Let u € B(K, H) be an operator such that
u*[Alu is a projection. Then

(R? — r?)u*A*Au < R?(u*A*u)(u*Au).
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Introduction Overview of the Kantorovich inequality

[d A.H. Schopf, On the Kantorovich inequality, Numerische
Mathematik, 2 (1960), 344-346:

LetT be any nonzero complex number, let R = |I'|, and let0 < r <R.
Let A be an operator on H such that |A—T[A]|? < r?[A], where [A] is
the range projection of A. Let u € B(K, H) be an operator such that

u*[Alu is a projection. Then

(R? — r?)u*A*Au < R?(u*A*u)(u*Au).

[3 M.Nakamura, A remark on a paper of Greub and Rheiboldt, Proc.
Japon. Acad., 36 (1960), 198—199.:

For 0 < m < M, the following inequality holds true;

M 2

for any positive Stieltjes measure p on [m, M) with ||u|| = 1.
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Introduction Overview of the Kantorovich inequality

[{ B.C.Rennie, An inequality which includes that of Kantorovich,
Amer. Math. Monthly, 70 (1963), 982.
Rennie improved a function version of the Kantorovich inequality due

to Nakamura:
Let f be a measurable function on the probability space such that

0<m<f(x) <M. Then

/f dx/ X)ax <(A1;/\r;) :
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Introduction Overview of the Kantorovich inequality

[@ B.C.Rennie, An inequality which includes that of Kantorovich,
Amer. Math. Monthly, 70 (1963), 982.
Rennie improved a function version of the Kantorovich inequality due

to Nakamura:
Let f be a measurable function on the probability space such that

0<m<f(x) <M. Then
(M+m)= m)>?
< .
/f dX./ X)ax 4mM

[§ B.Mond, A matrix version of Rennie’s generalization of
Kantorovich’s inequality, Proc. Amer. Math. Soc., 16 (1965), 1131.

Mond considered a matrix type of the Kantorovich inequality:

Let A be a positive definite Hermitian matrix with eigenvalues

M>A>--->Ap>0. Then

_ M +An)?
1 < M+
(A X,X)(AX,XLiMMn
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Introduction Overview of the Kantorovich inequality

W Ky Fan, Some matrix inequalities, Abh. Math. Sem. Univ.
Hamburg, 29 (1966), 185—196.

improved a generalization of the Kantorovich inequality for f(t) = tP

with p € Z:

Let A be a positive definite Hermitian matrix of order n with all its
eigenvalues contained in the close interval [m,M], where 0 < m < M.
Let xq,..., X, be an finite number of vectors in the unitary n-space such
that ):/’-‘:1 |xi||2 = 1. Then for every integer p # 0,1 (not necessarily
positive), we have

Lot (A%.%) _(ptpt (Mo
Th ()] P (M mme = m)
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1.3. Mond-Pecari¢ method

Afterwards, in the flow of a generalization by Ky Fan, and a reverse of
the arithmetic-geometric mean inequality by Specht, Mond and Pecari¢
give definitely the meaning of "Kantorovich inequality”. In 1990s, Mond
and Pecari¢ formulate various reverses of Jensen'’s type inequalities.
Here, it may be said that the positioning of Kantorovich inequality
becomes clear for the first time in operator theory. Furthermore, they
find the viewpoint of the reverse for means behind Kantorovich
inequality, that is to say, Kantorovich inequality is the reverse of the
arithmetic-harmonic mean inequality.

[m] =1 = =
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1.3. Mond-Pecari¢ method

Afterwards, in the flow of a generalization by Ky Fan, and a reverse of
the arithmetic-geometric mean inequality by Specht, Mond and Pecari¢
give definitely the meaning of "Kantorovich inequality”. In 1990s, Mond
and Pecari¢ formulate various reverses of Jensen’s type inequalities.
Here, it may be said that the positioning of Kantorovich inequality
becomes clear for the first time in operator theory. Furthermore, they
find the viewpoint of the reverse for means behind Kantorovich
inequality, that is to say, Kantorovich inequality is the reverse of the
arithmetic-harmonic mean inequality.

In a long research series, Mond and Pecari¢ established the method
which gives the reverse to Jensen inequality associated with convex
functions. The principle yields a rich harvest in a field of operator
inequalities. We call it the Mond-Pecari¢ method for convex functions.
One of the most important attributes of Mond-Pecari¢ method is to
offer a totally new viewpoint in the field of operator inequalities.
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Here, we shall present the principle of Mond-Pecari¢ method:
Theorem

Let A be a self-adjoint operator on a Hilbert space H such that
ml1 < A< M1 for some scalars m< M. If f is a convex function on
[m,M] such that f > 0 on [m, M)], then

(F(A)x,x) < K(m, M, f)f((Ax,x))
for every unit vector x € H, where

K(m,M,f):max{ 1 <f(M)—fm)

)\ M—m

(t—m)+f(m)> :mgth}.

v
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Introduction Mond-Pecari¢ method

Here, we shall present the principle of Mond-Pecari¢ method:

Theorem

Let A be a self-adjoint operator on a Hilbert space H such that
ml1 < A< M1 for some scalars m< M. If f is a convex function on
[m,M] such that f > 0 on [m, M)], then

(f(A)x,x) < K(m,M,f)f((Ax,x))
for every unit vector x € H, where
K(m,M,f) = max{fgt) <W(t—m)+f(m)> m<t< M}.

v

Proof
Since f(t) is convex on [m, M), we have

< 10—

Jadranka Mici¢ Hot () Jensen’s inequality and its converses MIA2010 21/88
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Introduction Mond-Pecari¢ method

Using the operator calculus, it follows that

f(A) < f(";\’}:fnm) (A—m)+Ff(m)1
and hence
(f(A)x,x) < W((Ax,x) —m)+f(m)

for every unit vector x € H. Divide both sides by f((Ax, x)) (> 0), and
we get

(F(A)x.x) _ 11 ((Ax, x) — m) + F(m)

F((Ax; X)) F((Ax; X))
< {1 (1) o< ),
since m < (Ax,x) < M. O

v
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Moreover, under a general situation, we state explicitly the heart of
Mond-Pecari¢ method:
Theorem

Letf:[m,M]— R be a convex continuous function, | an interval such
that 1 o f([m,M]) and A a self-adjoint operator such that m1 < A < M1
for some scalars m < M. If F(u,v) is a real function defined on I x I, F
is bounded and non-decreasing in u, then

(A ). 1(Ax.x))] < max F D=1 (¢ )+ f(am). 10t

= max F[of(m)+ (1~ 0)f(M), f(om-+(1 —0)M)

for every unit vector x € H.
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Moreover, under a general situation, we state explicitly the heart of
Mond-Pecari¢ method:
Theorem

Letf:[m,M]— R be a convex continuous function, | an interval such
that 1 o f([m,M]) and A a self-adjoint operator such that m1 < A < M1
for some scalars m < M. If F(u,v) is a real function defined on I x I, F
is bounded and non-decreasing in u, then

f(M) — f(m)

F(f(A)x,x),f((Ax,x))] < tean?;\(/”F T(t—m)—i—f(m),f(t)
= em[glx Fo6f(m)+(1—8)f(M),f(6m+ (1 —6)M)

for every unit vector x € H.

Next, we use the standard notation for a real valued continuous
function f: [m,M] — R

of:= (f(M)—1f(m))/(M—m) and B¢ := (Mf(m)—mf(M))/(M—m).
Jensen'’s inequality and its converses MIA2010 23/88



Using the Mond-Pecari¢ method, F.Hansen, J.Pecari¢ and |.Peri¢
generalized the previous inequality similar to what they made with
Jensen’s inequality.

Theorem

Let (x¢):cT be a bounded continuous field of self-adjoint elements in a
unital C*-algebra A with spectra in [m, M)] defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure u, and
let (®t)ieT be a unital field of positive linear maps ®;: 4 — B from 4 to
another unital C*—algebra B. Letf,g: [m,M] - Rand F: Ux V — R
be functions such that f([m,M]) Cc U, g([m,M]) C V and F is bounded.
If F is operator monotone in the first variable and f is convex in the
interval [m, M), then

[/‘D (xt)) du(?) </¢ Xt)du(t) ﬂ < sup Florz+Br9(2)]1.
m<z<M

In the dual case (when f is operator concave) the opposite inequality

holds with sup instead of inf.
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Introduction Mond-Pecari¢ method

Books about the Mond-Pecari¢ method
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Introduction Mond-Pecari¢ method

Books about the Mond-Pecari¢ method

@ T. Furuta, J. Mi¢i¢ Hot, J. Pecaric¢ and Y. Seo
Mond-Pecari¢ Method in Operator Inequalities
Monographs in Inequalities 1, Element, Zagreb, 2005.

¥ M. Fujii, J. Mi¢i¢ Hot, J. Pecari¢ and Y. Seo
Recent development of Mond-Pecari¢ Method in Operator
Inequalities
manuscript, 2010.
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Goal of the lecture
1.4. Goal of the lecture

Let 4 and B be unital C*-algebras on a Hilbert spaces H and K.
The goal of this lecture is to present a generalization of Jensen’s
operator inequality and its converses for fields of positive linear
mappings ®; : 4 — B such that [;¢:(1) du(t) = k1 for some positive
scalar k.
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Goal of the lecture
1.4. Goal of the lecture

Let 4 and B be unital C*-algebras on a Hilbert spaces H and K.
The goal of this lecture is to present a generalization of Jensen’s
operator inequality and its converses for fields of positive linear
mappings ®; : 4 — B such that [;¢:(1) du(t) = k1 for some positive
scalar k.

At first we give general formulations of Jensen’s operator inequality
and it'’s converses. As a consequence, difference and ratio type of
converses of Jensen’s operator inequality are obtained.
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Goal of the lecture
1.4. Goal of the lecture

Let 4 and B be unital C*-algebras on a Hilbert spaces H and K.
The goal of this lecture is to present a generalization of Jensen’s
operator inequality and its converses for fields of positive linear
mappings ®; : 4 — B such that [;¢:(1) du(t) = k1 for some positive
scalar k.

At first we give general formulations of Jensen’s operator inequality
and it'’s converses. As a consequence, difference and ratio type of
converses of Jensen’s operator inequality are obtained.

In addition, we discuss the order among quasi-arithmetic means in a
general setting. As an application we get some comparison theorems
for power functions and power means.
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Jensen's inequaliy
2.1. Generalization of Jensen’s inequality

Theorem

Let 4 and ‘B be unital C*-algebras on H and K respectively. Let (Xt)teT
be a bounded continuous field of self-adjoint elements in 4 with
spectra in an interval | defined on a locally compact Hausdorff space T
equipped with a bounded Radon measure u. Furthermore, let (0¢)tcT
be a field of positive linear maps ¢; : 4 — B, such that the field

t — 0¢(1) is integrable with [7¢:(1)du(t) = k1 for some positive scalar
k. Then the inequality

(G Lot dut)) < 5 [ onrtxo) it (10)

holds for each operator convex function f : | — R defined on I. In the
dual case (when f is operator concave) the opposite inequality holds in

(10).

v
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Proof

The function t — }&(x;) € B is continuous and bounded, hence
integrable with respect to the bounded Radon measure p.
Furthermore, the integral is an element in the multiplier algebra M(‘B)
acting on K and we may organize the set CB(T, A4) of bounded
continuous functions on T with values in 4 as a normed involutive
algebra by applying the point-wise operations with

(ye)eeTll = St»U? el (V)eeT € CB(T, A),
S

The norm is already complete and satisfy the C*-identity. It follows that
f((Xt)teT) = (f(xt))teT- Then the mapping = : CB(T,A) — M(B) C B(K)
defined by

R(00rer) = [ @) du),

is a unital positive linear map. Using a Schwarz inequality we obtain
the statement of the theorem. O

y
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We remark that if &(1) = k1, for some positive scalar k and f is an
operator convex function, then f(®(A)) < ®(f(A)) is not true in general.
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We remark that if &(1) = k1, for some positive scalar k and f is an
operator convex function, then f(®(A)) < ®(f(A)) is not true in general.

Example
A map ¢ : My (Mz(C)) — M2 (M2(C)) defined by

A0\ (A+B 0
¢<O B>_< 0 A+B> for A, B M3(C)

is a positive linear map and ®(/) =2/. We put f(t) = t? and

1 1 2 0
A(1 1) and B<O1 Then

7 0.

4
3
0
0

oo MNMDW
wh~hOOo
NDWwoo
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Main results Converses of Jensen’s inequality

2.2. Generalization of converses of Jensen’s inequality

We obtain a result of the Li-Mathias type:
Theorem

Let (Xt)teT @and (¢t)ict be asin§ 2.1., f:[m,M] - R, g: [km,kM] — R
and F : U x V — R be functions such that (kf) ([m,M]) C U,

g([km,kM]) C V and F is bounded. If F is operator monotone in the
first variable, then

kmancian” [k-h1 (:(Z) ,g(z)] 1
< F| [orntttnaut.o ( [ ataducn) | (1)
< 2, F ke (72) 0]
holds for every operator convex function hy on [m, M] such that hy < f

and for every operator concave function hy on [m, M| such that hy > f.

Jadranka Mici¢ Hot ()
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Main results Converses of Jensen’s inequality

Proof
We only prove RHS. Let hy be operator concave function and < h, on
[m,M]. Thus, f(x¢) < ho(x;) forevery t € T. Then

/ &, (F(x0)) ) / ¢ (ha(x)) du(?).

Furthermore, the generalized Jensen’s inequality gives

1 .
/T<Dt(f(xt))dp(t) <k-hp (k/cht(xt)dy(t)). Using operator
monotonicity of F(-,v), we obtain

F[/ (Dt(f(Xt))dlu(t)’g</ d>t(Xt)d,U(T)>}
(L [ otrantn) o [ exacmd)]

< sup F [k-hg <l1(z> ,g(z)] 1. O

km<z<kM

v
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Main results Converses of Jensen’s inequality

Applying RHS of (11) for a convex function f (or LHS of (11) for a
concave function f) we obtain the following theorem:
Theorem

Let (xt)ieT @nd (®¢)icr beasin§ 2.1., f: [m,M] — R, g : [km,kM] — R
and F : U x V — R be functions such that (kf) ([m,M]) C U,
g([km,kM]) C V and F is bounded. If F is operator monotone in the
first variable and f is convex in the interval [m, M), then

[/ & (F(xt)) du(t) (/ &¢(x¢)Au(t ))] < sup Florz+PBrk,9(2)]

<z<kM
(12)

In the dual case (when f is concave) the opposite inequality holds in

(12) with inf instead of sup.
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Main results Converses of Jensen’s inequality

Applying RHS of (11) for a convex function f (or LHS of (11) for a
concave function f) we obtain the following theorem:

Theorem

Let (xt)ieT @nd (®¢)icr beasin§ 2.1., f: [m,M] — R, g : [km,kM] — R
and F : U x V — R be functions such that (kf) ([m,M]) C U,
g([km,kM]) C V and F is bounded. If F is operator monotone in the
first variable and f is convex in the interval [m, M), then

[/ & (F(xt)) du(t) (/ &¢(x¢)Au(t ))] < sup Florz+PBrk,9(2)]

<z<kM
(12)

In the dual case (when f is concave) the opposite inequality holds in
(12) with inf instead of sup.

Proof
If f is convex the inequality f(z) < asz+ B¢ holds for every z € [m, M|
and we put ho(z) = osz + B¢ in RHS of (11). O

v
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Applying this theorem for the function F(u,v) = u—Av, we obtain:
Corollary

Let (xt)ieT @nd (®¢)icT be asin§ 2.1. and f be convex.
(i) If g is convex differentiable, then

[etnaun <ng( [ ewagn) o1 @3

where C = oz + ﬁfk 7\.9(20) g’ 1(0Lf/7\.) for

LG (km) < os <Ag'(kM); zg = km for Ag'(km) > o, and zy = kM for
kg’(kM) < 0.

(ii) If .g is concave differentiable, then the constant C in (13) can be
written more precisely as

| okM+Bsk —Ag(kM) for o — 7\,06g7k >0,
| arkm+Brk —Ag(km) for o —Aogx <0,

— 9(kM)—g(km)
where o« = = gir—im -
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Setting ¢1(A;) = (A, &) for & € H and t € T in this corollary, then:

Corollary

Let (At)teT be a continuous field of positive operators on a Hilbert
space H defined on a locally compact Hausdorff space T equipped
with a bounded Radon measure u. We assume the spectra are in

[m, M] for some 0 < m < M. Let furthermore (&;):c1 be a continuous
field of vectors in H such that [7||&;||?du(t) = k for some scalar k > 0.
Then for any real \,q,p

q
[ e zidun - ( [ Aguzidun) <o 4

where the constant C = C(A,m,M,p,q, k) is

(0*1)7»( )q "+ Bpk for kqmq T < P <hgMI,
C=19q kMP— (kM) for kq Op >quq 1 (15)
kmP — A(km)9 for % <\gmd- ‘
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Main results Converses of Jensen’s inequality

in the case Ag(gq—1) >0and pe R\ (0,1)
or
p_ q — Aka-1
C:{kM MKM)9  for op—Ak9 'og >0, (16)

kmP —A(km)9 for o, —Ak9 o, <0,
in the case Aq(g—1) <0and pc R\ (0,1).

In the dual case: Aq(g—1) <0 and p € (0,1) the opposite inequality
holds in (14) with the opposite condition while determining the constant
C in (15). But in the dual case: Aq(q—1) >0and p € (0,1) the
opposite inequality holds in (14) with the opposite condition while
determining the constant C in (16).

Constants o, and By, in terms above are the constants o and By
associated with the function f(z) = z°, i.e.

o _Mp—mp _Mmp—mMP
P M-m’ """ M-m
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Converses of Jensen’s inequality
Setting ¢:(A;) = (exp(rA;) &, &) for Er € Hand t € T we have:

Corollary

Let (At)teT and (&t)te T be as in previous corollary. Then for any real
number r # 0 we have

[ 0 ()& & o)~ exp (r / <At&f,at>du(t)> <ci. (17)

[ @A iute) < Ce oxp (1 [ (Akizioutn). (1)
where constants Cy = Cy(r,m,M, k) and C> = Cx(r,m,M, k) are

%In (L) +kp for re™™ < o < re"™M
Ci =< kMa+kB—e™ for re™ < q,
kmo.+ kB —e™ ™ for re™™ > o,
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Main results Converses of Jensen’s inequality

2 ghrB/e for kre™ < o < kre™,
Co = { ke(I=K)m for kre™ > q,
ke(1=K)M  for kre™ < q..

Constants o and B in terms above are the constants o and B¢
associated with the function f(z) =e'#, i.e.

erM _eMm Me™m _ merM

“=M—m Bo = M—m
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Main results Converses of Jensen’s inequality

L ekrB/a for kre™ < a < kre™,
Co = { ke(I=K)m for kre™ > q,
ke(1=K)M  for kre™ < q..

Constants o and B in terms above are the constants o and B¢
associated with the function f(z) =e'#, i.e.

erM _eMm Me™m _ merM

“=M—m Bo = M—m

Applying the inequality f(x) < ,’\‘ﬂ”:r’; f(m) + 4= f(M) (for a convex

function f on [m, M]) to positive operators (A¢):7 and using
0 < At <||A¢||1, we obtain the following theorem, which is a
generalization of results from

[§ R. Drnovéek, T. Kosem, Inequalities between f(||Al|) and ||f(|A])|l,
Math. Inequal. Appl. 8 (2005) 1-6.

v
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Main results Converses of Jensen’s inequality

Theorem

Let f be a convex function on [0,) and let || - || be a normalized
unitarily invariant norm on B(H) for some finite dimensional Hilbert
space H. Let (9¢);c7 be a field of positive linear maps

o;: B(H) — B(K), where K is a Hilbert space, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure
u. If the field t — (1) is integrable with [ ®¢(1) du(t) = k1 for some
positive scalar k, then for every continuous field of positive operators
(At)tET we have

[ otsanaute) < ko + [ AR g ag e

Especially, for f(0) < 0, the inequality

/‘Dt (f(At)) du(t) < /(’;f];)q’(/\t)dli(t)-

is valid.
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Main results Converses of Jensen’s inequality

In the present context and by using subdifferentials we can give an
application of the first theorem in this section.
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Main results Converses of Jensen’s inequality

In the present context and by using subdifferentials we can give an
application of the first theorem in this section.

Theorem

Let (Xt)teT, (Pt)teT be@sin§ 2.1., f: [m,M] = R, g : [km,kM] — R and
F: Ux V — R be functions such that (kf) ([m,M]) C U,

g([km,kM]) C V, F is bounded and f(y)+ I(y)(t —y) € U for every

y,t € [m,M] where | is the subdifferential of f. If F is operator
monotone in the first variable and f is convex on [m, M|, then

[/ 0t (f(xt)) du(t) </ 0t(xt) d T) (19)

> in<kMF[f( )k+l(y )(z—yk),g(2)]1

km<z<

holds for every y € [m,M)]. In the dual case (when f is concave) the
opposite inequality holds in (19) with sup instead of inf.
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Main results Converses of Jensen’s inequality

Though f(z) = Inz is operator concave, the Schwarz inequality

o (f(x)) < f(¢(x)) does not hold in the case of non-unital ¢. Therefore
we have the following application of results above.

Corollary

Let (Xt)teT, (Pt)teT be@sin§ 2.1. and0 < m< M. Then

C11 < J7 ¢ (In(xt)) du(t) = In([7 ®e(xt)du(t)) < C21,

kB+In(e/L(m,M)) for km<L(m,M) < kM,
c, = !m éM’”/ki for kM < L(m,M),

In(m<=1/k for km > L(m,M),

In L(”’v"”)k"k’1)+ m_ for m<kL(m,M)<M

ekm L(m,M)
Co = In (MK /k for kL(m,M) > M,
In(mk=1/k for kL(m,M) < m,

where L(m, M) is the logarithmic mean, p = MInm-minM
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Main results Converses of Jensen’s inequality

By using subdifferentials, we also give an application of the first
theorem in this section.

Theorem

Let (Xt)teT, (Pt)teT beasin§ 2.1. and f : [m,M] — R is a convex
function then

f(y)m/y)(/ o1(x)du(t) yk1> JRICEETG
< f(x)K1—x /T (1)) () + /T ¢(/(xt)x1) du(t) (20)

for every x,y € [m, M), where | is the subdifferential of f. In the dual
case (f is concave) the opposite inequality holds.

Proof Since f is convex we have f(x) > f(y)+I(y)(x —y) for every

x,y € [m,M]. Then f(x;) > f(y)1+1/(y)(xt—y1) for t € T. Applying the
positive linear maps ¢; and integrating, LHS of (20) follows. The RHS of (20)
follows similarly by using the variable y. O
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3. Quasi-arithmetic mean

A generalized quasi-arithmetic operator mean:

Mo, @) =g ([ Lorlota)an)). 1)
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3. Quasi-arithmetic mean

A generalized quasi-arithmetic operator mean:

Mo, @) =g ([ Lorlota)an)). 1)

under these conditions: (xt):cT is @ bounded continuous field of
positive operators in a C*-algebra B(H) with spectra in
[m, M] for some scalars 0 < m < M, (®¢)s7 is a field of
positive linear maps ®¢; : B(H) — B(K), such that the field
t — ®4(1) is integrable with 7 ®+(1) du(t) = k1 for some
positive scalar k and ¢ € C[m, M] is a strictly monotone
function.
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3. Quasi-arithmetic mean

A generalized quasi-arithmetic operator mean:

Mo, @) =g ([ Lorlota)an)). 1)

under these conditions: (xt):cT is @ bounded continuous field of
positive operators in a C*-algebra B(H) with spectra in
[m, M] for some scalars 0 < m < M, (®¢)s7 is a field of
positive linear maps ®; : B(H) — B(K), such that the field
t — ®4(1) is integrable with 7 ®+(1) du(t) = k1 for some
positive scalar k and ¢ € C[m, M] is a strictly monotone
function.
This mean is well-defined, since m1 < x; < M1 for every t € T, then
@ o(m)1< [71di(o(x))du(t) < (M) 1if @ is increasing,
® o(M)1 < [11d:(9(xp))du(t) < @(m)1if @ is decreasing.
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Monotonicity
3.1. Monotonicity

First, we study the monotonicity of quasi-arithmetic means.

Theorem

Let (Xt)ieT, (Pt)teT be as in the definition of the quasi-arithmetic mean
(21). Lety, 9 € C[m, M] be strictly monotone functions.
If one of the following conditions is satisfied:

(i) woo@~! is operator convex and y~' is operator monotone,
(") woo~" is operator concave and —y~" is operator monotone,
(i) @~ is operator convex and y~ is operator concave,

then

Mo(x,®) < My(x, ).
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________ Quasiaihmeticmean JEEEIEH
If one of the following conditions is satisfied:

(iii) wo@~'is operator concave and y~! is operator monotone,
(i) wo@~"is operator convex and —y~! is operator monotone,

(iv) ¢~ is operator concave and y~' is operator convex,
then

v (0(w(A) <07 (O(9(A))).
Proof

We will prove only the case (i) and (ii).
(i) If we put f =yo @~ in the generalized Jensen’s inequality
and replace x; with ¢(x;), then we obtain

IN

veo ([ eontotadun) < [ o (woo(olx)) duct)

= [ ) d(t),

v
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Quasi-arithmetic mean Monotonicity

(continued)
Since y~! is operator monotone, it follows

¢! ( JRTED du(f)> <y < JRTER) dy(t)) |
(i) Since @~ is operator convex, it follows that

¢~ (P(9(A)) < 29" 09(A)) = d(A).

Similarly, since y~! is operator concave, we have

O(A) <y (®(y(A))).

Using two inequalities above, we have the means order in this case. O

V.
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Quasi-arithmetic mean Monotonicity

Theorem

Let (xt)icT, (Pt)icT be as in the definition of the quasi-arithmetic mean
and vy, ¢ € C[m, M] be strictly monotone functions. Then

Mo(x,®) = My(x,®)  forall (xt)ter, (Pe)teT
if and only if

¢o=Ay+B for some real numbers A+ 0 and B.

= @
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Quasi-arithmetic mean Monotonicity

Theorem

Let (xt)icT, (Pt)icT be as in the definition of the quasi-arithmetic mean
and vy, ¢ € C[m, M] be strictly monotone functions. Then

Mo(x,®) = My(x,®)  forall (xt)ter, (Pe)teT

if and only if

¢o=Ay+B for some real numbers A+ 0 and B.

There are many references about operator monotone or operator
convex functions, see e.g.

¥ R.Bhatia, Matrix Anaysis, Springer, New York, 1997.

[§ M. Uchiyama, A new majorization between functions, polynomials,
and operator inequalities, J. Funct. Anal. 231 (2006), 231-244.
Using this we have the following two corollaries.
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Quasi-arithmetic mean Monotonicity

Corollary

Let (x¢):cT be a bounded continuous field of positive operators in a
C*-algebra B(H) with spectra in [m,M] C (0,e) and (®¢):c 7 is a field of
positive linear maps ®; : B(H) — B(K), such that [ ®+(1) du(t) = k1
for some positive scalar k. Let ¢ and v be continuous strictly
monotone functions from [0, ) into itself.

If one of the following conditions is satisfied:

(i) woo ' andy~' are operator monotone,

(i) oy~ is operator convex, oy 1(0) =0 and vy~ is operator
monotone,

then My(x,®) > My(x,®) holds.
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Quasi-arithmetic mean Monotonicity

Corollary

Let (x¢):cT be a bounded continuous field of positive operators in a
C*-algebra B(H) with spectra in [m,M] C (0,e) and (®¢):c 7 is a field of
positive linear maps ®; : B(H) — B(K), such that [ ®+(1) du(t) = k1
for some positive scalar k. Let ¢ and v be continuous strictly
monotone functions from [0, ) into itself.

If one of the following conditions is satisfied:

(i) woo ' andy~' are operator monotone,

(i) oy~ is operator convex, oy 1(0) =0 and vy~ is operator
monotone,

then My(x,®) > My(x,®) holds.

Proof

In the case (i) we use the assertion that a real valued continuous
function f on an interval | = [, e0) and bounded below is operator
monotone on | if and only if f is operator concave on I.

v
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Quasi-arithmetic mean Monotonicity

(continued)

In the case (ii) we use the assertion that if f is a real valued function
from [0, <) into itself such that f(0) = 0 and f is operator convex, then
f~1 is operator monotone. It follows that ywo @~ is operator concave. O

Jadranka Mici¢ Hot () Jensen’s inequality and its converses MIA2010 48/88



Quasi-arithmetic mean Monotonicity

(continued)

In the case (ii) we use the assertion that if f is a real valued function
from [0, <) into itself such that f(0) = 0 and f is operator convex, then
f~1 is operator monotone. It follows that ywo @~ is operator concave. O

v

Corollary

Let (x;)icT and (®;)ic1 be as in previous corollary. Let o(u) = au+ B,
o # 0, and y be an strictly monotone function from [0, o) into itself.
If one of the following conditions is satisfied:

(i) v is operator convex and y~' is operator concave,
(i) y is operator convex and y(0) =0,
(iii) w~' is operator convex and v is operator concave,
(iv) v~ is operator convex and y~'(0) =0,
then My(x,®) = Mj(x,®) < My(x,®) holds.
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Difference and ratio type inequalities
3.2. Difference and ratio type inequalities

Next, we study difference and ratio type inequalities among
quasi-arithmetic means. We investigate the estimates of these
inequalities, i.e. we will determine real constants o and 3 such
that

My (x,®) — My(x,®) <B 1 and My (x, ®) < aMy(x, P)

holds. With that in mind, we shall prove the following general
result.
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Difference and ratio type inequalities
3.2. Difference and ratio type inequalities

Next, we study difference and ratio type inequalities among
quasi-arithmetic means. We investigate the estimates of these
inequalities, i.e. we will determine real constants o and 3 such
that

My (x,®) — My(x,®) <B 1 and My (x, ®) < aMy(x, P)

holds. With that in mind, we shall prove the following general
result.

Theorem

Let (xt)teT, (Pt)ieT be as in the definition of the quasi-arithmetic mean.
Let vy, € C[m, M| be strictly monotone functions and

F : [m,M] x [m,M] — R be a bounded and operator monotone function
in its first variable.
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Quasi-arithmetic mean Difference and ratio type inequalities

(continued)
If one of the following conditions is satisfied:

(i) yoo~'is convex and y~! is operator monotone,

(") woo~'is concave and —y~' is operator monotone,
then

F [My(x, ), My(x,®)] (22

< sup F |y~ (By(m) + (1 - 8)w(M),9" (Bp(m)+ (1-8)o(M))) | 1.
0<6<1

If one of the following conditions is satisfied:
(i) yoo~'is concave and y~! is operator monotone,
(i) woo~'is convex and —y~! is operator monotone,
then the opposite inequality is valid in (22) with inf instead of sup.
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Quasi-arithmetic mean Difference and ratio type inequalities

Proof

We will prove only the case (i). By using the Mond-Pecari¢ method and
the functional calculus, we obtain that

1—o(x _ Xt) —om1 -
D00, 1 () LIV 0T 1)

Xt) <
Vo) < o oM —Om

holds for every t € T, where ¢, :== min{o(m),o(M)}, @y = max{e(m).o(M)}.
It follows

[ % @ (W) du(t) < Bu(m) + (1 - BYw(M),

where

B_ (M1 — [7 % Pt (0(x1)) du(t)
(M) —o(m) ’

We have My(x,®) <y~ (By(m)+ (1 - B)y(M)) and

My (x,®) = ¢~ (Bo(m)+ (1 — B)o(M)). Finally, using operator

monotonicity of F(-,v), we obtain (22). O

0<B<1.
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Quasi-arithmetic mean Difference and ratio type inequalities

Corollary
Let (xt)teT, (Pt)teT be as in the definition of the quasi-arithmetic mean.
Lety,¢ € C[m,M] be strictly monotone functions and
F:[m,M] x [m,M] — R be a bounded and operator monotone function
in its first variable, such that F(z,z) = C for all z € [m, M].
If one of the following conditions is satisfied:

(i) woo~' is operator convex and y~' is operator monotone,

(") woo~ is operator concave and —y~" is operator monotone,
then

F [My(x, ), My(x,®)] > C1 (28)

holds.

v
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Quasi-arithmetic mean Difference and ratio type inequalities

Corollary

Let (xt)teT, (Pt)teT be as in the definition of the quasi-arithmetic mean.
Lety,¢ € C[m,M] be strictly monotone functions and
F:[m,M] x [m,M] — R be a bounded and operator monotone function
in its first variable, such that F(z,z) = C for all z € [m, M].
If one of the following conditions is satisfied:

(i) woo~' is operator convex and y~' is operator monotone,

(") woo~ ' is operator concave and —y~" is operator monotone,
then

F [My(x, ), My(x,®)] > C1 (23)

holds.
If one of the following conditions is satisfied:

(i) woo@~' is operator concave and y~' is operator monotone,
(i) woo~1 is operator convex and —y~' is operator monotone,
then the reverse inequality is valid in (23). ]
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Quasi-arithmetic mean Difference and ratio type inequalities

Proof

Suppose (i) or (i’). Applying the monotonicity of quasi-arithmetic
means, we have My(x,®) < My(x,®). Using assumptions about
function F, it follows

Remark
It is particularly interesting to observe inequalities when the function F
in Theorem has the form F(u,v) =u—v and

F(u,v)=v=12uv=12 (v >0).
E.g. if (i) or () of this theorem is satisfied, then

My(x,®) < My(x, ®)

+ sup {w" (Bw(m)+(1-8)y(M)) — " (B0(m) + (1 — B)g(M)) } 1,

v
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Quasi-arithmetic mean Difference and ratio type inequalities

(continued)
If in addition ¢ > 0,then

My(x,®) < sup

{\w (8w(m) + (1 — B)y(M))
0<oe<1

o~ (Bo(m) + (1 —B)o(M) } Molx.®).
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Quasi-arithmetic mean Difference and ratio type inequalities

(continued)
If in addition ¢ > 0,then

v (Ow(m) + (1~ 8)y(M))
M) < 500 {0 Gatin) -+ (1—ajo(any | o0 O

We will investigate the above inequalities, with different assumptions.
For this purpose, we introduce some notations for real valued

continuous functions y,¢ € C[m, M]
ay = ¥M)—y(m) p My(m)-My(M)
Ve o(M)—g(m)>  ZV:® o(M)—o(m) -
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Quasi-arithmetic mean Difference and ratio type inequalities

(continued)
If in addition ¢ > 0,then

Y (Oy(m) + (1 — 8)y(M))
My(x.®) < sup, { T (0g(m) + (1 6)o(M)) } Molx.®).

We will investigate the above inequalities, with different assumptions.
For this purpose, we introduce some notations for real valued

continuous functions y, ¢ € C[m, M]

g — YM-w(m) o My(m)—My(M)
V9 o(M)—o(m)’ hA o(M)—o(m)

Theorem

Let (xt)icT, (Pt)icT be as in the definition of the quasi-arithmetic mean
and y, ¢ € C[m, M] be strictly monotone functions. Let yoo~' be
convex (resp. concave).

(i) Ify~" is operator monotone and subadditive (resp. superadditive)
onR™, then

o
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Quasi-arithmetic mean Difference and ratio type inequalities

(continued)
My (x, ®) < My(x,®) +y " (B)1 (24)
(resp. My(x,®) > Mo(x,®) +y 1 (B)1),
(") if =y~ is operator monotone and subadditive (resp.
superadditive) on R*, then the opposite inequality is valid in (24),
(i) if y~' is operator monotone and superadditive (resp. subadditive)
on R, then
My(x,®) < My(x,9) — o~ 1 (—B)1 (25)
(resp. My(x,®) > My(x,®) —¢ ' (—B)1),
(i) if =y~ is operator monotone and superadditive (resp.
subadditive) on R, then the opposite inequality is valid in (25),

where
_ _ 1 — i .
B - (pmrQZaSX(PM {aw’(pz + b‘%‘P Yoo (Z)} <reSp- B (ng]ZIQ(PM{ } > '

v
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Difference and ratio type inequalities
Furthermore, if wo @~ is strictly convex (resp. strictly concave) differentiable,
then the constant = B(m, M, e,y) can be written more precisely as
B =ay¢Zo+ by — Yoo (20), where Zz; is the unique solution of the equation
(voo 1Y (2) = ayq, (¢m < 20 < Qm)-
Proof

We will prove only the case (i). Putting in Corollary A=1,
f=g=woq~ ! and replacing ®; by } ¢, we have

[ oo dut) = [ o (woo (ox) du(t
voo ! [ oreta)antt) + .

IN

where B as in the theorem statement. Since y~' is operator monotone
and subadditive on RT, then we obtain

My (x,®) <y (wo o (J7 Ot (9(xt)) du(t)) +B1) < My(x,®)+y " (B)1.
O

v
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Theorem

Let (xt)ieT, (Pt)teT be as in the definition of the quasi-arithmetic mean
and vy, ¢ € C[m, M] be strictly monotone functions. Let yo@~' be
convex and y > 0 on [m,M].

(i) Ify~ is operator monotone and submuitiplicative on R, then

My (x,®) <y (o) My(x, ®), (26)

(") if =y~ is operator monotone and submultiplicative on R*, then
the opposite inequality is valid in (26),

where

v
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Theorem

Let (xt)ieT, (Pt)teT be as in the definition of the quasi-arithmetic mean
and vy, ¢ € C[m, M] be strictly monotone functions. Let yo@~' be
convex and y > 0 on [m,M].

(i) Ify~ is operator monotone and submuitiplicative on R, then
My (x,®) <y (o) My(x, ®), (26)
(") if =y~ is operator monotone and submultiplicative on R*, then
the opposite inequality is valid in (26),
(i) ify~" is operator monotone and supermultiplicative on R, then
1

My(x, @) < [y (@) My(x,®), (27)

(i) if —y~' is operator monotone and supermultiplicative on R, then
the opposite inequality is valid in (27),
where

v
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Quasi-arithmetic mean Difference and ratio type inequalities

(continued)
onzz<ou | Yoo 1(2) on=zzow | yoo~!(2)

Furthermore, if yo ¢~ is strictly convex differentiable, then the
constant o = a(m, M, @, y) can be written more precisely as

o~ BveZot by
voo '(2)

where zj is the unique solution of the equation
(Voo 1Y (aypz+aye) = aye - Voo (2), (0m < 20 < Om).
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Quasi-arithmetic mean Difference and ratio type inequalities

(continued)

o= max {a“"(szrb"”"’} <resp. a= min {a“'""erb“”("} > :

Yoo 1(z) om=z<ou | Yo@~'(2)

Om<Z<Qpy

Furthermore, if yo ¢~ is strictly convex differentiable, then the
constant o = a(m, M, @, y) can be written more precisely as

o~ BveZot by
voo '(2)

where zj is the unique solution of the equation
(yoo™! ) (ay.0Z+ aye) = ayg - Yoo ' (2), (om < 20 < Qum).

Remark

We can obtain order among quasi-arithmetic means using the
function order of positive operator in the same way as we will
demonstrate for power functions in the next section.

v

Jadranka Mici¢ Hot () Jensen'’s inequality and its converses MIA2010

58 /88



If we put ¢(t) = t" and y(t) = t° in Theorem about monotonicity of
quasi-arithmetic means, then we obtain the order among power
means:

Let (At)te7 is a bounded continuous field of positive operators in a
C*-algebra B(H) with spectra in [m, M] for some scalars 0 < m < M,
defined on a locally compact Hausdorff space T equipped with a
bounded Radon measure u and (®;): 7 is a field of positive linear
maps ¢; : B(H) — B(K), such that [ ®¢(1) du(t) =1 for some positive
scalar k. Then

& (Af) du(t) W & (A7) du(t)
f <(f

holds for either r < s, r¢ (-1,1),s¢(-1,1)or1/2<r<1<sor
r<—1<s<-1/2.

1/s

In the remaining cases we need to use the function order of positive

operator.
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4. Power functions

We consider the order among the following power functions:

1/r
Ih(x,®) := < /T o (X]) dy(t)) if reR\{0}, (28)

with these conditions: (x;);c7 is a bounded continuous field of
positive elements in a unital C*-algebra 4 with spectra in [m, M] for
some scalars 0 < m < M, defined on a locally compact Hausdorff
space T equipped with a bounded Radon measure u and (®¢):e7 is @
field of positive linear maps ¢; : 4 — B from 4 to another unital
C*-algebra B, such that the field t — ®;(1) is integrable with

J7 (1) du(t) = k1 for some positive scalar k.

@ J.Miéi¢, J.Pedari¢ and Y.Seo, Converses of Jensen’s operator
inequality, Oper. and Matr. (2010), accepted
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Some previous results for the ratio
4.1. Some previous results for the ratio

We wish to observe the ratio type order among power functions.
In order this to get we need some previous results given in the
following lemmas.
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Some previous results for the ratio
4.1. Some previous results for the ratio

We wish to observe the ratio type order among power functions.
In order this to get we need some previous results given in the
following lemmas.

Lemma

Let (xt)ieT @and (®;)ic1 be as in the definition of the power function
(28).
If 0<p<1, then

0 (xf) du(ty <k ( /. ¢t(xt)du(t))p. (29)

If —1<p<0 or 1<p<2, then the opposite inequality holds in
(29).
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Some previous results for the ratio
4.1. Some previous results for the ratio

We wish to observe the ratio type order among power functions.
In order this to get we need some previous results given in the
following lemmas.

Lemma

Let (xt)ieT @nd (®¢)ic1 be as in the definition of the power function
(28).
If 0<p<1, then

0 (xf) du(ty <k ( /. ¢t(xt)du(t))p. (29)

If —1<p<0 or 1<p<2, then the opposite inequality holds in
(29).

Proof

We obtain this lemma by applying generalized Jensen’s inequality. O
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Lemma

Let (x¢)teT and (®¢)ieT be as in the definition of the power function.
If 0<p<1, then

k'"PK(m,M, p) </ch,(xt)dy(t)>p < /cht(xf) du(t)
< KI-P </T¢»,(xt)d/.l(t)>p,
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Lemma

Let (x¢)teT and (®¢)ieT be as in the definition of the power function.
If 0<p<1, then

k'"PK(m,M, p) </ch,(xt)dy(t)>p < /cht(xf) du(t)
)
< K2 ( [ oitaautn)
if —1<p<0 or 1<p<2, then
(- < /T <Dt(xt)dy(t)>p < /T o (xP) du(t)
o
k2K (m. M) ( [ oda)att))

IN
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Power functions Some previous results for the ratio

(continued)
if p<—1 or p>2, then

K =PK(m, M, p)~" (J7 @e(xt)du(1))P < [ &¢ (x7) du(t)
< K'"PK(m,M.p) (7 ®:(xe)du(t)),

where K(m,M,p) = K(h,p), h="M > 1 is the generalized
Kantorovich constant defined by

K(h,p) =

W-h (p—1h—1
(p—1)(h=1)\ p hP—h

p
) , for all p € R.

Proof
We obtain this lemma by applying Corollary

A generalization of the Kantorovich inequality is firstly initiated by Ky
Fan in 1966.
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We shall need some properties of the generalized Specht ratio.

In 1960 Specht estimated the upper boundary of the arithmetic mean
by the geometric one for positive numbers: For x,---,x, € [m, M] with
M>m>D0,

(h— 1)hh i X1+
x>
elogh n
where h=Y(>1). The Specht ratio is defined by
S(h) = (h:)’l;’ (h#1) and S(1)=

We have the representation of the Specht ratio by the limit of
Kantorovich constant lim,_o K(h",2) = S(hP).
The generalized Specht ratio is defined for h> 0 and r,s € R by:

K(H,S)s if rs+0,
A(h,r,s)=< A(h,0,s)=S(h%)s if r=0,
A(h,r,0)=S(h)~7 if s=0.
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Power functions Some previous results for the ratio

Obviously, the generalized Specht ratio for rs # 0:

r(hs—h) VS sth—h) V" M
20\ pon) \oamoT)
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Power functions Some previous results for the ratio

Obviously, the generalized Specht ratio for rs # 0:

rth—h) \'°f sth—-p) VT M
s~ {Gnwon) \wom-n) "m

Lemma
LetM>m>0,recR and

__r(h—H) F—h N
A(h,f,‘l)—(‘]ir)(hrf” ((r1)(h1)> ’ n=

M
—

@ A function A(r) = A(h,r,1) is strictly decreasing for all r € R,
Qo lm A(h,r,1)=1  and liLrE)A(h,r, 1) = S(h),

where S(h) is the Specht ratio,
Qo rImA(h, r,1)=1/h and rETwA(h,r, 1)=nh.

v
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Power functions Some previous results for the ratio

L

A(r) 4

o

1/h
rig

Figure 1. Function A(r) = A(h,r,1)

Jadranka Mici¢ Hot () Jensen’s inequality and its converses MIA2010 66 /88



Power functions Some previous results for the ratio

Lad

A4

—ﬁ S(h)
1

M

1/h

>
r

Figure 1. Function A(r) = A(h,r,1)

Proof
We use differential calculus. Refer to

[ J. Mi¢i¢ and J. Pedarié, Order among power means of positive
operators, Il, Sci. Math. Japon. Online (2009), 677-693. O
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Also, we need the following function order of positive operators:

Theorem

IfA,Be By(H), A> B> 0 such that Sp(A) C [n,N] and Sp(B) C [m, M|

for some scalars 0 < n< N and 0 < m < M, then

K(n,N,p) A°P>B°>0
K(m,M,p) AP > BP >0
K(n,N,p) BP>AP>0
K(m,M,p) B° > AP >0

for all
for all
for all
for all

p>1,
p>1,
p<-1,
p<—1.

Refer to

@ J.Mici¢, J.Pecari¢ and Y.Seo, Function order of positive operators
based on the Mond-Pecari¢c method, Linear Algebra and Appl.,

360 (2003), 15-34.

[@ J.Pecarié¢ and J.Mi¢i¢, Some functions reversing the order of
positive operators, Linear Algebra and Appl., 396,(2005), 175=187.
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Power functions Ratio type order

4.2. Ratio type inequalities with power functions

We give the ratio type order among power functions.
We observe regions (i) — (v)1 as in Figure 2.

s
A
0 (i) (i)/
1
Wi A ©
+1/.
(iif) W) (ii)
I } »r (iii)
-1 -1l 1/2
(iv)
Y (iv),
(i) i )
(V)

r<s,s€(-1,1), r € (-1,1)
or 1/2€r€1< s
or r£-1< s£-1/2,

s=>1,-1<r<1/2,r#0,
r<-1,-1/2<s<1,s#0,

-s £r<s/2,r£0,0<s £ 1,
r<s<2r,0<s <1,
rl2<s £ -r,s#0, -1 r<0,

2s £r<s, -1£r<0.

Figure 2. Regions in the (r,s)-plain
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Theorem
Let regions (i) — (v)1 be as in Figure 2.
If(r,s) in (i), then

k= A(h,r,s)" " Is(x,®) < I(x,®) < k5 I5(x, ),
if (r,s) in (i) or (iii), then
k= A(h,r,s)” " Is(x,®) < I(x,0) < k= A(h,r,s) Is(x,),
if(r,s) in (iv), then

k= A(h,s, 1) 1A(h,r,s) " Is(x,d) < I,(x,P)
< k*s min{A(h,r,1),A(h,s,1)A(h,r,s)} Is(x,d),

if(r,s) in (v) or (iv)y or (v)1, then

ks A(h,s, 1) A(hr,8) " Is(x,d) < I(x,®) < ks A(h,s,1) Is(x,P).
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Proof

This theorem follows from second lemma by putting p=s/r orp=r/s
and then using the Léwner-Heinz theorem, function order of positive
operators and we choose better bounds by using third lemma. O
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Proof

This theorem follows from second lemma by putting p=s/r orp=r/s
and then using the Léwner-Heinz theorem, function order of positive
operators and we choose better bounds by using third lemma. O

As an application, we can obtain the ratio type order among of the
weighted power means of operators:

1/r
M (x,®) := </T/1(¢t (x{) d,u(t)) if reR\{0}

at the same conditions as above.
Since a field (% ®¢)se 7 in this case is unital, this result will be given in
§5.1.
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Some previous results for the difference
4.3. Some previous results for the difference

We wish to observe the difference type order among power
functions. We need some previous results.
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4.3. Some previous results for the difference

We wish to observe the difference type order among power
functions. We need some previous results.

Lemma

Let (xt)teT @and (&)1 be as in the definition of the power function.
If 0<p<1, then

o
o /T O4(x:)du(t) + kBp1 < /T Oy(xP)du(t) < k1P < /T <Dt(xt)d,u(t)>(3£))
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4.3. Some previous results for the difference

We wish to observe the difference type order among power
functions. We need some previous results.

Lemma

Let (xt)teT @and (&)1 be as in the definition of the power function.
If 0<p<1, then

p
ap [ (a)du(t) + KBt < [ 0 (xP)du(t) < K17 ( / ¢r(Xt)du(t)> ,

(30)
if —1<p<0 or 1<p<2, then

p
K1-p </T¢>t(Xt)le(t)) S/Td)t(ti)d,u(l‘) SaP/T(bf(Xt)dﬂ(t)-i-kBpL
(31)

v

Jadranka Mici¢ Hot () Jensen’s inequality and its converses

MIA2010 71/88



(continued)
if p<—1 or p>2, then

pyP~" [ ®1(x)du(t) + k(1 —p)yP1 < [7 Pe(xf)du(t)
< tp [7Pe(xe)du(t) + kBp1 (32)

for every y € [m, M]. Constants o, and B, are the constants oy and B¢
associated with the function f(z) = zP.

Proof

RHS of (30) and LHS of (31) follows from the generalized Jensen’s
inequality. LHS of (30) and RHS of (31) and (32) follow from

Corollary for f(z) = zP, g(z) = z and A = op. LHS of (32)
follows from Theorem by putting f(y) = yP and
I(y)=py".

Jadranka Mici¢ Hot () Jensen’s inequality and its converses MIA2010 72/88



Remark
Setting y = (ap/p)"/ P~V € [m, M] in the last inequality we obtain

o 7 O(xe)du(t) + k(1= p) (0p /p)/ P~ < [7 &¢(xF)du(t)
< op [7P(xt)du(t) + kBpl forp<—1orp>2.

Furthermore, setting y = m or y = M gives

pmP=1 [ &¢(xp)du(t) + k(1 —p)mP1 < [ dy(xP)du(t)
< op [7P(xe)du(t) + kBp1

or

PMP [ ®4(Xe)du(t) + k(1 — pYMP1 < [7 &¢(x7)du(t)
<op [7Pi(Xe)du(t) + kBpl.

(33)

(34)

(35)

v
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(continued)
We remark that the operator in LHS of (34) is positive for p > 2, since

0 < kmP1 < pmP=1 [ ®¢(x¢)du(t) + k(1 — p)mP1
< k(pmP~ "M+ (1 — p)mP)1 < kMP1 (36)

and the operator in LHS of (35) is positive for p < —1, since

0 < kMP1 < pMP=1 [ &y(x;)du(t) + k(1 — p)MP1
< k(pMP—'m+ (1 — p)MP)1 < kmP1. (37)

(We have the inequality pmP~"M+ (1 — p)mP < MP in RHS of (36) and
pMP~'m4- (1 — p)MP < mP in RHS of (37) by using Bernoulli's
inequality.)
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Some previous results for the difference
We shall need some properties of a constant C(m, M, p) (this type of a
generalized Kantorovich constant for difference) defined by

1 MP — mp>p/(p1) MmP — mMP
_ﬂ'_i

o(m.M.p)= (o~ 1) ( .

Ry for all p € R.
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Some previous results for the difference
We shall need some properties of a constant C(m, M, p) (this type of a
generalized Kantorovich constant for difference) defined by

1 MP — mp>p/(p1) MmP — mMP
_ﬂ'_i

o(m.M.p)= (o~ 1) ( .

Ry for all p € R.

If we put f(t) = tP in a difference type reverse of Jensen’s inequality
(obtain by using the Mond-Pecari¢ method), then we have a difference
type reverse of Hoélder-McCarthy inequality:

Let A be a self-adjoint operator such that m1 < A < M1 for some
scalars m < M. Then

0 < (APx,x) — (Ax,x)P < C(m,M,p) forall p & [0,1]
and

C(m,M,p) < (APx,x)— (Ax,x)P <0  forall pe]0,1]

for every unit vector x € H.
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We collect basic properties of C(m, M, p) in Lemma 2.59 in our the first
book.

Jadranka Mici¢ Hot () Jensen'’s inequality and its converses MIA2010 76/88



We collect basic properties of C(m, M, p) in Lemma 2.59 in our the first
book.

Lemma
LetM>m>0,recR and

_ _ 1/(1-r) Al
C(mryMr,1/f)Z:1rr< M m) +Mm mM

er—m’ Mr—mr

@ A function C(r) = C(m",M" 1/r) is strictly decreasing for all r € R,
Q Iirq C(m' M 1/ry=0 and
r—
Iir’rg) c(m" M 1/r)=L(m,M)InS(M/m),
r—

where L(m, M) is the logarithmic mean and S(h) is the Specht
ratio.

erimC(m’,M’J/r):m—M and  lim c(m" M 1/r)=M—-m.

v
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cmh
M-m
\ L(m,M) InS(M/m)
1 g
m-M
Figure 3. Function C(r)= C(m",M",1/r)
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crh
M-m

\ L{m.M) InS(Mim)

1

-~y

m-M

Figure 3. Function C(r)= C(m",M",1/r)

Proof
We use differential calculus. Refer to

[ J. Mi¢i¢ and J. Peéari¢, Order among power means of positive
operators, Il, Sci. Math. Japon. Online (2009), 677—693.
O
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Also, we need the following function order of positive operators:

Theorem

Let A, B be positive operators in B(H).
If A> B> 0 and the spectrum Sp(B) C [m, M| for some scalars
0<m< M, then

AP+ C(m,M,p)1 > BP forall p>1.

But, if A> B > 0 and the spectrum Sp(A) C [m,M], 0 < m < M, then

BP + C(m,M,p)1 > AP forall p< -1,

Refer to
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Power functions Difference type order

4.4. Difference type inequalities with power functions

We give the difference type order among power functions.
We observe regions (i) — (v)1 as in Figure 4.

S

A
i ii i
| wi o/ et e
(i), or si2<r<s, s=1
(iv) @\ or r$s<r/2, r<-1,
I (ii); s=21,-1<r<s/2,r#0,
(i) (V) (i), rs -1.r2<s<1,s#0,
I T { > r
-1 -/ 12 1 (iv) -s<r<s/2,r#0,0<s <1,
/ &) +-1/2 (iv); r€s<2r,0<s <1,
4 /2<s £ -r,s#0, -1£r<0
@) i, (v) r s r,s#0, r<o,
v s<r<s,-1<r<0.
, 2 <s, -1£r<0

Figure 4. Regions in the (r,s)-plain
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Theorem
Let regions (i)1 —(v)1 be as in Figure 4.
Then
Co1 < Is(x,9) — I(x,9) < Ci1, (38)
where constants Cy = Cy(m,M,s,r,k) and C> = Co(m,M, s, r, k) are
c, - A, for (r,s) in (1)1 or(ii)y or (iii)1;
v 5k+min{Ck(s),Ck(r)}, for (r,s) in (iv) or (v) or (iv)y or (v)1;
(k'/$ —Kk'/"ym, for (r,s) in (i) ;
5,(, for (r,s) in (ii)q;
Dy, for (r,s) in (iii)1;
C2 = 4 max Di— Ck(s), (K1/S—KV/TY m—Cy(r)}, for(r,s) in (iv);
max { Dy — Ck(r), (kV/S—KkV/")Y m—Cy(s)}, for(r,s) in(v);
(k'/$ —k'/"ym —min{Cy(r), Ck(5)}, for (r,s) in (iv)y or (v)y.

Jadranka Mici¢ Hot () Jensen’s inequality and its converses MIA2010 80/88



(continued)

A constant Ag = Ax(m,M,r,s) is

Ak — max {k1/s[9/\/’s—|—(1 _e)ms]1/s_k1/r[eMr+(1 _e)mr]1/r}’
6€[0,1]

Dy = Ek(m, M;r,s)is

~ r_ mr 1§
Dk:min{<kl—k1>m,k1sm<sM m +1> —klM},

rm’

Dy = De(m,M,r,s) = —Dx(M,m,s,r)
and Cx(p) = Cx(m,M,p) is

Ck(p)=kK'/P-C(mP,MP 1/p)  for p#0.
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5. Weighted power means

As an application §4, we can obtain the order among of the weighted
power means of operators:

1/r
M, (x,®) := </Td>t (x{) d,u(t)) if reR\{0}
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5. Weighted power means

As an application §4, we can obtain the order among of the weighted
power means of operators:

1/r
M, (x,®) := </Td>t (x{) d,u(t)) if reR\{0}

with these conditions: (x;);c7 is a bounded continuous field of
positive operator in a C*-algebra B(H) with spectra in [m, M] for some
scalars 0 < m < M, defined on a locally compact Hausdorff space T
equipped with a bounded Radon measure u and (®¢)s7 is a field of
positive linear maps ¢; : B(H) — B(K), such that [7®¢(1) du(t) =1.
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Ratio type order
5.1. Ratio type inequalities

Corollary

Let regions (i) — (v)1 be as in Figure 2.
If(r,s) in (i), then

A(h,r,8)~" Ms(x, d) < My(x,®) < Ms(x,d),
if (r,s) in (ii) or (iii), then
A(h,r,s)™" Ms(x,®) < My(x,d) < A(h,r,s) Ms(x,d),
if(r,s) in (iv), then

A(h,s, 1) TA(h,r,8)™" Ms(x,®) < M(x,®)
< min{A(hvra 1 )’A(ha S, 1 )A(ha r, S)} MS(X’CD)?
if(r,s) in (v) or (iv)y or (v)1, then
A(h,s,1)7 AR, r,8)7" Ms(x,®) < M,(x,d) < A(h,s,1) Ms(x, ).
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Difference type order
5.2. Difference type inequalities

Corollary

Let regions (i) — (v)1 be as in Figure 2.
If(r,s) in (i), then

0 < Ms(x,®) — M,(x,d) < Af,

if(r,s) in (ii), then

if (r,s) in (iii), then

r ms N\ ~
m_M<Sst+1_S) 1§MS(Xa¢)_Mf(X7¢)SA17
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Weighted power means Difference type order

(continued)
if (r,s) in (iv), then

sM' | r—s 1/s S £\ S ropgr
max{m(;W—FT) — M~ C(m®,M3,1/s),—C(m",M",1/r)}1
Ms(x,®) = My(x,®) < (A+ C(m®,M°,1/8) )1,

if (r,s) in (v) or (iv)y or (v)4, then

—C(m®, M8, 1/8)1 < Ms(x,®) — My(x, ) < (A +C(mS, MS, 1 /s)) 1,

where A = MaXoco 17 { [BMS + (1 —0)mS]"/S —[oM" + (1 —0)m']"/"}.
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6. Chaotic order version of these results

We can obtain chaotic order among quasi-arithmetic means in a
general setting and chaotic order among power means.
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6. Chaotic order version of these results

We can obtain chaotic order among quasi-arithmetic means in a
general setting and chaotic order among power means.

E.g.

If wo~' is operator convex and vy is operator monotone then

Moy(x,®) < My(x,P).

We are working on this.
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Chaotic order

For r € R we define the r-th power operator mean as
1
_ [ Urtoitdydun) ", r#0;
M (x,®) := 1 ;i 1r
exp (7% ®:(In(x)) du(t)) ~, r=0.
The limit s —lim,_o M;(x,®) = Mp(x, ®) exists.

Theorem
Ifr,seR, r<s, then

A(h,r,8) " Ms(x,®) < My(x,®) < Ms(x,d).

where A (h,r,s) is the generalized Specht ratio.
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The end

7~ -\ Mathematical Inequalities and Applications 2010

:; MARCH 7 - 13, 2010 LAHORE, PAKISTAN.

Thank you very much for
your attention
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