
Jadranka Mićić Hot () Jensen’s inequality and its converses MIA2010 1 / 88



Contents

Contents
1 Introduction

Overview of Jensen’s inequality
Overview of the Kantorovich inequality
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Goal of the lecture

2 Main results
Generalization of Jensen’s inequality
Generalization of converses of Jensen’s inequality

3 Quasi-arithmetic means
Monotonicity
Difference and ratio type inequalities

4 Power functions
Ratio type order
Difference type order

5 Weighted power means
Ratio type inequalities
Difference type inequalities

6 Chaotic order
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Introduction Overview of Jensen’s inequality

1.1. Overview of Jensen’s inequality

Classical Jensen’s inequality

J.L.W.V. Jensen, Sur les fonctions convexes et les ingalits entre les
valeurs moyennes, Acta Mathematica 30 (1906), 175–193:

If f is a convex function on an interval [m,M] for some scalars m < M,
then

f (
k

∑
j=1

tjxj)≤
k

∑
j=1

tj f (xj). (1)

holds for every x1,x2, · · · ,xk ∈ [m,M] and every positive real numbers
t1, t2, · · · , tk with ∑

k
j=1 tj = 1.

An operator version of (1): Let A be a self-adjoint operator on a
Hilbert space H with Sp(A)⊂ [m,M] for some scalars m < M. If f is a
convex function on [m,M], then

f ((Ax ,x))≤ (f (A)x ,x) (2)

for every unit vector x ∈ H.
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Introduction Overview of Jensen’s inequality

Jessen’s inequality

B.Jessen, Bemaerkinger om konvekse Funktioner og Uligheder
imellem Middelvaerdier I, Mat.Tidsskrift B (1931), 17-28:

Let E be a nonempty set and L = {g;g : E → R} satisfying:

L1: α,β ∈ R ∧ g,h ∈ L ⇒ αg + βh ∈ L,
L2: 1 ∈ L.

If f is a convex function on an interval I ∈ R and Φ is a unital positive
linear functional, then

f (Φ(g))≤ Φ(f (g)) . (3)

holds for every g ∈ L.
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Introduction Overview of Jensen’s inequality

Schwarz operator inequality

C.Davis, A Schwartz inequality for convex operator functions, Proc.
Amer. Math. Soc. 8 (1957), 42–44:

If f is an operator convex function defined on an interval I and
Φ: A → B(K ) is a unital completely positive linear map from a
C∗-algebra A to linear operators on a Hilbert space K , then

f (Φ(x))≤ Φ(f (x)) , (4)

holds for every self-adjoint element x in A with spectrum in I.

Subsequently in

M. D. Choi, A Schwarz inequality for positive linear maps on
C∗-algebras, Ill. J. Math. 18 (1974), 565–574.

noted that it is enough to assume that Φ is unital and positive. In fact,
the restriction of Φ to the commutative C∗-algebra generated by
self-adjoint x is automatically completely positive by Theorem 4 in

W. F.Stinespring, Positive functions on C*-algebras, Proc. Amer.
Math. Soc. 6 (1955), 211–216.
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Introduction Overview of Jensen’s inequality

F.Hansen and G.K. Pedersen, Jensen’s inequality for operators
and Löwner’s theorem, Ann. Math. 258 (1982), 229–241.

proved
a Jensen type inequality:

If f is an operator convex function defined on an interval I = [0,α) (with
α≤ ∞ and f (0)≤ 0) then

f

(
n

∑
i=1

a∗i xiai

)
≤

n

∑
i=1

a∗i f (xi)ai (5)

holds for every n-tuple (x1, . . . ,xn) of bounded, self-adjoint operators
on an arbitrary Hilbert space H with spectra in I and for every n-tuple
(a1, . . . ,an) operators on H with ∑

n
i=1 a∗i ai = 1.

<<

The inequality (5) is in fact just a reformulation of (4) although this was
not noticed at the time.
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Introduction Overview of Jensen’s inequality

The restriction on the interval and the requirement f (0)≤ 0 in (5) was
subsequently removed by

B.Mond and J.Pečarić, On Jensen’s inequality for operator convex
functions, Houston J. Math., 21 (1995), 739–753.

F.Hansen and G.K.Pederson, Jensen’s operator inequality, Bull.
London Math. Soc., 35 (2003), 553–564.

Indeed, consider an arbitrary operator convex function f defined on
[0,1). The function f̃ (x) = f (x)− f (0) satisfies the conditions of (5) and
it follows

f

(
n

∑
i=1

a∗i xiai

)
− f (0)1≤

n

∑
i=1

a∗i (f (xi)− f (0)1)ai =
n

∑
i=1

a∗i f (xi)ai − f (0)1.

By setting g(x) = f ((β−α)x + α) one may reduce the statement for
operator convex functions defined on an arbitrary interval [α,β) to
operator convex functions defined on the interval [0,1).
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Introduction Overview of Jensen’s inequality

B.Mond and J.Pečarić, Converses of Jensen’s inequality for several
operators, Rev. Anal. Numér. Théor. Approx. 23 (1994), 179–183.

proved

Jensen’s operator inequality:

f

(
n

∑
i=1

wiΦi(xi)

)
≤

n

∑
i=1

wiΦi(f (xi))

holds for operator convex functions f defined on an interval I, where
Φi : B(H)→ B(K ) are unital positive linear maps, x1, . . . ,xn are
self-adjoint operators with spectra in I and w1, . . . ,wn are non-negative
real numbers with sum one.
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Introduction Overview of Jensen’s inequality

In

F.Hansen and G.K.Pederson, Jensen’s operator inequality, Bull.
London Math. Soc., 35 (2003), 553–564.

a version of (5) is given for continuous fields of operators.
Discrete Jensen

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Next, we review the basic concepts of continuous fields of (bounded
linear) operators on a Hilbert space and fields of positive linear
mappings, which will recur throughout the talk.
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Introduction Overview of Jensen’s inequality

Let T be a locally compact Hausdorff space and let A be a
C∗-algebra of operators on some Hilbert space H. We say that a
field (xt )t∈T of operators in A is continuous if the function t 7→ xt is
norm continuous on T . If in addition µ is a Radon measure on T
and the function t 7→ ‖xt‖ is integrable, then we can form the
Bochner integral

∫
T xt dµ(t), which is the unique element in A

such that
ϕ

(∫
T

xt dµ(t)
)

=
∫

T
ϕ(xt )dµ(t)

for every linear functional ϕ in the norm dual A∗.
Assume furthermore that (Φt )t∈T is a field of positive linear
mappings Φt : A → B from A to another C∗-algebra B of operators
on a Hilbert space K . We say that such a field is continuous if the
function t 7→ Φt (x) is continuous for every x ∈ A . If the C∗-algebras
include the identity operators, and the field t 7→ Φt (1) is integrable
with integral equals 1, we say that (Φt )t∈T is unital .
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Introduction Overview of Jensen’s inequality

Finally,

F.Hansen, J.Pečarić and I.Perić, Jensen’s operator inequality and
its converse, Math. Scad., 100 (2007), 61–73.

find an inequality which contains the previous inequalities as special
cases:

Theorem
Let f : I→ R be an operator convex functions defined on an interval I,
and let A and B be a unital C∗-algebras. If (Φt )t∈T is a unital field of
positive linear mappings Φt : A → B defined on a locally compact
Hausdorff space T with a bounded Radon measure µ, then

f
(∫

T
Φt (xt )dµ(t)

)
≤
∫

T
Φt (f (xt ))dµ(t) (6)

holds for every bounded continuous fields (xt )t∈T of self-adjoint
elements in A with spectra contained in I.

<<
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Introduction Overview of the Kantorovich inequality

1.2. Overview of the Kantorovich inequality

The story of the Kantorovich inequality is a very interesting example
how a mathematician makes mathematics. It provides a deep insight
into how a principle raised from the Kantorovich inequality develops in
the field of operator inequality on a Hilbert space, perhaps more
importantly, it has given new way of thinking and methods in operator
theory, noncommutative differential geometry, quantum information
theory and noncommutative probability theory.

Classical Kantorovich inequality

L.V.Kantorovich, Functional analysis and applied mathematics (in
Russian), Uspechi Mat. Nauk., 3 (1948), 89–185.
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Introduction Overview of the Kantorovich inequality

The inequality

∞

∑
k=1

γku2
k

∞

∑
k=1

γ
−1
k u2

k ≤
1
4

[√
M
m

+

√
m
M

]2(
∞

∑
k=1

u2
k

)2

(7)

holds, where m and M being the bounds of the numbers γk
0 < m ≤ γk ≤M.

In the same paper he gave an operator version of (7):

If an operator A on H is positive such that m1≤ A≤M1 for some
scalars 0 < m < M, then

(x ,x)2

(Ax ,x)(A−1x ,x)
≥ 4[√

M
m +

√
m
M

]2 (8)

holds for every nonzero vector x in H.
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Introduction Overview of the Kantorovich inequality

Kantorovich says in the footnote of his paper that (7) is a special case
of Pólya-Szegö inequality given in the book about problems and
theorems from calculus; Aufgaben 92 in:

G.Pólya and G.Szegö , ”Aufgaben und Lehrsötze aus der
Analysis”, Springer-Verlag, 1, Berlin, 1925.

If the real number ak and bk (k = 1, . . . ,n) fulfill the conditions
0 < m1 ≤ ak ≤M1 and 0 < m2 ≤ bk ≤M2 then

1≤ ∑
n
k=1 a2

k ∑
n
k=1 b2

k

[∑n
k=1 akbk ]

2 ≤ (M1M2 + m1m2)2

4m1m2M1M2
. (9)

We remark that the Kantorovich constant has the form

1
4

(√
M
m

+

√
m
M

)2

=
(M + m)2

4Mm
.
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Introduction Overview of the Kantorovich inequality

In the first paper which is devoted to Kantorovich inequality

W.Greub and W.Rheinboldt, On a generalization of an inequality of
L.V. Kantorovich, Proc. Amer. Math. Soc., 10 (1959), 407–415.

it is written: “Examining the relation between the two inequalities more
closely we found that this remark is well justified and can be made
even more specific in that the inequality of Pólya - Szegö in the form
(9) is special case of the Kantorovich inequality (7).”
They proved that the generalized Pólya-Szegö inequality:

(Ax ,Ax)(Bx ,Bx)≤ (M1M2 + m1m2)2

4m1m2M1M2
(Ax ,Bx)2 holds for all x ∈ H,

where A and B are commuting self-adjoint operators on a Hilbert
space H such that 0 < m11≤ A≤M11 and 0 < m21≤ B ≤M21
is equivalent to the Kantorovich inequality:

(x ,x)2 ≤ (Ax ,x)(A−1x ,x)≤ (M + m)2

4Mm
(x ,x)2 holds for all x ∈ H,

where A is a self-adjoint operator on H such that 0 < m1≤ A≤M1.
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Introduction Overview of the Kantorovich inequality

After the paper due to Greub and Rheinboldt was published,
mathematicians concentrated their energies on the generalization of
the Kantorovich inequality and the way to an even simpler proof. We
will cite only some of them.

In 1960, one year after, in

W.G.Strang, On the Kantorovich inequality, Proc. Amer. Math.
Soc., 11 (1960), p. 468.

proved a generalization:

If T is an arbitrary invertible operator on H, and ‖T‖= M,‖T−1‖= m,
then

|(Tx ,y)(x ,T−1y)| ≤ (M + m)2

4Mm
(x ,x)(y ,y) for all x ,y ∈ H.

Furthermore, the bound is best possible.
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Jadranka Mićić Hot () Jensen’s inequality and its converses MIA2010 16 / 88



Introduction Overview of the Kantorovich inequality

A.H. Schopf, On the Kantorovich inequality, Numerische
Mathematik, 2 (1960), 344-346:

Let Γ be any nonzero complex number, let R = |Γ|, and let 0≤ r ≤ R.
Let A be an operator on H such that |A−Γ[A]|2 ≤ r2[A], where [A] is
the range projection of A. Let u ∈ B(K ,H) be an operator such that
u∗[A]u is a projection. Then

(R2− r2)u∗A∗Au ≤ R2(u∗A∗u)(u∗Au).

M.Nakamura, A remark on a paper of Greub and Rheiboldt, Proc.
Japon. Acad., 36 (1960), 198–199.:

For 0 < m < M, the following inequality holds true;∫ M

m
tdµ(t) ·

∫ M

m

1
t

dµ(t)≤ (M + m)2

4Mm

for any positive Stieltjes measure µ on [m,M] with ‖µ‖= 1.
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Introduction Overview of the Kantorovich inequality

B.C.Rennie, An inequality which includes that of Kantorovich,
Amer. Math. Monthly, 70 (1963), 982.

Rennie improved a function version of the Kantorovich inequality due
to Nakamura:
Let f be a measurable function on the probability space such that
0 < m ≤ f (x)≤M. Then∫ 1

f (x)
dx
∫

f (x)dx ≤ (M + m)2

4mM
.

B.Mond, A matrix version of Rennie’s generalization of
Kantorovich’s inequality, Proc. Amer. Math. Soc., 16 (1965), 1131.

Mond considered a matrix type of the Kantorovich inequality:
Let A be a positive definite Hermitian matrix with eigenvalues
λ1 ≥ λ2 ≥ ·· · ≥ λn > 0. Then

(A−1x ,x)(Ax ,x)≤ (λ1 + λn)2

4λ1λn
.
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Introduction Overview of the Kantorovich inequality

Ky Fan, Some matrix inequalities, Abh. Math. Sem. Univ.
Hamburg, 29 (1966), 185–196.

improved a generalization of the Kantorovich inequality for f (t) = tp

with p ∈ Z:

Let A be a positive definite Hermitian matrix of order n with all its
eigenvalues contained in the close interval [m,M], where 0 < m < M.
Let x1, . . . ,xk be an finite number of vectors in the unitary n-space such
that ∑

k
j=1 ‖xj‖2 = 1. Then for every integer p 6= 0,1 (not necessarily

positive), we have

∑
k
j=1
(
Apxj ,xj

)[
∑

k
j=1
(
Axj ,xj

)]p ≤
(p−1)p−1

pp
(Mp−mp)p

(M−m)(mMp−Mmp)p−1 .
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Introduction Mond-Pečarić method

1.3. Mond-Pečarić method

Afterwards, in the flow of a generalization by Ky Fan, and a reverse of
the arithmetic-geometric mean inequality by Specht, Mond and Pečarić
give definitely the meaning of ”Kantorovich inequality”. In 1990s, Mond
and Pečarić formulate various reverses of Jensen’s type inequalities.
Here, it may be said that the positioning of Kantorovich inequality
becomes clear for the first time in operator theory. Furthermore, they
find the viewpoint of the reverse for means behind Kantorovich
inequality, that is to say, Kantorovich inequality is the reverse of the
arithmetic-harmonic mean inequality.
In a long research series, Mond and Pečarić established the method
which gives the reverse to Jensen inequality associated with convex
functions. The principle yields a rich harvest in a field of operator
inequalities. We call it the Mond-Pečarić method for convex functions.
One of the most important attributes of Mond-Pečarić method is to
offer a totally new viewpoint in the field of operator inequalities.
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give definitely the meaning of ”Kantorovich inequality”. In 1990s, Mond
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Here, we shall present the principle of Mond-Pečarić method:

Theorem
Let A be a self-adjoint operator on a Hilbert space H such that
m1≤ A≤M1 for some scalars m ≤M. If f is a convex function on
[m,M] such that f > 0 on [m,M], then

(f (A)x ,x)≤ K (m,M, f )f ((Ax ,x))

for every unit vector x ∈ H, where

K (m,M, f ) = max
{

1
f (t)

(
f (M)− f (m)

M−m
(t−m) + f (m)

)
: m ≤ t ≤M

}
.

Proof
Since f (t) is convex on [m,M], we have

f (t)≤ f (M)− f (m)

M−m
(t−m) + f (m) for all t ∈ [m,M].
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Using the operator calculus, it follows that

f (A)≤ f (M)− f (m)

M−m
(A−m) + f (m)1

and hence

(f (A)x ,x)≤ f (M)− f (m)

M−m
((Ax ,x)−m) + f (m)

for every unit vector x ∈ H. Divide both sides by f ((Ax ,x)) (> 0), and
we get

(f (A)x ,x)

f ((Ax ,x))
≤

f (M)−f (m)
M−m ((Ax ,x)−m) + f (m)

f ((Ax ,x))

≤max
{

1
f (t)

(
f (M)− f (m)

M−m
(t−m) + f (m)

)
: m ≤ t ≤M

}
,

since m ≤ (Ax ,x)≤M. 2
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Moreover, under a general situation, we state explicitly the heart of
Mond-Pečarić method:

Theorem
Let f : [m,M] 7→ R be a convex continuous function, I an interval such
that I ⊃ f ([m,M]) and A a self-adjoint operator such that m1≤ A≤M1
for some scalars m < M. If F (u,v) is a real function defined on I× I, F
is bounded and non-decreasing in u, then

F [(f (A)x ,x), f ((Ax ,x))]≤ max
t∈[m,M]

F
[

f (M)− f (m)

M−m
(t−m) + f (m), f (t)

]
= max

θ∈[0,1]
F [θf (m) + (1−θ)f (M), f (θm + (1−θ)M)]

for every unit vector x ∈ H.

Next, we use the standard notation for a real valued continuous
function f : [m,M]→ R

αf := (f (M)− f (m))/(M−m) and βf := (Mf (m)−mf (M))/(M−m).
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Using the Mond-Pečarić method, F.Hansen, J.Pečarić and I.Perić
generalized the previous inequality similar to what they made with
Jensen’s inequality. Converses of Jensen’s ineq.

Theorem
Let (xt )t∈T be a bounded continuous field of self-adjoint elements in a
unital C∗-algebra A with spectra in [m,M] defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure µ, and
let (Φt )t∈T be a unital field of positive linear maps Φt : A → B from A to
another unital C∗−algebra B. Let f ,g : [m,M]→ R and F : U×V → R
be functions such that f ([m,M])⊂ U, g ([m,M])⊂ V and F is bounded.
If F is operator monotone in the first variable and f is convex in the
interval [m,M], then

F
[∫

T
Φt (f (xt ))dµ(t),g

(∫
T

Φt (xt )dµ(t)
)]
≤ sup

m≤z≤M
F [αf z + βf ,g(z)]1.

In the dual case (when f is operator concave) the opposite inequality
holds with sup instead of inf.
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Books about the Mond-Pečarić method

T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo
Mond-Pečarić Method in Operator Inequalities
Monographs in Inequalities 1, Element, Zagreb, 2005.

M. Fujii, J. Mićić Hot, J. Pečarić and Y. Seo
Recent development of Mond-Pečarić Method in Operator
Inequalities
manuscript, 2010.
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Introduction Goal of the lecture

1.4. Goal of the lecture

Let A and B be unital C∗-algebras on a Hilbert spaces H and K .
The goal of this lecture is to present a generalization of Jensen’s
operator inequality and its converses for fields of positive linear
mappings Φt : A → B such that

∫
T φt (1)dµ(t) = k1 for some positive

scalar k .

At first we give general formulations of Jensen’s operator inequality
and it’s converses. As a consequence, difference and ratio type of
converses of Jensen’s operator inequality are obtained.

In addition, we discuss the order among quasi-arithmetic means in a
general setting. As an application we get some comparison theorems
for power functions and power means.
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Main results Jensen’s inequality

2.1. Generalization of Jensen’s inequality

Theorem
Let A and B be unital C∗-algebras on H and K respectively. Let (xt )t∈T
be a bounded continuous field of self-adjoint elements in A with
spectra in an interval I defined on a locally compact Hausdorff space T
equipped with a bounded Radon measure µ. Furthermore, let (φt )t∈T
be a field of positive linear maps φt : A → B, such that the field
t 7→ φt (1) is integrable with

∫
T φt (1)dµ(t) = k1 for some positive scalar

k. Then the inequality

f
(

1
k

∫
T

φt (xt )dµ(t)
)
≤ 1

k

∫
T

φt (f (xt ))dµ(t) (10)

holds for each operator convex function f : I→ R defined on I. In the
dual case (when f is operator concave) the opposite inequality holds in
(10).

<<
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Proof

The function t 7→ 1
k Φt (xt ) ∈ B is continuous and bounded, hence

integrable with respect to the bounded Radon measure µ.
Furthermore, the integral is an element in the multiplier algebra M(B)
acting on K and we may organize the set CB(T ,A) of bounded
continuous functions on T with values in A as a normed involutive
algebra by applying the point-wise operations with

‖(yt )t∈T‖= sup
t∈T
‖yt‖ (yt )t∈T ∈ CB(T ,A),

The norm is already complete and satisfy the C∗-identity. It follows that
f ((xt )t∈T ) = (f (xt ))t∈T . Then the mapping π : CB(T ,A)→M(B)⊆ B(K )
defined by

π((xt )t∈T ) =
∫

T

1
k

Φt (xt )dµ(t),

is a unital positive linear map. Using a Schwarz inequality we obtain
the statement of the theorem. 2
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We remark that if Φ(1) = k1, for some positive scalar k and f is an
operator convex function, then f (Φ(A))≤ Φ(f (A)) is not true in general.

Example

A map Φ : M2 (M2(C))→M2 (M2(C)) defined by

Φ

(
A 0
0 B

)
=

(
A + B 0

0 A + B

)
for A, B ∈M2(C)

is a positive linear map and Φ(I) = 2I. We put f (t) = t2 and

A =

(
1 1
1 1

)
and B =

(
2 0
0 1

)
. Then

f
(

Φ

(
A 0
0 B

))
−Φ

(
f
(

A 0
0 B

))
=


4 3 0 0
3 2 0 0
0 0 4 3
0 0 3 2

 6≥ 0.
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2.2. Generalization of converses of Jensen’s inequality

We obtain a result of the Li-Mathias type:

Theorem
Let (xt )t∈T and (φt )t∈T be as in § 2.1., f : [m,M]→ R, g : [km,kM]→ R
and F : U×V → R be functions such that (kf )([m,M])⊂ U,
g ([km,kM])⊂ V and F is bounded. If F is operator monotone in the
first variable, then

inf
km≤z≤kM

F
[
k ·h1

(
1
k

z
)

,g(z)

]
1

≤ F
[∫

T
φt (f (xt ))dµ(t),g

(∫
T

φt (xt )dµ(t)
)]

≤ sup
km≤z≤kM

F
[
k ·h2

(
1
k

z
)

,g(z)

]
1

(11)

holds for every operator convex function h1 on [m,M] such that h1 ≤ f
and for every operator concave function h2 on [m,M] such that h2 ≥ f .
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Proof
We only prove RHS. Let h2 be operator concave function and ≤ h2 on
[m,M]. Thus, f (xt )≤ h2(xt ) for every t ∈ T . Then∫

T
Φt (f (xt ))dµ(t)≤

∫
T

Φt (h2(xt ))dµ(t).

Furthermore, the generalized Jensen’s inequality gives∫
T

Φt (f (xt ))dµ(t)≤ k ·h2

(
1
k

∫
T

Φt (xt )dµ(t)
)

. Using operator

monotonicity of F (·,v), we obtain

F
[∫

T
Φt (f (xt ))dµ(t),g

(∫
T

Φt (xt )dµ(t)
)]

≤ F
[
k ·h2

(
1
k

∫
T

Φt (xt )dµ(t)
)

,g
(∫

T
Φt (xt )dµ(t)

)]
≤ sup

km≤z≤kM
F
[
k ·h2

(
1
k

z
)

,g(z)

]
1. 2
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Applying RHS of (11) for a convex function f (or LHS of (11) for a
concave function f ) we obtain the following theorem:

Theorem
Let (xt )t∈T and (Φt )t∈T be as in § 2.1., f : [m,M]→ R, g : [km,kM]→ R
and F : U×V → R be functions such that (kf )([m,M])⊂ U,
g ([km,kM])⊂ V and F is bounded. If F is operator monotone in the
first variable and f is convex in the interval [m,M], then

F
[∫

T
Φt (f (xt ))dµ(t),g

(∫
T

Φt (xt )dµ(t)
)]
≤ sup

km≤z≤kM
F [αf z + βf k ,g(z)]1.

(12)
In the dual case (when f is concave) the opposite inequality holds in
(12) with inf instead of sup.

Proof
If f is convex the inequality f (z)≤ αf z + βf holds for every z ∈ [m,M]
and we put h2(z) = αf z + βf in RHS of (11). 2
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Applying this theorem for the function F (u,v) = u−λv , we obtain:

Corollary
Let (xt )t∈T and (Φt )t∈T be as in § 2.1. and f be convex.
(i) If λg is convex differentiable, then∫

T
Φt (f (xt ))dµ(t)≤ λ g

(∫
T

Φt (xt )dµ(t)
)

+ C1, (13)

where C = αf z0 + βf k −λg(z0), z0 = g′−1(αf /λ) for
λg′(km)≤ αf ≤ λg′(kM); z0 = km for λg′(km)≥ αf , and z0 = kM for
λg′(kM)≤ αf .
(ii) If λg is concave differentiable, then the constant C in (13) can be
written more precisely as

C =

{
αf kM + βf k −λg(kM) for αf −λαg,k ≥ 0,
αf km + βf k −λg(km) for αf −λαg,k ≤ 0,

where αg,k = g(kM)−g(km)
kM−km . << 1 << 2 << 3
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Setting Φt (At ) = 〈Atξt ,ξt〉 for ξt ∈ H and t ∈ T in this corollary, then:

Corollary
Let (At )t∈T be a continuous field of positive operators on a Hilbert
space H defined on a locally compact Hausdorff space T equipped
with a bounded Radon measure µ. We assume the spectra are in
[m,M] for some 0 < m < M. Let furthermore (ξt )t∈T be a continuous
field of vectors in H such that

∫
T ‖ξt‖2dµ(t) = k for some scalar k > 0.

Then for any real λ,q,p∫
T
〈Ap

t ξt ,ξt〉dµ(t)−λ

(∫
T
〈Atξt ,ξt〉dµ(t)

)q

≤ C, (14)

where the constant C ≡ C(λ,m,M,p,q,k) is

C =


(q−1)λ

(
αp
λq

) q
q−1

+ βpk for λqmq−1 ≤ αp
kq−1 ≤ λqMq−1,

kMp−λ(kM)q for αp
kq−1 ≥ λqMq−1,

kmp−λ(km)q for αp
kq−1 ≤ λqmq−1,

(15)

Jadranka Mićić Hot () Jensen’s inequality and its converses MIA2010 34 / 88



Main results Converses of Jensen’s inequality

in the case λq(q−1) > 0 and p ∈ R\ (0,1)
or

C =

{
kMp−λ(kM)q for αp−λkq−1αq ≥ 0,

kmp−λ(km)q for αp−λkq−1αq ≤ 0,
(16)

in the case λq(q−1) < 0 and p ∈ R\ (0,1).

In the dual case: λq(q−1) < 0 and p ∈ (0,1) the opposite inequality
holds in (14) with the opposite condition while determining the constant
C in (15). But in the dual case: λq(q−1) > 0 and p ∈ (0,1) the
opposite inequality holds in (14) with the opposite condition while
determining the constant C in (16).
Constants αp and βp in terms above are the constants αf and βf
associated with the function f (z) = zp, i.e.

αp =
Mp−mp

M−m
, βp =

M mp−mMp

M−m
.
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Setting Φt (At ) = 〈exp(rAt )ξt ,ξt〉 for ξt ∈ H and t ∈ T we have:

Corollary
Let (At )t∈T and (ξt )t∈T be as in previous corollary. Then for any real
number r 6= 0 we have∫

T
〈exp(rAt )ξt ,ξt〉dµ(t)−exp

(
r
∫

T
〈Atξt ,ξt〉dµ(t)

)
≤ C1, (17)

∫
T
〈exp(rAt )ξt ,ξt〉dµ(t)≤ C2 exp

(
r
∫

T
〈Atξt ,ξt〉dµ(t)

)
, (18)

where constants C1 ≡ C1(r ,m,M,k) and C2 ≡ C2(r ,m,M,k) are

C1 =


α

r ln
(

α

re

)
+ kβ for rerkm ≤ α≤ rerkM ,

kMα + kβ−erkM for rerkM ≤ α,

kmα + kβ−erkm for rerkm ≥ α
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C2 =


α

re ekrβ/α for krerm ≤ α≤ krerM ,

ke(1−k)rm for krerm ≥ α,

ke(1−k)rM for krerM ≤ α.

Constants α and β in terms above are the constants αf and βf
associated with the function f (z) = erz , i.e.

α =
erM −erm

M−m
, βp =

M erm−merM

M−m
.

Applying the inequality f (x)≤ M−x
M−m f (m) + x−m

M−m f (M) (for a convex
function f on [m,M]) to positive operators (At )t∈T and using
0 < At ≤ ‖At‖1, we obtain the following theorem, which is a
generalization of results from

R. Drnovšek, T. Kosem, Inequalities between f (‖A‖) and ‖f (|A|)‖,
Math. Inequal. Appl. 8 (2005) 1–6.
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Theorem
Let f be a convex function on [0,∞) and let ‖ · ‖ be a normalized
unitarily invariant norm on B(H) for some finite dimensional Hilbert
space H. Let (Φt )t∈T be a field of positive linear maps
Φt : B(H)→ B(K ), where K is a Hilbert space, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure
µ. If the field t 7→ Φt (1) is integrable with

∫
T Φt (1)dµ(t) = k1 for some

positive scalar k, then for every continuous field of positive operators
(At )t∈T we have∫

T
Φt (f (At ))dµ(t)≤ kf (0)1 +

∫
T

f (‖At‖)− f (0)

‖At‖
φt (At )dµ(t).

Especially, for f (0)≤ 0, the inequality∫
T

Φt (f (At ))dµ(t)≤
∫

T

f (‖At‖)
‖At‖

φt (At )dµ(t).

is valid.
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Main results Converses of Jensen’s inequality

In the present context and by using subdifferentials we can give an
application of the first theorem in this section.

Theorem
Let (xt )t∈T , (Φt )t∈T be as in § 2.1., f : [m,M]→ R, g : [km,kM]→ R and
F : U×V → R be functions such that (kf )([m,M])⊂ U,
g ([km,kM])⊂ V, F is bounded and f (y) + l(y)(t−y) ∈ U for every
y , t ∈ [m,M] where l is the subdifferential of f . If F is operator
monotone in the first variable and f is convex on [m,M], then

F
[∫

T
φt (f (xt )) dµ(t),g

(∫
T

φt (xt )dµ(t)
)]

≥ inf
km≤z≤kM

F [f (y)k + l(y)(z−yk),g(z)]1
(19)

holds for every y ∈ [m,M]. In the dual case (when f is concave) the
opposite inequality holds in (19) with sup instead of inf.
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Main results Converses of Jensen’s inequality

Though f (z) = lnz is operator concave, the Schwarz inequality
φ(f (x))≤ f (φ(x)) does not hold in the case of non-unital φ. Therefore
we have the following application of results above.

Corollary
Let (xt )t∈T , (Φt )t∈T be as in § 2.1. and 0 < m < M. Then

C11≤
∫

T Φt (ln(xt )) dµ(t)− ln(
∫

T Φt (xt )dµ(t))≤ C21,

C1 =


kβ + ln(e/L(m,M)) for km ≤ L(m,M)≤ kM,

ln
(

Mk−1/k
)

for kM ≤ L(m,M),

ln
(

mk−1/k
)

for km ≥ L(m,M),

C2 =


ln
(

L(m,M)k kk−1

ek m

)
+ m

L(m,M)
for m ≤ kL(m,M)≤M

ln
(

Mk−1/k
)

for kL(m,M)≥M,

ln
(

mk−1/k
)

for kL(m,M)≤m,

where L(m,M) is the logarithmic mean, β = M lnm−m lnM
M−m .
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Main results Converses of Jensen’s inequality

By using subdifferentials, we also give an application of the first
theorem in this section.

Theorem
Let (xt )t∈T , (Φt )t∈T be as in § 2.1. and f : [m,M]→ R is a convex
function then

f (y)k1 + l(y)

(∫
T

Φt (xt )dµ(t)−yk1
)
≤
∫

T
Φt (f (xt ))dµ(t)

≤ f (x)k1−x
∫

T
Φt (l(xt ))dµ(t) +

∫
T

Φt (l(xt )xt )dµ(t) (20)

for every x ,y ∈ [m,M], where l is the subdifferential of f . In the dual
case (f is concave) the opposite inequality holds.

<<

Proof Since f is convex we have f (x)≥ f (y) + l(y)(x−y) for every
x ,y ∈ [m,M]. Then f (xt )≥ f (y)1 + l(y)(xt −y1) for t ∈ T . Applying the
positive linear maps Φt and integrating, LHS of (20) follows. The RHS of (20)
follows similarly by using the variable y . 2
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Quasi-arithmetic mean

3. Quasi-arithmetic mean

A generalized quasi-arithmetic operator mean:

Mϕ(x ,Φ) := ϕ
−1
(∫

T

1
k

Φt (ϕ(xt ))dµ(t)
)

, (21)

under these conditions: (xt )t∈T is a bounded continuous field of
positive operators in a C∗-algebra B(H) with spectra in
[m,M] for some scalars 0 < m < M, (Φt )t∈T is a field of
positive linear maps Φt : B(H)→ B(K ), such that the field
t 7→ Φt (1) is integrable with

∫
T Φt (1)dµ(t) = k1 for some

positive scalar k and ϕ ∈ C [m,M] is a strictly monotone
function.

This mean is well-defined, since m1≤ xt ≤M1 for every t ∈ T , then
ϕ(m) 1≤

∫
T

1
k Φt (ϕ(xt ))dµ(t)≤ ϕ(M) 1 if ϕ is increasing,

ϕ(M) 1≤
∫

T
1
k Φt (ϕ(xt ))dµ(t)≤ ϕ(m) 1 if ϕ is decreasing.

Jadranka Mićić Hot () Jensen’s inequality and its converses MIA2010 42 / 88



Quasi-arithmetic mean

3. Quasi-arithmetic mean

A generalized quasi-arithmetic operator mean:

Mϕ(x ,Φ) := ϕ
−1
(∫

T

1
k

Φt (ϕ(xt ))dµ(t)
)

, (21)

under these conditions: (xt )t∈T is a bounded continuous field of
positive operators in a C∗-algebra B(H) with spectra in
[m,M] for some scalars 0 < m < M, (Φt )t∈T is a field of
positive linear maps Φt : B(H)→ B(K ), such that the field
t 7→ Φt (1) is integrable with

∫
T Φt (1)dµ(t) = k1 for some

positive scalar k and ϕ ∈ C [m,M] is a strictly monotone
function.

This mean is well-defined, since m1≤ xt ≤M1 for every t ∈ T , then
ϕ(m) 1≤

∫
T

1
k Φt (ϕ(xt ))dµ(t)≤ ϕ(M) 1 if ϕ is increasing,

ϕ(M) 1≤
∫

T
1
k Φt (ϕ(xt ))dµ(t)≤ ϕ(m) 1 if ϕ is decreasing.
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Quasi-arithmetic mean Monotonicity

3.1. Monotonicity

First, we study the monotonicity of quasi-arithmetic means.

Theorem
Let (xt )t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
(21). Let ψ,ϕ ∈ C [m,M] be strictly monotone functions.
If one of the following conditions is satisfied:

(i) ψ◦ϕ−1 is operator convex and ψ−1 is operator monotone,
(i’) ψ◦ϕ−1 is operator concave and −ψ−1 is operator monotone,
(ii) ϕ−1 is operator convex and ψ−1 is operator concave,

then
Mϕ(x ,Φ)≤Mψ(x ,Φ).
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Quasi-arithmetic mean Monotonicity

If one of the following conditions is satisfied:

(iii) ψ◦ϕ−1 is operator concave and ψ−1 is operator monotone,
(iii’) ψ◦ϕ−1 is operator convex and −ψ−1 is operator monotone,
(iv) ϕ−1 is operator concave and ψ−1 is operator convex,

then
ψ
−1(Φ(ψ(A)))≤ ϕ

−1(Φ(ϕ(A))).

Proof
We will prove only the case (i) and (ii).
(i) If we put f = ψ◦ϕ−1 in the generalized Jensen’s inequality

Generalized Jensen’s ineq. and replace xt with ϕ(xt ), then we obtain

ψ◦ϕ
−1
(∫

T

1
k

Φt (ϕ(xt ))dµ(t)
)
≤

∫
T

1
k

Φt

(
ψ◦ϕ

−1(ϕ(xt ))
)

dµ(t)

=
∫

T

1
k

Φt (ψ(xt ))dµ(t).
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Quasi-arithmetic mean Monotonicity

(continued)

Since ψ−1 is operator monotone, it follows

ϕ
−1
(∫

T

1
k

Φt (ϕ(xt ))dµ(t)
)
≤ ψ

−1
(∫

T

1
k

Φt (ψ(xt ))dµ(t)
)

.

(ii) Since ϕ−1 is operator convex, it follows that

ϕ
−1(Φ(ϕ(A)))≤ Φ(ϕ

−1 ◦ϕ(A)) = Φ(A).

Similarly, since ψ−1 is operator concave, we have

Φ(A)≤ ψ
−1(Φ(ψ(A))).

Using two inequalities above, we have the means order in this case. 2
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Quasi-arithmetic mean Monotonicity

Theorem
Let (xt )t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
and ψ,ϕ ∈ C [m,M] be strictly monotone functions. Then

Mϕ(x ,Φ) = Mψ(x ,Φ) for all (xt )t∈T , (Φt )t∈T

if and only if

ϕ = Aψ + B for some real numbers A 6= 0 and B.

There are many references about operator monotone or operator
convex functions, see e.g.

R.Bhatia, Matrix Anaysis, Springer, New York, 1997.

M. Uchiyama, A new majorization between functions, polynomials,
and operator inequalities, J. Funct. Anal. 231 (2006), 231-244.

Using this we have the following two corollaries.

Jadranka Mićić Hot () Jensen’s inequality and its converses MIA2010 46 / 88



Quasi-arithmetic mean Monotonicity

Theorem
Let (xt )t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
and ψ,ϕ ∈ C [m,M] be strictly monotone functions. Then

Mϕ(x ,Φ) = Mψ(x ,Φ) for all (xt )t∈T , (Φt )t∈T

if and only if

ϕ = Aψ + B for some real numbers A 6= 0 and B.

There are many references about operator monotone or operator
convex functions, see e.g.

R.Bhatia, Matrix Anaysis, Springer, New York, 1997.

M. Uchiyama, A new majorization between functions, polynomials,
and operator inequalities, J. Funct. Anal. 231 (2006), 231-244.

Using this we have the following two corollaries.
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Quasi-arithmetic mean Monotonicity

Corollary
Let (xt )t∈T be a bounded continuous field of positive operators in a
C∗-algebra B(H) with spectra in [m,M]⊂ (0,∞) and (Φt )t∈T is a field of
positive linear maps Φt : B(H)→ B(K ), such that

∫
T Φt (1)dµ(t) = k1

for some positive scalar k. Let ϕ and ψ be continuous strictly
monotone functions from [0,∞) into itself.
If one of the following conditions is satisfied:

(i) ψ◦ϕ−1 and ψ−1 are operator monotone,
(ii) ϕ◦ψ−1 is operator convex, ϕ◦ψ−1(0) = 0 and ψ−1 is operator

monotone,
then Mϕ(x ,Φ)≥Mψ(x ,Φ) holds.

Proof
In the case (i) we use the assertion that a real valued continuous
function f on an interval I = [α,∞) and bounded below is operator
monotone on I if and only if f is operator concave on I.
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Quasi-arithmetic mean Monotonicity

(continued)
In the case (ii) we use the assertion that if f is a real valued function
from [0,∞) into itself such that f (0) = 0 and f is operator convex, then
f−1 is operator monotone. It follows that ψ◦ϕ−1 is operator concave. 2

Corollary
Let (xt )t∈T and (Φt )t∈T be as in previous corollary. Let ϕ(u) = αu + β,
α 6= 0, and ψ be an strictly monotone function from [0,∞) into itself.
If one of the following conditions is satisfied:

(i) ψ is operator convex and ψ−1 is operator concave,
(ii) ψ is operator convex and ψ(0) = 0,
(iii) ψ−1 is operator convex and ψ is operator concave,
(iv) ψ−1 is operator convex and ψ−1(0) = 0,
then Mϕ(x ,Φ) = M1(x ,Φ)≤Mψ(x ,Φ) holds.
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Quasi-arithmetic mean Difference and ratio type inequalities

3.2. Difference and ratio type inequalities

Next, we study difference and ratio type inequalities among
quasi-arithmetic means. We investigate the estimates of these
inequalities, i.e. we will determine real constants α and β such
that

Mψ(x ,Φ)−Mϕ(x ,Φ)≤ β 1 and Mψ(x ,Φ)≤ αMϕ(x ,Φ)

holds. With that in mind, we shall prove the following general
result.

Theorem
Let (xt )t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean.
Let ψ,ϕ ∈ C [m,M] be strictly monotone functions and
F : [m,M]× [m,M]→ R be a bounded and operator monotone function
in its first variable.
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Quasi-arithmetic mean Difference and ratio type inequalities

(continued)
If one of the following conditions is satisfied:

(i) ψ◦ϕ−1 is convex and ψ−1 is operator monotone,
(i’) ψ◦ϕ−1 is concave and −ψ−1 is operator monotone,

then

F
[
Mψ(x ,Φ),Mϕ(x ,Φ)

]
(22)

≤ sup
0≤θ≤1

F
[
ψ
−1
(

θψ(m) + (1−θ)ψ(M),ϕ−1 (θϕ(m) + (1−θ)ϕ(M))
)]

1.

If one of the following conditions is satisfied:
(ii) ψ◦ϕ−1 is concave and ψ−1 is operator monotone,
(ii’) ψ◦ϕ−1 is convex and −ψ−1 is operator monotone,
then the opposite inequality is valid in (22) with inf instead of sup.

<<
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Quasi-arithmetic mean Difference and ratio type inequalities

Proof
We will prove only the case (i). By using the Mond-Pečarić method and
the functional calculus, we obtain that

ψ(xt )≤
ϕM1−ϕ(xt )

ϕM −ϕm
ψ◦ϕ

−1(ϕm) +
ϕ(xt )−ϕm1

ϕM −ϕm
ψ◦ϕ

−1(ϕM)

holds for every t ∈ T , where ϕm := min{ϕ(m),ϕ(M)}, ϕM := max{ϕ(m),ϕ(M)}.
It follows ∫

T

1
k

Φt (ψ(xt ))dµ(t)≤ Bψ(m) + (1−B)ψ(M),

where

B =
ϕ(M)1−

∫
T

1
k Φt (ϕ(xt ))dµ(t)

ϕ(M)−ϕ(m)
, 0≤ B ≤ 1.

We have Mψ(x ,Φ)≤ ψ−1 (Bψ(m) + (1−B)ψ(M)) and
Mϕ(x ,Φ) = ϕ−1 (Bϕ(m) + (1−B)ϕ(M)). Finally, using operator
monotonicity of F (·,v), we obtain (22). 2
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Quasi-arithmetic mean Difference and ratio type inequalities

Corollary
Let (xt )t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean.
Let ψ,ϕ ∈ C [m,M] be strictly monotone functions and
F : [m,M]× [m,M]→ R be a bounded and operator monotone function
in its first variable, such that F (z,z) = C for all z ∈ [m,M].
If one of the following conditions is satisfied:

(i) ψ◦ϕ−1 is operator convex and ψ−1 is operator monotone,
(i’) ψ◦ϕ−1 is operator concave and −ψ−1 is operator monotone,

then
F
[
Mψ(x ,Φ),Mϕ(x ,Φ)

]
≥ C1 (23)

holds.
If one of the following conditions is satisfied:
(ii) ψ◦ϕ−1 is operator concave and ψ−1 is operator monotone,
(ii’) ψ◦ϕ−1 is operator convex and −ψ−1 is operator monotone,
then the reverse inequality is valid in (23). 2
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Quasi-arithmetic mean Difference and ratio type inequalities

Proof
Suppose (i) or (i’). Applying the monotonicity of quasi-arithmetic
means, we have Mϕ(x ,Φ)≤Mψ(x ,Φ). Using assumptions about
function F , it follows
F
[
Mψ(x ,Φ),Mϕ(x ,Φ)

]
≥ F

[
Mϕ(x ,Φ),Mϕ(x ,Φ)

]
= C1. 2

Remark
It is particularly interesting to observe inequalities when the function F
in Theorem F(u,v) has the form F (u,v) = u−v and
F (u,v) = v−1/2uv−1/2 (v > 0).
E.g. if (i) or (i’) of this theorem is satisfied, then

Mψ(x ,Φ)≤Mϕ(x ,Φ)

+ sup
0≤θ≤1

{
ψ
−1 (θψ(m) + (1−θ)ψ(M))−ϕ

−1 (θϕ(m) + (1−θ)ϕ(M))
}

1,
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Quasi-arithmetic mean Difference and ratio type inequalities

(continued)
If in addition ϕ > 0,then

Mψ(x ,Φ)≤ sup
0≤θ≤1

{
ψ−1 (θψ(m) + (1−θ)ψ(M))

ϕ−1 (θϕ(m) + (1−θ)ϕ(M))

}
Mϕ(x ,Φ).

We will investigate the above inequalities, with different assumptions.
For this purpose, we introduce some notations for real valued
continuous functions ψ,ϕ ∈ C [m,M]

aψ,ϕ = ψ(M)−ψ(m)
ϕ(M)−ϕ(m) , bψ,ϕ = Mψ(m)−Mψ(M)

ϕ(M)−ϕ(m) .

Theorem
Let (xt )t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
and ψ,ϕ ∈ C [m,M] be strictly monotone functions. Let ψ◦ϕ−1 be
convex (resp. concave).

(i) If ψ−1 is operator monotone and subadditive (resp. superadditive)
on R+, then
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Let (xt )t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
and ψ,ϕ ∈ C [m,M] be strictly monotone functions. Let ψ◦ϕ−1 be
convex (resp. concave).

(i) If ψ−1 is operator monotone and subadditive (resp. superadditive)
on R+, then
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(continued)
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(continued)

Mψ(x ,Φ)≤Mϕ(x ,Φ) + ψ−1(β)1 (24)
(resp. Mψ(x ,Φ)≥Mϕ(x ,Φ) + ψ−1(β)1 ),

(i’) if −ψ−1 is operator monotone and subadditive (resp.
superadditive) on R+, then the opposite inequality is valid in (24),

(ii) if ψ−1 is operator monotone and superadditive (resp. subadditive)
on R, then

Mψ(x ,Φ)≤Mϕ(x ,Φ)−ϕ−1(−β)1 (25)
(resp. Mψ(x ,Φ)≥Mϕ(x ,Φ)−ϕ−1(−β)1 ),

(ii’) if −ψ−1 is operator monotone and superadditive (resp.
subadditive) on R, then the opposite inequality is valid in (25),
where

β = max
ϕm≤z≤ϕM

{
aψ,ϕz + bψ,ϕ−ψ◦ϕ

−1(z)
} (

resp. β = min
ϕm≤z≤ϕM

{· · ·}
)

.
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Furthermore, if ψ◦ϕ−1 is strictly convex (resp. strictly concave) differentiable,
then the constant β≡ β(m,M,ϕ,ψ) can be written more precisely as
β = aψ,ϕz0 + bψ,ϕ−ψ◦ϕ−1(z0), where z0 is the unique solution of the equation
(ψ◦ϕ−1)′(z) = aψ,ϕ, (ϕm < z0 < ϕM).

Proof
We will prove only the case (i). Putting in Corollary F (u,v) = u−λv λ = 1,
f = g = ψ◦ϕ−1 and replacing Φt by 1

k Φt , we have∫
T

1
k

Φt (ψ(xt ))dµ(t) =
∫

T

1
k

Φt

(
ψ◦ϕ

−1 (ϕ(xt ))
)

dµ(t)

≤ ψ◦ϕ
−1
(∫

T

1
k

Φt (ϕ(xt ))dµ(t)
)

+ β1,

where β as in the theorem statement. Since ψ−1 is operator monotone
and subadditive on R+, then we obtain
Mψ(x ,Φ)≤ψ−1 (ψ◦ϕ−1 (

∫
T Φt (ϕ(xt ))dµ(t)) + β1

)
≤Mϕ(x ,Φ)+ψ−1(β)1.

2
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Theorem
Let (xt )t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
and ψ,ϕ ∈ C [m,M] be strictly monotone functions. Let ψ◦ϕ−1 be
convex and ψ > 0 on [m,M].

(i) If ψ−1 is operator monotone and submultiplicative on R+, then

Mψ(x ,Φ)≤ ψ
−1(α)Mϕ(x ,Φ), (26)

(i’) if −ψ−1 is operator monotone and submultiplicative on R+, then
the opposite inequality is valid in (26),

(ii) if ψ−1 is operator monotone and supermultiplicative on R, then

Mψ(x ,Φ)≤
[
ψ
−1(α

−1)
]−1

Mϕ(x ,Φ), (27)

(ii’) if −ψ−1 is operator monotone and supermultiplicative on R, then
the opposite inequality is valid in (27),

where
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(continued)

α = max
ϕm≤z≤ϕM

{
aψ,ϕz + bψ,ϕ

ψ◦ϕ−1(z)

} (
resp. α = min

ϕm≤z≤ϕM

{
aψ,ϕz + bψ,ϕ

ψ◦ϕ−1(z)

} )
.

Furthermore, if ψ◦ϕ−1 is strictly convex differentiable, then the
constant α≡ α(m,M,ϕ,ψ) can be written more precisely as

α =
aψ,ϕz0 + bψ,ϕ

ψ◦ϕ−1(z0)
,

where z0 is the unique solution of the equation
(ψ◦ϕ−1)′(aψ,ϕz + aψ,ϕ) = aψ,ϕ · ψ◦ϕ−1(z), (ϕm < z0 < ϕM).

Remark
We can obtain order among quasi-arithmetic means using the
function order of positive operator in the same way as we will
demonstrate for power functions in the next section.
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If we put ϕ(t) = t r and ψ(t) = ts in Theorem about monotonicity of
quasi-arithmetic means, then we obtain the order among power
means:

Let (At )t∈T is a bounded continuous field of positive operators in a
C∗-algebra B(H) with spectra in [m,M] for some scalars 0 < m < M,
defined on a locally compact Hausdorff space T equipped with a
bounded Radon measure µ and (Φt )t∈T is a field of positive linear
maps Φt : B(H)→ B(K ), such that

∫
T Φt (1)dµ(t) = 1 for some positive

scalar k . Then(∫
T

Φt
(
Ar

t
)

dµ(t)
)1/r

≤
(∫

T
Φt
(
As

t
)

dµ(t)
)1/s

holds for either r ≤ s, r 6∈ (−1,1), s 6∈ (−1,1) or 1/2≤ r ≤ 1≤ s or
r ≤−1≤ s ≤−1/2.

In the remaining cases we need to use the function order of positive
operator.
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4. Power functions

We consider the order among the following power functions:

Ir (x ,Φ) :=

(∫
T

Φt
(
x r

t
)

dµ(t)
)1/r

if r ∈ R\{0}, (28)

with these conditions: (xt )t∈T is a bounded continuous field of
positive elements in a unital C∗-algebra A with spectra in [m,M] for
some scalars 0 < m < M, defined on a locally compact Hausdorff
space T equipped with a bounded Radon measure µ and (Φt )t∈T is a
field of positive linear maps Φt : A → B from A to another unital
C∗-algebra B, such that the field t 7→ Φt (1) is integrable with∫

T Φt (1)dµ(t) = k1 for some positive scalar k .

J.Mićić, J.Pečarić and Y.Seo, Converses of Jensen’s operator
inequality, Oper. and Matr. (2010), accepted
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4.1. Some previous results for the ratio

We wish to observe the ratio type order among power functions.
In order this to get we need some previous results given in the
following lemmas.

Lemma
Let (xt )t∈T and (Φt )t∈T be as in the definition of the power function
(28).
If 0 < p ≤ 1, then∫

T
Φt
(
xp

t
)

dµ(t)≤ k1−p
(∫

T
Φt (xt )dµ(t)

)p

. (29)

If −1≤ p < 0 or 1≤ p ≤ 2, then the opposite inequality holds in
(29).

Proof
We obtain this lemma by applying generalized Jensen’s inequality. 2
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Jadranka Mićić Hot () Jensen’s inequality and its converses MIA2010 61 / 88



Power functions Some previous results for the ratio

Lemma
Let (xt )t∈T and (Φt )t∈T be as in the definition of the power function.
If 0 < p ≤ 1, then

k1−pK (m,M,p)

(∫
T

Φt (xt )dµ(t)
)p

≤
∫

T
Φt
(
xp

t
)

dµ(t)

≤ k1−p
(∫

T
Φt (xt )dµ(t)

)p

,

if −1≤ p < 0 or 1≤ p ≤ 2, then

k1−p
(∫

T
Φt (xt )dµ(t)

)p

≤
∫

T
Φt
(
xp

t
)

dµ(t)

≤ k1−pK (m,M,p)

(∫
T

Φt (xt )dµ(t)
)p

,
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(continued)
if p <−1 or p > 2, then

k1−pK (m,M,p)−1 (
∫

T Φt (xt )dµ(t))p ≤
∫

T Φt
(
xp

t
)

dµ(t)
≤ k1−pK (m,M,p) (

∫
T Φt (xt )dµ(t))p ,

where K (m,M,p)≡ K (h,p), h = M
m ≥ 1, is the generalized

Kantorovich constant defined by

K (h,p) =
hp−h

(p−1)(h−1)

(
p−1

p
hp−1
hp−h

)p

, for all p ∈ R.

Proof
We obtain this lemma by applying Corollary F (u,v) = u−λv . 2

A generalization of the Kantorovich inequality is firstly initiated by Ky
Fan in 1966.
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We shall need some properties of the generalized Specht ratio.
In 1960 Specht estimated the upper boundary of the arithmetic mean
by the geometric one for positive numbers: For x1, · · · ,xn ∈ [m,M] with
M ≥m > 0,

(h−1)h
1

h−1

e logh
n
√

x1 · · ·xn ≥
x1 + · · ·xn

n
,

where h = M
m (≥ 1). The Specht ratio is defined by

S(h) =
(h−1)h

1
h−1

e lnh
(h 6= 1) and S(1) = 1.

We have the representation of the Specht ratio by the limit of
Kantorovich constant limr→0 K (hr , p

r ) = S(hp).
The generalized Specht ratio is defined for h > 0 and r ,s ∈ R by:

∆(h, r ,s) =


K (hr , s

r )
1
s if rs 6= 0,

∆(h,0,s) = S(hs)
1
s if r = 0,

∆(h, r ,0) = S(hr )−
1
r if s = 0.

<<
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Obviously, the generalized Specht ratio for rs 6= 0:

∆(h, r ,s) =

{
r(hs−hr )

(s− r)(hr −1)

}1/s { s(hr −hs)

(r −s)(hs−1)

}−1/r

, h =
M
m

.

Lemma
Let M > m > 0, r ∈ R and

∆(h, r ,1) =
r(h−hr )

(1− r)(hr −1)

(
hr −h

(r −1)(h−1)

)−1/r

, h =
M
m

.

1 A function ∆(r)≡∆(h, r ,1) is strictly decreasing for all r ∈ R,
2 lim

r→1
∆(h, r ,1) = 1 and lim

r→0
∆(h, r ,1) = S(h),

where S(h) is the Specht ratio,
3 lim

r→∞
∆(h, r ,1) = 1/h and lim

r→−∞
∆(h, r ,1) = h.
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Figure 1. Function ∆(r)≡∆(h, r ,1)

Proof
We use differential calculus. Refer to

J. Mićić and J. Pečarić, Order among power means of positive
operators, II, Sci. Math. Japon. Online (2009), 677–693. 2
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Also, we need the following function order of positive operators:

Theorem

If A,B ∈ B+(H), A≥ B > 0 such that Sp(A)⊆ [n,N] and Sp(B)⊆ [m,M]
for some scalars 0 < n < N and 0 < m < M, then

K (n,N,p) Ap ≥ Bp > 0 for all p > 1,
K (m,M,p) Ap ≥ Bp > 0 for all p > 1,
K (n,N,p) Bp ≥ Ap > 0 for all p <−1,
K (m,M,p) Bp ≥ Ap > 0 for all p <−1.

Refer to <<

J.Mićić, J.Pečarić and Y.Seo, Function order of positive operators
based on the Mond-Pečarić method, Linear Algebra and Appl.,
360 (2003), 15–34.

J.Pečarić and J.Mićić, Some functions reversing the order of
positive operators, Linear Algebra and Appl., 396 (2005), 175–187.
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4.2. Ratio type inequalities with power functions

We give the ratio type order among power functions.
We observe regions (i) – (v)1 as in Figure 2.

Figure 2. Regions in the (r ,s)-plain
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Theorem
Let regions (i) – (v)1 be as in Figure 2.
If (r ,s) in (i), then

k
s−r
rs ∆(h, r ,s)−1 Is(x ,Φ)≤ Ir (x ,Φ)≤ k

s−r
rs Is(x ,Φ),

if (r ,s) in (ii) or (iii), then

k
s−r
rs ∆(h, r ,s)−1 Is(x ,Φ)≤ Ir (x ,Φ)≤ k

s−r
rs ∆(h, r ,s) Is(x ,Φ),

if (r ,s) in (iv), then

k
s−r
rs ∆(h,s,1)−1∆(h, r ,s)−1 Is(x ,Φ)≤ Ir (x ,Φ)

≤ k
s−r
rs min{∆(h, r ,1),∆(h,s,1)∆(h, r ,s)} Is(x ,Φ),

if (r ,s) in (v) or (iv)1 or (v)1, then

k
s−r
rs ∆(h,s,1)−1∆(h, r ,s)−1 Is(x ,Φ)≤ Ir (x ,Φ)≤ k

s−r
rs ∆(h,s,1) Is(x ,Φ).
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Proof
This theorem follows from second lemma by putting p = s/r or p = r/s
and then using the Löwner-Heinz theorem, function order of positive
operators and we choose better bounds by using third lemma. 2

As an application, we can obtain the ratio type order among of the
weighted power means of operators:

Mr (x ,Φ) :=

(∫
T

1
k

Φt
(
x r

t
)

dµ(t)
)1/r

if r ∈ R\{0}

at the same conditions as above.
Since a field ( 1

k Φt )t∈T in this case is unital, this result will be given in
§5.1.
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4.3. Some previous results for the difference

We wish to observe the difference type order among power
functions. We need some previous results.

Lemma
Let (xt )t∈T and (Φt )t∈T be as in the definition of the power function.
If 0 < p ≤ 1, then

αp

∫
T

Φt (xt )dµ(t) + kβp1≤
∫

T
Φt (x

p
t )dµ(t)≤ k1−p

(∫
T

Φt (xt )dµ(t)
)p

,

(30)
if −1≤ p < 0 or 1≤ p ≤ 2, then

k1−p
(∫

T
Φt (xt )dµ(t)

)p

≤
∫

T
Φt (x

p
t )dµ(t)≤ αp

∫
T

Φt (xt )dµ(t) + kβp1,

(31)
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(continued)
if p <−1 or p > 2, then

pyp−1 ∫
T Φt (xt )dµ(t) + k(1−p)yp1≤

∫
T Φt (x

p
t )dµ(t)

≤ αp
∫

T Φt (xt )dµ(t) + kβp1 (32)

for every y ∈ [m,M]. Constants αp and βp are the constants αf and βf
associated with the function f (z) = zp.

Proof
RHS of (30) and LHS of (31) follows from the generalized Jensen’s
inequality. LHS of (30) and RHS of (31) and (32) follow from
Corollary F (u,v) = u−λv for f (z) = zp, g(z) = z and λ = αp. LHS of (32)
follows from Theorem Subdifferentials by putting f (y) = yp and
l(y) = pyp−1.
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Remark

Setting y = (αp/p)1/(p−1) ∈ [m,M] in the last inequality we obtain

αp
∫

T Φt (xt )dµ(t) + k(1−p)(αp /p)p/(p−1) 1≤
∫

T Φt (x
p
t )dµ(t)

≤ αp
∫

T Φt (xt )dµ(t) + kβp1 for p <−1 or p > 2. (33)

Furthermore, setting y = m or y = M gives

pmp−1 ∫
T Φt (xt )dµ(t) + k(1−p)mp1≤

∫
T Φt (x

p
t )dµ(t)

≤ αp
∫

T Φt (xt )dµ(t) + kβp1 (34)

or

pMp−1 ∫
T Φt (xt )dµ(t) + k(1−p)Mp1≤

∫
T Φt (x

p
t )dµ(t)

≤ αp
∫

T Φt (xt )dµ(t) + kβp1. (35)
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(continued)
We remark that the operator in LHS of (34) is positive for p > 2, since

0 < kmp1≤ pmp−1 ∫
T Φt (xt )dµ(t) + k(1−p)mp1

≤ k(pmp−1M + (1−p)mp)1 < kMp1 (36)

and the operator in LHS of (35) is positive for p <−1, since

0 < kMp1≤ pMp−1 ∫
T Φt (xt )dµ(t) + k(1−p)Mp1

≤ k(pMp−1m + (1−p)Mp)1 < kmp1. (37)

(We have the inequality pmp−1M + (1−p)mp < Mp in RHS of (36) and
pMp−1m + (1−p)Mp < mp in RHS of (37) by using Bernoulli’s
inequality.)
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We shall need some properties of a constant C(m,M,p) (this type of a
generalized Kantorovich constant for difference) defined by

C(m,M,p) = (p−1)

(
1
p

Mp−mp

M−m

)p/(p−1)

+
Mmp−mMp

M−m
for all p ∈ R.

If we put f (t) = tp in a difference type reverse of Jensen’s inequality
(obtain by using the Mond-Pečarić method), then we have a difference
type reverse of Hölder-McCarthy inequality:

Let A be a self-adjoint operator such that m1≤ A≤M1 for some
scalars m ≤M. Then

0≤ (Apx ,x)− (Ax ,x)p ≤ C(m,M,p) for all p 6∈ [0,1]

and

C(m,M,p)≤ (Apx ,x)− (Ax ,x)p ≤ 0 for all p ∈ [0,1]

for every unit vector x ∈ H.
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We collect basic properties of C(m,M,p) in Lemma 2.59 in our the first
book.

Lemma
Let M > m > 0, r ∈ R and

C(mr ,M r ,1/r) :=
1− r

r

(
r

M−m
M r −mr

)1/(1−r)

+
M r m−mr M

M r −mr .

1 A function C(r)≡ C(mr ,M r ,1/r) is strictly decreasing for all r ∈ R,
2 lim

r→1
C(mr ,M r ,1/r) = 0 and

lim
r→0

C(mr ,M r ,1/r) = L(m,M) lnS(M/m),

where L(m,M) is the logarithmic mean and S(h) is the Specht
ratio.

3 lim
r→∞

C(mr ,M r ,1/r) = m−M and lim
r→−∞

C(mr ,M r ,1/r) = M−m.
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Jadranka Mićić Hot () Jensen’s inequality and its converses MIA2010 76 / 88



Power functions Some previous results for the difference

Figure 3. Function C(r)≡ C(mr ,M r ,1/r)

Proof
We use differential calculus. Refer to

J. Mićić and J. Pečarić, Order among power means of positive
operators, II, Sci. Math. Japon. Online (2009), 677–693.

2

Jadranka Mićić Hot () Jensen’s inequality and its converses MIA2010 77 / 88



Power functions Some previous results for the difference

Figure 3. Function C(r)≡ C(mr ,M r ,1/r)

Proof
We use differential calculus. Refer to
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Also, we need the following function order of positive operators:

Theorem
Let A,B be positive operators in B(H).
If A≥ B > 0 and the spectrum Sp(B)⊆ [m,M] for some scalars
0 < m < M, then

Ap + C(m,M,p)1≥ Bp for all p ≥ 1.

But, if A≥ B > 0 and the spectrum Sp(A)⊆ [m,M], 0 < m < M, then

Bp + C(m,M,p)1≥ Ap for all p ≤−1,

Refer to Order .
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4.4. Difference type inequalities with power functions

We give the difference type order among power functions.
We observe regions (i)1 – (v)1 as in Figure 4.

Figure 4. Regions in the (r ,s)-plain
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Theorem
Let regions (i)1 – (v)1 be as in Figure 4.
Then

C21≤ Is(x ,Φ)− Ir (x ,Φ)≤ C11, (38)

where constants C1 ≡ C1(m,M,s, r ,k) and C2 ≡ C2(m,M,s, r ,k) are

C1 =

{
∆̃k , for (r ,s) in (i)1 or (ii)1 or (iii)1;
∆̃k + min{Ck (s),Ck (r)} , for (r ,s) in (iv) or (v) or (iv)1 or (v)1;

C2 =



(k1/s−k1/r )m, for (r ,s) in (i)1;
D̃k , for (r ,s) in (ii)1;
Dk , for (r ,s) in (iii)1;

max
{

D̃k −Ck (s),
(

k1/s−k1/r
)

m−Ck (r)
}

, for (r ,s) in (iv);

max
{

Dk −Ck (r),
(

k1/s−k1/r
)

m−Ck (s)
}

, for (r ,s) in (v);

(k1/s−k1/r )m−min{Ck (r),Ck (s)} , for (r ,s) in (iv)1 or (v)1.
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(continued)

A constant ∆̃k ≡ ∆̃k (m,M, r ,s) is

∆̃k = max
θ∈[0,1]

{
k1/s[θMs + (1−θ)ms]1/s−k1/r [θM r + (1−θ)mr ]1/r

}
,

D̃k ≡ D̃k (m,M, r ,s) is

D̃k = min

{(
k

1
s −k

1
r

)
m,k

1
s m
(

s
M r −mr

rmr + 1
) 1

s

−k
1
r M

}
,

Dk ≡ Dk (m,M, r ,s) =−D̃k (M,m,s, r)
and Ck (p)≡ Ck (m,M,p) is

Ck (p) = k1/p ·C(mp,Mp,1/p) for p 6= 0.
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5. Weighted power means

As an application §4, we can obtain the order among of the weighted
power means of operators:

Mr (x ,Φ) :=

(∫
T

Φt
(
x r

t
)

dµ(t)
)1/r

if r ∈ R\{0}

with these conditions: (xt )t∈T is a bounded continuous field of
positive operator in a C∗-algebra B(H) with spectra in [m,M] for some
scalars 0 < m < M, defined on a locally compact Hausdorff space T
equipped with a bounded Radon measure µ and (Φt )t∈T is a field of
positive linear maps Φt : B(H)→ B(K ), such that

∫
T Φt (1)dµ(t) = 1.
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5.1. Ratio type inequalities

Corollary
Let regions (i) – (v)1 be as in Figure 2.
If (r ,s) in (i), then

∆(h, r ,s)−1 Ms(x ,Φ)≤Mr (x ,Φ)≤Ms(x ,Φ),

if (r ,s) in (ii) or (iii), then

∆(h, r ,s)−1 Ms(x ,Φ)≤Mr (x ,Φ)≤∆(h, r ,s) Ms(x ,Φ),

if (r ,s) in (iv), then

∆(h,s,1)−1∆(h, r ,s)−1 Ms(x ,Φ)≤Mr (x ,Φ)

≤min{∆(h, r ,1),∆(h,s,1)∆(h, r ,s)}Ms(x ,Φ),

if (r ,s) in (v) or (iv)1 or (v)1, then

∆(h,s,1)−1∆(h, r ,s)−1 Ms(x ,Φ)≤Mr (x ,Φ)≤∆(h,s,1) Ms(x ,Φ).
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5.2. Difference type inequalities

Corollary
Let regions (i) – (v)1 be as in Figure 2.
If (r ,s) in (i), then

0≤Ms(x ,Φ)−Mr (x ,Φ)≤ ∆̃1,

if (r ,s) in (ii), then(
m
(

s
r

M r

mr + 1− s
r

)1/s

−M

)
1≤Ms(x ,Φ)−Mr (x ,Φ)≤ ∆̃1,

if (r ,s) in (iii), then(
m−M

(
r
s

ms

Ms + 1− r
s

)1/r
)

1≤Ms(x ,Φ)−Mr (x ,Φ)≤ ∆̃1,
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(continued)

if (r ,s) in (iv), then

max{m
(

s
r

M r

mr + r−s
r

)1/s
−M− C(ms,Ms,1/s),−C (mr ,M r ,1/r)}1

Ms(x ,Φ)−Mr (x ,Φ)≤
(

∆̃ + C(ms,Ms,1/s)
)

1,

if (r ,s) in (v) or (iv)1 or (v)1, then

−C(ms,Ms,1/s)1≤Ms(x ,Φ)−Mr (x ,Φ)≤
(

∆̃ + C(ms,Ms,1/s)
)

1,

where ∆̃ = maxθ∈[0,1]

{
[θMs + (1−θ)ms]1/s− [θM r + (1−θ)mr ]1/r}.
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Chaotic order

6. Chaotic order version of these results

We can obtain chaotic order among quasi-arithmetic means in a
general setting and chaotic order among power means.

E.g.

If ψ◦ϕ−1 is operator convex and ψ is operator monotone then

Mϕ(x ,Φ)�Mψ(x ,Φ).

We are working on this.
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For r ∈ R we define the r -th power operator mean as

Mr (x ,Φ) :=

{ (∫
T

1
k Φt (x r

t )dµ(t)
)1/r

, r 6= 0;

exp
(∫

T
1
k Φt (ln(x r

t ))dµ(t)
)1/r

, r = 0.

The limit s− limr→0 Mr (x ,Φ) = M0(x ,Φ) exists.

Theorem
If r ,s ∈ R, r < s, then

∆(h, r ,s)−1 Ms(x ,Φ)�Mr (x ,Φ)�Ms(x ,Φ).

where ∆(h, r ,s) is the generalized Specht ratio. Gen. Specht ratio
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