ORIGINAL ARTICLE

VIM-2 β-lactamase in Pseudomonas aeruginosa isolates from Zagreb, Croatia

ZRINKA BOŠNJAK1, BRANKA BEĐENIĆ1,2, ANNARITA MAZZARIOL3, NEDA JARŽA-DAVILA4, SANDRA ŠUTO4 & SMILJA KALENIĆ1,2

From the 1 Department of Clinical and Molecular Microbiology, Clinical Hospital Centre Zagreb, Zagreb, Croatia, 2 School of Medicine, University of Zagreb, Zagreb, Croatia, 3 Department of Microbiology, Faculty of Medicine and Surgery, University of Verona, Verona, Italy, and 4 Department of Microbiology, Zagreb Institute of Public Health “A. Štampar”, Zagreb, Croatia

Abstract
The aim of this investigation was to characterize metallo-β-lactamases (MBLs) in Pseudomonas aeruginosa isolates from Zagreb, Croatia. One hundred P. aeruginosa isolates with reduced susceptibility to either imipenem or meropenem were tested for the production of MBLs by MBL-Etest. The susceptibility to a wide range of antibiotics was determined by broth microdilution method. The presence of blaMRL genes was detected by polymerase chain reaction (PCR). Hydrolysis of 0.1 mM imipenem by crude enzyme preparations of β-lactamases was monitored by UV spectrophotometer. Outer membrane proteins were prepared and analysed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Six out of 100 isolates were positive for MBLs by Etest. All strains were resistant to gentamicin, ceftazidime and cefotaxime, and all except 1 were resistant to imipenem. Six strains positive for MBLs by Etest were identified as VIM MBL-producers by PCR. Sequencing of blaVIM genes revealed the production of VIM-2 β-lactamase in all 6 strains. This investigation proved the occurrence of VIM-2 β-lactamase among P. aeruginosa strains from Zagreb, Croatia. VIM-2 β-lactamase with similar properties has previously been described in another region of Croatia and in Italy, France, Spain, Greece, Taiwan and South Korea, suggesting that this type of enzyme is widespread in the Mediterranean region of Europe and in the Far East.

Introduction
Carbapenemases may be defined as β-lactamases that significantly hydrolyse at least imipenem or and meropenem [1]. The most clinically significant carbapenemases belong to class B [2]. They are metalloenzymes that require zinc as a cofactor and comprise 4 families: IMP, VIM, SPM, GIM and SIM [3–6]. The VIM-type enzymes appear to be the most prevalent in Europe and Korea, and at least 10 different variants have been described [4]. The worldwide spread of acquired metallo-β-lactamases (MBLs) in Gram-negative bacilli has become a great concern. MBLs possess a broad hydrolysis profile that includes carbapenems and almost all extended-spectrum β-lactams with the exception of aztreonam. Carbapenem-resistant strains of Pseudomonas aeruginosa have been detected with increasing frequency in hospitals in Zagreb and pose a serious therapeutic problem. The aim of this investigation was to characterize MBLs in P. aeruginosa isolates from Zagreb, Croatia.

Materials and methods

Bacteria
One hundred P. aeruginosa isolates with reduced susceptibility to either imipenem or meropenem were tested for the production of MBLs by MBL-Etest (Solna, Sweden). The strains were isolated during 2002–2004 at the Clinical Hospital Centre Zagreb and University Hospital Merkur in Zagreb from various clinical specimens and wards (Table 1). Isolates were identified by conventional biochemical methods.
<table>
<thead>
<tr>
<th>Strain No.</th>
<th>Specimen</th>
<th>Hospitala</th>
<th>Unit</th>
<th>PFGE type</th>
<th>Date of isolation (D/M/Y)</th>
<th>MIC (mg/l)</th>
<th>Porins</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Urine</td>
<td>A</td>
<td>Nephrology</td>
<td>1</td>
<td>15/01/2004</td>
<td>>128 64 16</td>
<td>>128 64 8 32</td>
</tr>
<tr>
<td>12</td>
<td>Stool</td>
<td>A</td>
<td>Haematology</td>
<td>2</td>
<td>14/01/2003</td>
<td>>128 64 16</td>
<td>>128 64 8 32</td>
</tr>
<tr>
<td>22</td>
<td>Tracheal aspirate swab</td>
<td>A</td>
<td>Paediatric ICU</td>
<td>3</td>
<td>15/02/2003</td>
<td>>128 32 32 64</td>
<td>16 64 >128 32 16 64 0.5</td>
</tr>
<tr>
<td>35</td>
<td>Wound swab</td>
<td>A</td>
<td>Oncology</td>
<td>4</td>
<td>25/02/2003</td>
<td>>128 32 16 32 4 32 >128 64 32 >128 4</td>
<td>+</td>
</tr>
<tr>
<td>132</td>
<td>Tracheal aspirate</td>
<td>B</td>
<td>Surgery ICU</td>
<td>4</td>
<td>09/08/2003</td>
<td>16 8 >128 64 4 16 0.12 32 8 16</td>
<td>-</td>
</tr>
<tr>
<td>135</td>
<td>Bronchial aspirate</td>
<td>B</td>
<td>Internal ICU</td>
<td>5</td>
<td>07/01/2002</td>
<td>>128 64 >128 >128 >128 >128 >128 >128 >128 >128 >128</td>
<td>-</td>
</tr>
</tbody>
</table>

MIC, minimum inhibitory concentration; MBL, metallo-β-lactamase; PFGE, pulsed-field gel electrophoresis; IMI, imipenem; MEM, meropenem; CAZ, ceftazidime; CAZ/CL, ceftazidime + clavulanic acid; CTX, cefotaxime; CFP, cefoperazone; FEP, cefepime; AMT, aztreonam; PIP, pipercillin; TZP, tazobactam/piperacillin; GM, gentamicin; CIP, ciprofloxacin; ICU, intensive care unit.

*a = University Hospital Centre, Zagreb; b = University Hospital Merkur, Zagreb.

The presence of blaOXA-10 and blaqmp-1 genes was tested by polymerase chain reaction (PCR) using primers MBL2 (5'-CCAATTGATGCCATGTTGGCTG-3').

Analytical isoelectric focusing (IEF) was performed according to Matthew et al. [9].

Enzyme characterization was performed by 2 mM EDTA. Enzyme activity was detected at 260 nm. The change in absorbance was determined by 0.1 mM MTT. The amount of total protein content was expressed as milliunits of protein per minute. The concentration of protein in the samples was determined with a commercial method (BioRad).

The bacterial cells were pelleted from exponential growth phase cultures in Luria-Bertani broth by centrifugation at 10,000 g and the supernatant was stored at −20°C as crude enzyme preparation. The activity of the enzyme was assayed by an optical density at 412 nm. The assay mixture contained 0.1 M NaCl, 0.05 M Tris-HCl, pH 8.0, and 0.03 mM EDTA. The reaction was initiated by the addition of substrate and terminated by the addition of 0.1 M NaOH. The change in absorbance was determined at 412 nm for 10 min. The activity was expressed as milliunits of enzyme per minute. The enzyme was concentrated by centrifugation in an ultracentrifuge at 300,000 g. The concentrated enzyme was filtered through a 0.22 µm filter. The enzyme was stored at −20°C.

The strain (AB. Biodisk, Solna, Sweden) contains a double-folded 7,7-fold dilution of imipenem (4 to 256 mg/l) and imipenem (1 to 64 mg/l) in combination with 2-fold dilutions of EDTA, a decrease of imipenem 8,9-fold dilution in the presence of EDTA was interpreted as being suggestive of MBL production [7].

The results of the assay for the expression of metallo-β-lactamase were interpreted as follows: +, positive; −, negative.

The susceptibility of the isolates to a wide range of antibiotics was determined by 2-fold broth microdilution method in cation-supplemented Mueller-Hinton broth in 96-well microtiter plates in accordance with the Clinical and Laboratory Standards Institute (CLSI) guidelines [8]. The inoculum size was 5 × 104 CFU/ml. The plates were incubated at 37°C. The MICs were determined after 18 h of incubation.

The MICs for the control strain ATCC 27853 as well as for the isolates were determined.
and VIM.1.R (5'-AGG-TGG-GCC-ATT-CAG-CCAGA-3') were used to amplify blaVIM genes. However, primers IMP-A (5'-GAA-GGY-GTT-TAT-GTT-CAT-AC-3') and IMP-B (5'-GTA-MGT-TTC-AAG-AGT-GAT-GC-3') [1] were used for the detection of blaIMP genes. The cycling conditions were as follows: 94°C for 5 min, and then 30 cycles of 94°C for 1 min, 55°C for 1 min, 72°C for 1 min, and a final extension at 72°C for 5 min. PCR products were subjected to electrophoresis in agarose gel at 100 V. PCR products were detected under UV light after staining with ethidium bromide.

The amplicons were sequenced from both sides.

Plasmid analysis

Plasmids were extracted by alkaline lysis method as described previously [10].

Genotyping of strains by pulsed-field gel electrophoresis

Isolation of chromosomal DNA was performed as described by Kaufman [11]. Pulsed-field gel electrophoresis (PFGE) genotyping of XbaI-digested genomic DNA was performed with a CHEF-DR III system (BioRad); the images were processed using Gel-Compar software, and a dendrogram was computed after band intensity correlation using global alignment with 2% optimization and UPGMA (unweighted pair-group method using arithmetical averages) clustering [12]. The strains were considered to be clonally related if they showed more than 80% similarity of their PFGE patterns.

Characterization of outer membrane proteins

Outer membrane proteins of 6 MBL-positive P. aeruginosa strains were prepared as described previously [13]. Following sonication, membranes were collected by ultracentrifugation at 100,000 g for 35 min. Outer membrane proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and gels were stained with Coomassie blue.

Results

Six out of 100 Pseudomonas isolates with reduced susceptibility to carbapenems were positive for MBLs by Etest.

All strains were resistant to gentamicin, ceftazidime, and cefotaxime. Four isolates were resistant to ciprofloxacin, 4 to aztreonam, 4 to cefoperazone and strains, 3 to cefepime and 3 to imipenem. Resistance to piperacillin alone and combined with tazobactam was observed in only 1 isolate.

VIM-2 β-lactamase in P. aeruginosa, Croatia

The enzyme activity ranged from 6 to 420 nmol/min/mg of protein. Carbapenemase activity was almost completely inhibited by 2 mM EDTA (Table II).

IEF revealed a band with the pI of 5.3 in all strains. Six strains yielded an amplicon of 523 bp with primers specific for VIM β-lactamases. Sequencing of blaVIM genes revealed the production of VIM-2 β-lactamase in all 6 strains. No IMP MBL-producers were detected by PCR. No plasmid DNA was found. The strains showed distinct PFGE patterns and were not clonally related. Four of the tested strains lacked altered OmpD2 protein (Table I).

Discussion

This investigation proved the occurrence of VIM-2 β-lactamase among P. aeruginosa strains from Zagreb, Croatia. VIM-2 β-lactamase has previously been reported from another region in Croatia [14], suggesting that there is a regional spread of this resistance determinant. VIM-2 β-lactamase with similar properties has previously been described in Italy [15], France [16], Spain [17], Greece [18], Taiwan [19] and South Korea [20], suggesting that this type of enzyme is widespread in the Mediterranean region of Europe and the Far East. VIM-2 is the most prevalent MBL in Taiwan [21].

The fact that all strains displayed similar enzyme activities but 1 strain (132) showed a markedly lower carbapenem MIC than the others, suggests that there are other resistance mechanisms involved in the strains with high carbapenem MICs, such as loss of outer membrane proteins detected in 4 strains (6, 12, 22, 135) or efflux. The strain with a low carbapenem MIC probably had a higher permeability coefficient or less efficient efflux pump. However, the carbapenem MICs rose above the resistance breakpoint for strain 132 when a higher inoculum, which is more likely to occur in the in vivo situation, was applied. It is possible that in vivo, in the presence of a high inoculum, high level

Table II. Hydrolysis rates against imipenem of metallo-β-lactamases produced by Pseudomonas aeruginosa strains.

<table>
<thead>
<tr>
<th>Strain No.</th>
<th>Hydrolysis rate (nmol/min/mg protein)</th>
<th>Hydrolysis rate in the presence of 2 mM EDTA (nmol/min/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6 × 10⁻⁸</td>
<td>1 × 10⁻¹³</td>
</tr>
<tr>
<td>12</td>
<td>9 × 10⁻⁹</td>
<td>1.8 × 10⁻¹¹</td>
</tr>
<tr>
<td>22</td>
<td>4.2 × 10⁻⁸</td>
<td>9.4 × 10⁻¹²</td>
</tr>
<tr>
<td>35</td>
<td>4 × 10⁻⁸</td>
<td>3.8 × 10⁻¹²</td>
</tr>
<tr>
<td>132</td>
<td>3.5 × 10⁻⁸</td>
<td>2.7 × 10⁻¹⁰</td>
</tr>
<tr>
<td>135</td>
<td>4 × 10⁻⁸</td>
<td>1.2 × 10⁻⁹</td>
</tr>
</tbody>
</table>

EDTA, ethylenediamine tetraacetic acid.
resistance arises. Little clinical information is available on the outcome of patients infected with carbapenem-susceptible MBL-producing P. aeruginosa. There is no consensus on the interpretation and reporting of the antibiograms for the MBL producers. Four strains were resistant to aztreonam, in contrast with the results obtained from other authors [16–17,22]. Aztreonam is not hydrolyzed by MBLs [1], but resistance was due to the hyperproduction of AmpC β-lactamase, the coexistence of other β-lactamase or efflux, as reported previously [23]. The macrorestriction of the Xba-digested chromosomal DNA showed distinct patterns indicating that strains harbouring bla_{VIM} genes are not clonally related. Thus it is more likely that the spread of MBL genes is due to the genetic exchange between different clones. The occurrence of MBLs was sporadic. Heterogeneity could be explained by the fact that strains originated from 2 different hospitals, from various wards and were collected over a prolonged time period.

Since all 3 attempts to transfer ceftazidime resistance to a recipient strain and to isolate plasmid DNA were unsuccessful, we can conclude that gene cassettes harbouring bla_{VIM} genes were located in the integrons [20], which are inserted in the chromosome and that their dissemination in Croatia is due to the mobilization of the resistance genes.

Our strains harbouring VIM-2 β-lactamase were resistant to all β-lactam antibiotics, aminoglycosides and fluoroquinolones, and pose a serious therapeutic problem in our hospitals. The fact that all strains were resistant to gentamicin suggests that bla_{VIM} genes are located on integrons containing gene cassettes with resistance determinants for aminoglycosides. Since most of the strains were resistant to aminoglycosides and fluoroquinolones as well, only toxic compounds such as colistin remain as possible therapeutic agents. The microbiological finding did not change the empiric therapy. In critically ill patients, empiric therapy is based on carbapenems. The prevalence of MBL-positive P. aeruginosa among our carbapenem-resistant strains of this species is still low (6%), but there is a possibility of horizontal spread of bla_{VIM} genes to Enterobacteriaceae, which are more frequent pathogens. MBLs have already been found in the members of the family Enterobacteriaceae [18,19]. The difficulties in detecting MBL producers in routine laboratories, together with the mobile nature of the gene cassettes carrying bla_{VIM} genes, facilitates their dissemination. Meropenem has been extensively used in our hospitals and the presence of MBLs among carbapenem-resistant P. aeruginosa of different genotypes, isolated from different hospitals, although in low frequency, underscores the need for restricted use of carbapenems and their systematic surveillance. Constant and consistent surveillance of the MBL-producing strains will be the prime measure to prevent their further dissemination.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

