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Resonance Interaction–Free

Measurement
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We show that one can use a single optical cavity as a simplest

possible resonator in order to ascertain the presence of an object
with an arbitrarily low portion of an incoming laser beam. In

terms of individual photons, each photon non–repeatedly tests the
object with an arbitrary high probability of detecting its presence

without interacting with it.
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1 INTRODUCTION

Ever since Born formulated his probabilistic interpretation of the quantum

wave function it was obvious that a void , i.e., interaction–free registration

of an individual quantum system can provide us with the same amount of

information as a direct interaction registration with a full transfer of energy.

For example, if in a double slit experiment we put a detector behind one

of the slits and take care only for those photons which did not trigger the

detector then we are sure that they will arrive at different points at the

screen in the long run than they would without such a “control.” In the

latter case they would form the interference fringes. One can apply the same

reasoning to the Heisenberg microscope as done by Dicke who has “shown

that momentum [transferred to the particle by the scattered photon] is also

transferred when the lack of a scattered photon is used to discover that the

particle is absent from the field of view of the microscope” (Dicke, 1981), or

to a Mach–Zehnder interferometer as recently done by Elitzur and Vaidman.

(Elitzur and Vaidman, 1993; Vaidman, 1994). However, they changed the

question which is asked and proposed to use the interferometer for testing

the presence of an object, in effect, in the following way. One can adjust a

Mach–Zehnder interferometer so that a detector placed in one output port

will almost never detect a photon. If it does, then we are certain that an

object blocked one path of the interferometer. To dramatize the effect Elitzur

and Vaidman assumed that the object is a bomb and showed that it will

explode in 50% of the tests with asymmetrical beam splitters. The tests, of

course, always have to be carried out with single photons.

When one thinks of possible applications of the afore–mentioned “de-

vices,” e.g., of being X–rayed without being exposed to X–rays, then one

first wants to improve their low efficiency of at most 50%. Therefore Kwiat

et al. (1995) proposed a set–up which uses single photons and which is based

on “weak repeated tests” carried out by each employed photon. The set–up

should reduce the above probability of exploding the bomb to as close to 0%

as chosen. The proposal boils down to two identical cavities weakly coupled

by a highly reflective beam splitter. Due to the interference the probability

for a photon inserted into the first one to be located there approaches 0, and
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to be found in the second one approaches 1, at a certain time TN . However,

if there is an absorber (a bomb) in the second cavity it is the other way

round, i.e., the probabilities reverse. So, if we insert a detector in the first

cavity at time TN we almost never get a click if there is no absorber in the

second cavity, and almost always if there is one. On the other hand, the

probability of exploding the bomb in the latter case approaches zero. The

only drawback of the proposal is that it is apparently hard to carry it out.

Apart from cavity losses and the problem of inserting a detector into a cavity

at a given time, the introducing of a single photon into the first cavity is by

itself a difficult task.

In this paper we propose a very simple and easily feasible interaction–

free experiment—with an arbitrary high probability of detecting the bomb

without exploding it—which is based on the resonance in a single cavity. The

proposal assumes a pulse laser beam or a gated continuous–wave laser beam

and a properly cut isotropic crystal. So any optical laboratory should be able

to carry it out with an efficiency close to 100%.

2 EXPERIMENT

The lay–out of the experiment is shown in Fig. 1. The experiment uses a

crystal as an optical cavity for an incoming beam. The cavity behaves as a

transmitting resonator when no object is in the way of the round–trip of the

beam within the crystal. However, when an object is inserted the beam is

almost totally reflected. Let us first consider a plane wave presentation of

the experiment. Our aim is to determine the intensity of the beam arriving

at detector Dr. The portion of the incoming beam of amplitude A reflected

at the entrance surface is described by the amplitude B0 = −A
√
R, where R

is reflectivity and the minus sign is for the reflection at an optically denser

medium. The transmitted part will travel around the crystal guided by a

reflection at the exit surface and by two total internal reflections. After a

full round–trip the following portion of this beam joins the directly reflected

portion of the beam: B1 = A
√

1 −R
√
R
√

1 − Reiψ. Each subsequent round–

trip contributes to a geometric progression whose infinite sum yields the total
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amplitude of the reflected beam:

B =
∞
∑

i=0

Bi = −A
√
R

1 − eiψ

1 − R eiψ
, (1)

where ψ = (ω − ωres)T is the phase added by each round–trip; here ω is

the frequency of the incoming beam, T is the round–trip time, and ωres is

the resonance frequency corresponding to a wavelength which satisfies λ/2 =

L/k, where L is the round–trip length of the cavity and k is an integer. We

see that, in the long run, for any R < 1 and ω = ωres we get no reflection at

all—i.e., no response from Dr (see Fig. 2)—if nothing obstructs the round–

trip, and almost a total reflection when the bomb blocks the round–trip

and R is close to one. In terms of single photons (that we can obtain by

attenuating the intensity of a laser until the chance of having more than one

photon at a time becomes negligible) the probability of detector Dr reacting

when there is no bomb in the system is zero. A response from Dr means an

interaction–free detection of a bomb in the system. The probability of the

response is R, the probability of making a bomb explode by our device is

R(1−R), and the probability of photon exiting into Dt detector is (1−R)2.

We consider more realistic experimental conditions by looking at two

possible sources of individual photons: a continuous wave laser and a pulse

laser. (E.g., Nd:YAG laser can work in both regimes with optimal expected

properties.)

A continuous wave laser (oscillating on a single transverse mode) has

the advantage of an excellent frequency stability (down to 10 kHz in the

visible range) and therefore also a very long (up to 300 km) coherence length

(Svelto, 1993). This yields almost zero intensity at detector Dr as with plane

waves above. The only disadvantage of a continuous laser is that we have to

modify the set–up by adding a gate in the following way. The intensity of

the beam should be lowered so as to make probable for only one photon to

appear within an appropriate time window (1 ms – 1 µs < coherence time)

determined by the gate through which the input beam arrives at the crystal

and allows the intensity in the cavity to build up. We start each testing by

opening the gate, and when either Dr or Dt fires, or the bomb explodes, the

testing is over.
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It should be emphasized that we get information on the presence or ab-

sence of the bomb in any case from a detector click. Hence we need no

additional information that a photon has actually arrived at the entrance

surface. This is a great advantage over the above–mentioned proposal by

Kwiat et al. (1995) in which the absence of the bomb is, in fact, inferred

from the absence of a detector click. When nothing happens during the

exposition time (due either to the absence of a photon or to detector inef-

ficiency), the test has to be repeated. Since the gate selects pulses of given

duration, the physical situation is similar as with pulse lasers. A realistic

discussion of this case is given below. Before, we would like to mention that

our the set–up can enable us to test the inverse frustrated–photon–problem.

The frustrated–photon–problem was recently discussed by Fearn, Cook, and

Milonni (1995) and can be rephrased as follows. By imposing particular

boundary conditions one can suppress a photon emission from an atom or

from a crystal (in a down–conversion process). The problem reads: Would

a photon appear at the boundary immediately, if we suddenly changed the

conditions? The inverse problem would in our case read: Does a photon

arriving at the resonator immediately upon opening the gate “see” its own

“round–trip possibility”? Or: Would a photon which happened to be at the

beginning of a coherent rectangular wave–packet behave differently from one

which happened to be at the end of the packet? In any case, possible 300 km

coherence length does not leave any doubt that a real experiment can be car-

ried out successfully. Time–resolved measurements that would answer the

above questions are feasible. From the viewpoint of classical optics it is clear

that the probability of a photon to be reflected is initially high and decreases

with time (see below).

Pulse lasers have mean frequency dependent on the working conditions

of the laser and this is their main disadvantage because each repetition of

the experiment takes a considerable time necessary to stabilize the frequency.

Their advantage is that they do not require any gates. We describe the input

beam coming from such a laser by means of a Gaussian wave packet A(ω) =

A exp[−τ 2(ω−ωres)
2/2], where τ is the coherence time which obviously must

be significantly longer than the round–trip time T . We therefore define a ≡
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τ/T . The following ratio of intensities of the reflected and the incoming beam

which describes the efficiency of the device for free round–trips one obtains

straightforwardly:

η =

∫ ∞
0
B(ω)B∗(ω)dω

∫ ∞
0 A(ω)A∗(ω)dω

= 1 − (1 − R)2

∫ ∞

0

exp[−τ 2(ω − ωres)
2]dω

1 − 2R cos[(ω − ωres)τ/a] +R2

∫ ∞

0

exp[−τ 2(ω − ωres)
2]dω

, (2)

where an infinite number of round–trips is assumed. We see that within the

region where the exponential function is significantly different from zero the

cosine in the denominator of the integral in the numerator is comparatively

constant and can, to a good approximation, be replaced by unity for each

a > 200. This yields η → 0 and at the same time shows that a should be

large enough to allow sufficiently many round–trips. We can see that if we

express η as a function of a and n (the number of round–trips):

η = R
{

1 −
1 −R

1 +R
[R2n − 1 + 2

n
∑

j=1

(1 +R2n−2j+1)Rj−1Φ(j)]
}

(3)

where Φ(j) = 1 for continuous wave lasers and Φ(j) = exp(−j2a−24−1) for

pulse lasers. This expression is obtained by mathematical induction from the

geometric progression of the amplitudes and a subsequent integration over

wave–packets. The series with Φ(j) = exp(−j2a−24−1) converges because the

series with Φ(j) = 1 obviously converges, as follows from Eq. (1). Both series,

of course, converge to the values obtained above as one can see from Fig. 2,

where three upper curves representing three sums—obtained for a = 100,

a = 200, and a = 400 , respectively—converge to values (shown as big

dots) which one also obtains directly from Eq. (2). The figure shows that

a and n are closely related in the sense that the coherence length should

always be long enough (a > 200) to allow at least 200 round trips. As for

the inverse frustrated–photon–problem, for a Gaussian wave packet one can

always assume that its tail “sees” the “round–trip possibility.” Moreover, the

dependence of η on n indicates roughly the time dependence of the detection

probability at detector Dr, in agreement with the above statement.

In the end, let us give a numerical example by taking R = 0.98 and the

round–trip length L = 1 cm and assuming an attenuation of the incoming
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laser beam which would give only single photons within the appropriate time

window. For both types of lasers we have to use beams with the coherence

length of 2 m or longer. For a pulse laser with a coherence length of 5 m

(a = 500) we have η = 0.005, i.e., 99.5% probability of not having a click

at Dr when the bomb is not in the system. The probability of not having

a click at Dr when the bomb is in the system is 2%. The probability of

exploding the bomb in the latter case is approximately as low as in the ideal

case: 1.96%. On the other hand, for a continuous wave laser we obtain

η = 1.7 × 10−9 for n = 500 from Eq. (3) [with Φ(j) = 1; as enabled by a

chosen a, e.g., a = 600].

3 CONCLUSION

It becomes obvious from our study that one can treat the so–called interaction–

free measurement as a basically classical interference effect in order to arrive

at the required intensities, i.e., probabilities. However, one must say that, in

realistic conditions, there is no strict absence of interaction in the classical

picture. There will always be a finite, however extremely small, exchange

of energy. The seeming paradox in the sense that one can get information

without interaction hints at the basically statistical character of the behav-

ior of the microcosmos, as it is correctly described by quantum theory. In

fact, there is a formal correspondence between the classical and the quantum

description in the sense that classical quantities, e.g., the amount of energy

absorbed by a bomb in any individual case, are identical to quantum mechan-

ical ensemble averages. So, when ensembles are considered, there is actually

no difference between the quantum and the classical picture. The difference

in the individual case, however, is drastic: According to quantum theory, in

an overwhelming number of cases no photon will be absorbed so that there

is no energy exchange. In some rare cases, however, the full energy quantum

hν will be transferred to the bomb.
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H. Paul and M. Pavičić, Resonance Interaction–Free Measurement 9

FIGURES

Fig. 1. Lay–out of the proposed experiment. In the shown free round–trips

the intensity of the reflected beam is ideally zero, i.e., detector Dr

does not react. However, for reflectivity R = 0.98, when the bomb

is immersed in the liquid (whose reflectivity is the same as that of

the crystal in order to prevent losses of the free round–trips) 98% of

the incoming beam reflects into Dr, 0.04% goes into Dt, and 1.96%

activates the bomb.

Fig. 2. Realistic values of η for R = 0.98. For pulse lasers—3 upper curves

represent sums given by Eq. (3) [with Φ(j) = exp(−j2a−24−1)] as a

function of n for a = 100, a = 200, and a = 400; dots represent

the corresponding values of η obtained from Eq. (2). For continuous

wave lasers—the lowest curve represents the sum given by Eq. (3) [with

Φ(j) = 1] as a function of n.
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                                                                Fig. 2
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