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Abstract
This paper deals with the problem of localizing and tracking a moving speaker over the full range around the mobile robot.
The proposed algorithm is based on estimating the time difference of arrival by maximizing the weighted cross-correlation
function in order to, by series of geometrical calculation, determine the azimuth angle of the detected speaker. A post
processing technique is proposed in which each of these microphone-pair determined azimuths are further combined into
a mixture of the von Mises distributions, thus producing a practical probabilistic representation of the microphone array
measurement. It is shown that this distribution is inherently multimodal and that the system at hand is non-linear, which
required a discrete representation of the distribution function by means of particle filtering. Experiments were conducted
and the results show that the algorithm can reliably and accurately localize and track a moving sound source.

1 Introduction

In biological lifeforms hearing, as one of the traditional
five senses, elegantly supplement other senses as being om-
nidirectional, not limited by physical obstacles, and ab-
sence of light. Inspired by these unique properties, re-
searchers strive towards endowing mobile robots with au-
ditory systems to further enhance human–robot interaction,
not only by means of communication but also, just as hu-
mans do, to make intelligent analysis of the surrounding
environment. By providing speaker location to other mo-
bile robot systems, like path planning, speech and speaker
recognition, such system would be a step forward in devel-
oping a fully functional human–aware mobile robots.
An auditory system must provide accurate estimates and
must be updated frequently in order to be useful in practi-
cal tracking applications. Furthermore, the estimator must
be computationally non-demanding and possess a short
processing latency to make it practical for real-time sys-
tems.
Existing speaker localization strategies can be categorized
in four general groups: those based upon maximizing the
steered response power of a beamformer [1, 2], techniques
adopting high-resolution spectral estimation concepts [3],
physiologically inspired approaches [4, 5] and approaches
employing Time Difference of Arrival (TDOA) informa-
tion [6, 7].
Even though the TDOA estimation methods are outper-
formed to a certain degree by several more elaborate meth-
ods [8, 9], they still prove to be extremely effective due
to their elegance and low computational costs. This pa-
per proposes a new speaker localization method based on
TDOA estimation using a microphone array of 4 omnidi-
rectional microphones. The proposed algorithm is based

on probabilistic modelling of the microphone pair mea-
surements and particle filtering, which enables us to solve
the front-back ambiguity, increase the robustness by us-
ing all the available measurements, and to localize and
track speaker over the full range around the mobile robot.
The main contribution of this paper is the proposed sen-
sor model to be used for a posteriori inference about the
location of the sound source.

One should note, however, that the proposed sensor mod-
elling with von Mises distribution is independent of the
azimuth estimation method and, furthermore, can be just
as easily applied to other sensor systems, like (omnidirec-
tional) vision, laser scans etc.

The rest of the paper is organized as follows. Section 2
presents the TDOA estimation algorithm and how this in-
formation is used to calculate the speaker azimuth. Section
3 defines the general framework for the particle filtering
algorithm and introduces the von Mises distribution and
the proposed measurement model. Section 4 presents ex-
periments. In the end, Section 5 concludes the paper and
presents future work.

2 TDOA Estimation

The main idea behind TDOA-based locators is a two step
one. Firstly, TDOA estimation of the speech signals rel-
ative to pairs of spatially separated microphones is per-
formed. Secondly, this data is used to infer about speaker
location. The TDOA estimation algorithm for 2 micro-
phones is described first.
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2.1 Principle of TDOA

In order to determine the delay ∆τ ij in the signal captured
by two different microphones (i and j), it is necessary to
define a coherence measure which will yield an explicit
global peak at the correct delay. Cross-correlation is the
most common choice, since we have at two spatially sep-
arated microphones (in an ideal homogeneous, dispersion-
free and lossless scenario) two identical time-shifted sig-
nals. Cross-correlation is defined by the following expres-
sion:

Rij(∆τ) =
L−1∑
n=0

xi[n]xj [n−∆τ ], (1)

where xi and xj are the signals received by microphone i
and j, respectively. As stated earlier, Rij is maximal when
∆τ , correlation lag in samples, is equal to the delay be-
tween the two received signals.
In order to significantly lower the computational intensity
of the algorithm, cross-correlation is estimated in the fre-
quency domain:

R̂ij(∆τ) =
L−1∑

k=0

ψ(k)Xi(k)X∗
j (k)ej2π k∆τ

L , (2)

where Xi(k) and Xj(k) are the discrete Fourier Trans-
forms (DFTs) of xi[n] and xj [n], ψ(k) is a generalized
weighting function, and (.)∗ denotes complex-conjugate.
We are windowing the frames with rectangular window
and no overlap. Therefore, before applying Fourier trans-
form to signals xi and xj , it is necessary to zero-pad them
with at least L zeros, since we want to calculate linear, and
not circular convolution.
A major limitation of the cross-correlation given by (2)
is that the correlation between adjacent samples is high,
which has an effect of wide cross-correlation peaks. There-
fore, appropriate weighting should be used.

2.2 Spectral weighting

The problem of wide peaks in unweighted, i.e. general-
ized, cross-correlation (GCC) can be solved by whiten-
ing the spectrum of signals prior to computing the cross-
correlation. The most common weighting function is the
Phase Transform (PHAT) which, as it has been shown in
[10], under certain assumptions yields MLE. What PHAT
function (ψPHAT = 1/|Xi(k)||X∗

j (k)|) does, is that it
whitens the cross-spectrum of signals xi and xj , thus giv-
ing a sharpened peak at the true delay.
Using just the PHAT weighting poor results were obtained
and we concluded that the effect of the PHAT function
should be tuned down. As it was explained and shown in
[11], the main reason for this approach is that speech can

Figure 1: DOA angle transformation

exhibit both wide-band and narrow-band characteristics.
For example, if uttering the word "shoe", "sh" component
acts as a wide-band signal and voiced component "oe" as a
narrow-band signal.
Based on the discussion above, the GCC-PHAT-β has the
following form:

R̂PHAT-β
ij (∆τ) =

L−1∑

k=0

Xi(k)X∗
j (k)

(|Xi(k)| |Xj(k)|)β
ej2π k∆τ

L . (3)

where 0 < β < 1 is the tuning parameter.

2.3 Direction of Arrival estimation

The TDOA between microphones i and j, ∆τ ij , can be
found by locating the peak in the cross-correlation:

∆τ ij = arg max
∆τ

R̂PHAT−β
ij (∆τ). (4)

Once TDOA estimation is performed, it is possible to com-
pute the position of the sound source through series of ge-
ometrical calculations. It is assumed that the distance to
the source is much larger than the array aperture, i.e. we
assume the so called far-field scenario. Thus, the expand-
ing acoustical wavefront is modelled as a planar wavefront.
Using the cosine law we can state the following:

ϕij = ± arccos
(

c∆τ ij

aij

)
, (5)

where aij is the distance between the microphones, c is the
speed of sound, and ϕij is the Direction of Arrival (DOA)
angle.
Since we will be using more than two microphones one
must make the following transformation in order to fuse
the estimated DOAs. Instead of measuring the angle ϕij

from the baseline of the microphones, transformation to
azimuth θij measured from the x axis of the array coordi-
nate system (bearing line is parallel with the x axis when
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θij = 0◦) is performed. The transformation is done with
the following equation (angles ϕ+

24 and θ+
24 in Figure 1):

θ±ij = αij ± ϕij

= atan2
(

yj − yi

xj − xi

)
± arccos

(
c∆τ ij

aij

)
. (6)

The framework for TDOA and DOA estimation was pre-
sented in detail in [6].
At this point one should note the following:

• under the far-field assumption, all the DOA angles
measured anywhere on the baseline of the micro-
phones are equal, since the bearing line is perpendic-
ular to the expanding planar wavefront (angles θ−12
and θ+

24 in Figure 1)

• front-back ambiguity is inherent when using only
two microphones (angles ϕ−34 and ϕ+

34 in Figure 1).

Having M microphones, (6) will yield 2 · (M
2

)
possible az-

imuth values. How to solve the front-back ambiguity and
fuse the measurements is explained in Section 3.

3 Speaker Localization and
Tracking

The problem at hand is to analyse and make inference
about a dynamic system. For that, two models are re-
quired: one describing the evolution of the speaker’s state
over time (system model), and second relating the noisy
measurements to the speaker’s state (measurement model).
We assume that both models are available in probabilistic
form. Thus, the approach to dynamic state estimation con-
sists of constructing the a posteriori pdf of the state based
on all available information, including the set of received
measurements, which are further combined due to circular
nature of the data, as a mixture of von Mises distributions.

3.1 Model of the sound source dynamics
The sound source dynamics is modelled by the well be-
haved Langevin motion model [12]:

[
ẋk

ẏk

]
= α

[
ẋk−1

ẏk−1

]
+ β

[
υx

υy

]
,

[
xk

yk

]
=

[
xk−1

yk−1

]
+ δ

[
ẋk

ẏk

]
,

(7)

where where [xk, yk]T is the location of the speaker,
[ẋk, ẏk]T is the velocity of the speaker at time index k,
υx, υy ∼ N (0, συ) is the stohastic velocity disturbance,
α and β are model parameters, and δ is the time between
update steps. The system state, i.e. the speaker azimuth, is
calculated via the following equation:

µk = atan2
(

yk

xk

)
. (8)

3.2 The von Mises distribution based mea-
surement model

Measurement of the sound source state with M micro-
phones can be described by the following equation:

zk = hk(µk, nk), (9)

where hk(.) is a non-linear function with noise term nk,
and zk = [θ±ij , . . . , θ

±
M,M−1]k, i 6= j, {i, j} = {j, i} is the

measurement vector defined as a set of azimuths calculated
from (6).
Since zk is a random variable of circular nature, it is ap-
propriate to model it with the von Mises distribution. The
von Mises distribution with its pdf is defined as [15, 16]:

p(θ|µ, κ) =
1

2πI0(κ)
exp[κ cos(θ − µ)], (10)

where 0 ≤ θ < 2π is the measured azimuth, 0 ≤ µ < 2π
is the mean direction, κ > 0 is the concentration parame-
ter and I0(κ) is the modified Bessel function of the order
zero. Bessel function of the order m can be represented by
the following infinite sum:

Im(x) =
∞∑

k=0

(−1)k (x)2k+|m|

22k+|m|k! (|m|+ k!)2
, |m| 6= 1

2
. (11)

Mean direction µ is analogous to the mean of the nor-
mal Gaussian distribution, while concentration parameter
is analogous to the inverse of the variance in the normal
Gaussian distribution. Also, circular variance can be cal-
culated and is defined as:

ϑ2 = 1− I1(κ)2

I0(κ)2
, (12)

where I1(κ) is the modified Bessel function of order one.

A microphone pair { i, j } at time index k measures two
possible azimuths θ+

ij,k and θ−ij,k. Since we cannot discern
from a single microphone pair which azimuth is correct,
we can say, from a probabilistic point of view, that both an-
gles are equally probable. Therefore, we propose to model
each microphone pair as a sum of two von Mises distribu-
tions, yielding a bimodal pdf of the following form:

pij

(
θ±ij,k|µk, κ

)
= pij

(
θ+

ij,k|µk, κ
)

+ pij

(
θ−ij,k|µk, κ

)

= 1
2πI0(κ) exp

[
κ cos

(
θ+

ij,k − µk

)]
+

+ 1
2πI0(κ) exp

[
κ cos

(
θ−ij,k − µk

)]

(13)

23



30

210

60

240

90

270

120

300

150

330

180 0

azimuth [◦]

 

 

p(zk|µk, κ)

Figure 3: A mixture of several von Mises distributions
wrapped on a unit circle (most of them having a mode at
45◦)

Having all pairs modelled as a bimodal distribution, we
propose a linear combination of all those pairs to represent
the microphone array measurement model. Such a model
has the following multimodal pdf:

p(zk |µk, κ) =
1

2πI0(κ)

N∑

{i,j}=1

βijpij

(
θ±ij,k|µk, κ

)
,

(14)
where N is the total number of microphone pairs and∑

βij = 1 is the mixture coefficient.
This model represents our belief in the sound source az-
imuth. A graphical representation of the analytical (14) is
shown in Figure 3. Of all the 2N measurements, half of
them will measure the correct azimuth, while their coun-
terparts from (6) will have different (not equal) values. So,
by forming such a linear opinion pool, pdf (14) will have a
strong mode at the correct azimuth value.

3.3 Particle filtering
As it was shown, multimodal pdf is inherent to TDOA
based localization algorithms and therefore the particle fil-
tering algorithm is utilised, since it is suitable for non-
linear systems and measurement equations, non-Gaussian
noise and multimodal distributions. This method repre-
sents the posterior density function p(µk|zk) by a set of
random samples (particles) with associated weights and
computes estimates based on these samples and weights.
Let {θp

k, wp
k}P

p=1 denote a random measure that char-
acterises the posterior pdf p(µk|zk), where {θp

k, p =
1, . . . , P} is a set of support points with associated weights
{wp

k, p = 1, . . . , P}. The weights are normalised so that∑
p wp

k = 1. Then, the posterior density at k can be ap-
proximated as:

p(µk|zk) ≈
P∑

p=1

wp
kδ(µk − θp

k), (15)

where δ(.) is the Dirac delta measure. Thus, we have
a discrete weighted approximation to the true posterior,
p(µk|zk).
The weights are calculated using the principle of impor-
tance resampling, where the proposal distribution is given
by (7). In accordance to the Sequential Importance Resam-
pling (SIR) scheme, the weight update equation is given by
[13]:

wp
k ∝ wp

k−1p(zk|µk). (16)
The next important step in the particle filtering is the re-
sampling. The resampling step involves generating a new
set of particles by resampling (with replacement) P times
from an approximate discrete representation of p(µk|zk).
After the resampling all the particles have equal weights,
which are thus reset to wp

k = 1/P . In the SIR scheme,
resampling is applied at each time index. Since we have
wp

k−1 = 1/P ∀p, the weights are simply calculated from:

wp
k ∝ p(zk|µk). (17)

The weights given by the proportionality (17) are, of
course, normalised before the resampling step. It is also
possible to perform particle filter size adaptation through
the KLD-sampling procedure proposed in [14]. This would
take place before the resampling step in order to reduce the
computational burden.
To sum up, at each time index k and with M microphones,
a set of 2N azimuths is calculated with (6), thus forming
measurement vector zk from which an approximation of
(14) is constructed by pointwise evaluation (see Figure 4)
with particle weights wp

k calculated from (17).
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Figure 4: A discrete representation of the true p(zk |µk, κ)
at time index k = 2
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Figure 5: Simulation results

With these particles the azimuth is estimated as follows:

µ̂k = E [µk] = atan2
(

E [sin(θk)]
E [cos(θk)]

)

= atan2

(∑P
p=1 wp

k sin(θp
k)

∑P
i=p wp

k cos(θp
k)

)
, (18)

where E [ . ] is the expectation operator.

3.4 Algorithm
As it was stated in Section 3, the particle filtering algorithm
follows the SIR scheme. The main idea is to spread the
particle set {sp

k, wp
k}P

p=1 in all possible directions, take the
measurements zk, resample the particles with the highest
probability, and estimate the azimuth θ̂k from their respec-

tive weights. After a few steps, most particles will accu-
mulate around the true azimuth value and track the sound
source following the motion model given by (7). If at the
particular time step k no valid measurements are available
(outlier or no voice activity is detected), a Gaussian noise
is added to spread the particles to cover a larger area. If this
state lasts longer than a given time period, the algorithm is
reset and the particles are again spread in all possible di-
rections. Figure 5 show first four steps of the algorithm
execution. The figures show particles before and after the
resampling. We can see that the particles converge to the
true azimuth value. Detailed description of the algorithm
now follows.

Initialization step: At time instant k = 0 a particle set
{sp

0, w
p
0}P

p=1 (velocities ẋ0, ẏ0 set to zero) is generated and
distributed accordingly on a unit circle. Since the sound
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source can be located anywhere around the robot, all the
particles have equal weights wp

0 = 1/P ∀p.
Prediciton step: If there is voice activity detected and the
current measurement is valid, all the particles are propa-
gated according to the motion model given by (7). Other-
wise, all the particles are corrupted with Gaussian noise.
If this state lasts higher than a certain threshold, the algo-
rithm resets to initialization step.
Weight computation: Upon receiving TDOA measure-
ments, DOAs are calculated from (6) and for each DOA
a bimodal pdf is constructed from (13). To form the pro-
posed sensor model, all the bimodal pdfs are combined to
form (14). The particle weights are calculated from (17)
and normalized so that

∑P
p=1 wp

k = 1.
Azimuth estimation: At this point we have the approxi-
mate discrete representation of the posterior density (14).
The azimuth is estimated from (18).
Resampling: This step is applied at each time index en-
suring that the particles are resampled respective to their
weights. After the resampling, all the particles have equal
weights: {sp

k, wp
k}P

p=1 → {sp
k, 1/P}P

p=1. We use the Sys-
tematic resampling algorithm (see [13]). At this point, be-
fore the resampling, it is possible to adapt the particle size
by means of KLD-sampling. When the resampling is fin-
ished, the algorithm loops back to the prediction step.
The algorithm testing was performed with a constructed
measurement vector zk similar to one that would be expe-
rienced during experiments. Six measurements were dis-
tributed close to the true value (θ = 45◦), while the other
six were their counterparts.

4 Experiments

The microphone array used for experiments is composed
of 4 omnidirectional microphones arranged in the Y array
geometry of side length being a = 0.5 cm. The micro-
phone array was placed on a Pioneer 3DX robot as it can
bee seen in Figure 8. Audio interface is composed of low-
cost microphones, pre-amplifiers and external USB sound-
card (whole equipment costing cca. d150). Sampling fre-
quency was Fs = 48 kHz, 16-bit precision, block length
L = 1024 samples, and rectangular window was used with
zero-padding approach. All the experiments were done in
real-time, yielding 21.33 ms system response time.
The first set of experiments was conducted in order to qual-
itatively asses the performance of the algorithm. In these
experiments Y array configuration was used and two sce-
narios were analyzed. Figure 6 shows the first scenario,
in which a white noise source moved around the mobile
robot making a full circle, and the Figure 7 shows the sec-
ond scenario, in which a white noise source made rapid
angle changes (under 1 second).
Both experiments were repeated with smaller array dimen-
sions (a=30 cm), resulting in smaller angle resolution, and
no significant degradations to the algorithm were noticed.
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Figure 6: Azimuth estimation for a white noise source
making rapid angle changes
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5 Conclusion and Future Work
Using a microphone array consisting of 4 omnidirectional
microphones, an audio interface for a mobile robot that
successfully localizes and tracks a speaker was imple-
mented. The concept is based on a linear combination
of probabilistically modelled TDOA measurements. The
sensor model uses the proposed von Mises distribution for
DOA analysis and for derivation of an adequate azimuth
estimation method. In order to handle the inherent multi-
modal and non-linear characteristics of the system, a parti-
cle filtering approach was utilised. However, the proposed
post-processing method is not limited to the used sensor.
In order to develop a functional human-aware mobile robot
system, future works will strive towards the integration of
the proposed algorithm with other systems like leg track-
ing, robot vision etc. Also, by utilising a TDOA estima-
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tion method that is capable of tracking multiple speakers,
further capabilities of the proposed sensor model could be
researched.
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Figure 8: The robot and the microphone array used in the
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