
Contemporary Mathematics

Recurrences and characters of Feigin-Stoyanovsky’s type
subspaces

Miroslav Jerković

Abstract. We present some results on the recurrence relations and charac-

ter formulas for Feigin-Stoyanovsky’s type subspaces of standard sl(` + 1, C)̃-

modules.

1. Introduction

This expository note should serve as short introduction to an interesting and
fruitful area of research concerning Feigin-Stoyanovsky’s type subspaces of standard
modules of affine Lie algebras. Special emphasis is given to the construction of
recurrence relations for characters of these subspaces for affine Lie algebra sl(` +
1,C)̃, as well as to an effort to obtain the character formulas in some cases. We
present also the analogous results for principal subspaces, a similarly defined class
of subspaces of standard modules for affine Lie algebras.

For historical background of the subject please refer to introductory remarks
of e.g. [21, 24, 3, 14].

Denote by g simple Lie algebra sl(`+ 1,C), h its Cartan subalgebra and R the
corresponding root system with fixed simple roots α1, . . . , α`. We have the known
triangular decomposition g = n− ⊕ h ⊕ n+, with fixed root vectors xα, α ∈ R.
Identify h and h∗ via Killing form 〈·, ·〉 normalized so that for the maximal root θ
the relation 〈θ, θ〉 = 2 holds. Also, denote by Q = Q(R) and P = P (R) the root
and weight lattices respectively, with fundamental weights denoted by ω1, . . . , ω`.
For later use define ω0 = 0.

We proceed to the affine Lie algebra g̃ associated to g:

g̃ = g⊗ C[t, t−1]⊕ Cc⊕ Cd,

c denoting the canonical central element and d the degree operator, with Lie product
given in the usual way (cf. [16]). Let us write x(n) = x ⊗ tn for x ∈ g, n ∈
Z, and denote x(z) =

∑
n∈Z x(n)z−n−1. Denote by Λ0, . . . ,Λ` the corresponding

fundamental weights of g̃.

2000 Mathematics Subject Classification. Primary 17B67; Secondary 17B69, 05A19.
Partially supported by the Ministry of Science and Technology of the Republic of Croatia,

Project ID 037-0372794-2806.

c©0000 (copyright holder)

1



2 MIROSLAV JERKOVIĆ

For given integral dominant weight Λ = k0Λ0 + k1Λ1 + · · · + k`Λ`, denote by
L(Λ) the standard g̃-module with highest weight Λ, and by vΛ a fixed highest weight
vector of L(Λ). Let k = Λ(c) = k0 + k1 + · · ·+ k` be the level of L(Λ).

2. Definition of Feigin-Stoyanovsky’s type subspaces

We are now ready to define object of research presented in this note. First, for
fixed minuscule weight ω = ω` define

Γ = {α ∈ R | 〈α, ω〉 = 1} = {γ1, γ2, . . . , γ` | γi = αi + · · ·+ α`}.

This gives us a Z-grading of g:

(2.1) g = g−1 + g0 + g1,

with g0 = h +
∑
〈α,ω〉=0 gα, g±1 =

∑
α∈±Γ gα, and correspondingly the Z-grading

g̃ = g̃−1 + g̃0 + g̃1,

having denoted g̃0 = g0 ⊗ C[t, t−1]⊕ Cc⊕ Cd, g̃±1 = g±1 ⊗ C[t, t−1]. Note that

g̃1 = span{xγ(n) | γ ∈ Γ, n ∈ Z}

is a commutative subalgebra and a g̃0-module.

Definition 2.1. For a standard g̃-module L(Λ), Feigin-Stoyanovsky’s type sub-
space of L(Λ) is

(2.2) W (Λ) = U(g̃1) · vΛ,

where U(g̃1) is the universal enveloping algebra of g̃1.

Feigin-Stoyanovsky’s type subspaces are constructed analogously to principal
subspaces (sometimes called also Feigin-Stoyanovsky’s principal subspaces), first
appeared in [23]: for a g̃-module L(Λ) define principal subspace of L(Λ) as

(2.3) W (Λ) = U(n̂+) · vΛ,

with n̂+ = n+ ⊗ C[t, t−1].
It is clear from (2.2) and (2.3) that Feigin-Stoyanovsky’s type subspaces and

principal subspaces of the same standard module coincide in the case of ` = 1.
Otherwise, in order to avoid notational confusion, we will state which of the two
here defined subspaces of the corresponding standard g̃-module we have in mind
when using the notation W (Λ) (or it will be clear from the context).

At the end of this section note that, concerning the main line of exposition
in this note, our definition of Feigin-Stoyanovsky’s type subspaces is restricted to
g = sl(` + 1,C) and ω = ω`. But, these subspaces can easily be defined in the
more general setting of any simple Lie algebra g, provided a Z-grading g = g−1 +
g0 + g1 such that h ⊂ g0 is given. Similar observation holds about generalization
of definition (2.3) to the case of any simple Lie algebra.

3. Combinatorial bases

As in previous chapter, let g = sl(`+1,C) and ω = ω`. From Poincaré-Birkhoff-
Witt theorem it follows that a Feigin-Stoyanovsky’s type subspace W (Λ) is spanned
by set of monomial vectors

(3.1) {x(π)vΛ|x(π) = . . . xγ1(−2)a`xγ`(−1)a`−1 · · ·xγ1(−1)a0 , ai ∈ Z+, i ∈ Z+}.
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It is an important and interesting problem to reduce the spanning set (3.1)
to monomial basis of W (Λ), i.e. basis consisting of monomial vectors. In [19]
this reduction was obtained by Primc for Feigin-Stoyanovsky’s type subspaces
of arbitrary level standard modules. Later it turned out that in this case basis
elements are parametrized by so-called (k, ` + 1)-admissible configurations (first
described in [9, 10]). More precisely, for level k standard g̃-module L(Λ) with
highest weight Λ = k0Λ0 + k1Λ1 + · · · + k`Λ`, we say that a monomial vector
x(π)vΛ = . . . xγ1(−2)a`xγ`(−1)a`−1 · · ·xγ1(−1)a0vΛ ∈ W (Λ) is (k, `+ 1)-admissible
for Λ if it satisfies difference conditions

(3.2) ai + · · ·+ ai+` ≤ k, i ∈ Z+

and initial conditions

a0 ≤ k0(3.3)
a0 + a1 ≤ k0 + k1

. . .

a0 + a1 + · · ·+ a`−1 ≤ k0 + · · ·+ k`−1.

We have the following theorem:

Theorem 3.1. The set of (k, ` + 1)-admissible monomial vectors for Λ is a
basis of W (Λ).

Furthermore, in [20] Primc constructed monomial bases with suitable combi-
natorial description in the case of arbitrary classical simple Lie algebra and for all
possible choices of (2.1), but only for Feigin-Stoyanovsky’s type subspace of basic
module.

It seems that construction of combinatorial bases is also a hard problem when
principal subspaces are concerned. So far, there has been progress in the case of
principal subspaces for sl(` + 1,C)̃: Georgiev in [13] constructed combinatorial
bases, so-called quasi-particle bases, for principal subspaces of all level 1 standard
sl(` + 1,C)̃-modules, as well as for some classes of principal subspaces of higher
level standard modules. Linear independence of these bases was proven using Dong-
Lepowsky’s intertwining operators (cf. [8]).

The use of intertwining operators proved interesting in further exploration of
both Feigin-Stoyanovsky’s type subspaces and principal subspaces. Namely, Cappa-
relli, Lepowsky and Milas in [6, 7] use intertwining operators to calculate recursions
for formal characters and, consequently, to obtain character formulas for principal
subspaces of standard sl(3,C)̃-modules (we give more detailed information on this
line of research in the next section).

Although Capparelli, Lepowsky and Milas have not explicitly worked on com-
binatorial bases of principal subspaces, their use of intertwining operators inspired
Primc in [21] to obtain a simpler proof of Theorem 3.1.

Working also on g = sl(` + 1,C), but in more general setting of an arbitrary
choice for ω (allowing it to be any of the fundamental weights ω1, . . . , ω`) - there-
fore covering all possible Z-gradings (2.1), Trupčević in [24, 25] also uses inter-
twining operators to prove linear independence of combinatorial bases for Feigin-
Stoyanovsky’s type subspaces of all standard g̃-modules at arbitrary integer level.
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Baranović in [3] gives a combinatorial description (in terms of difference and
initial conditions) of bases for Feigin-Stoyanovsky’s type subspaces for level 1 stan-
dard modules for affine Lie algebra of type D(1)

` , and for a specific choice of (2.1).
She then extends her method to obtain combinatorial bases in the case of level 2
standard modules of affine Lie algebra D(1)

4 .
Finding combinatorial bases for Feigin-Stoyanovsky’s type subspaces in other

cases remains an open problem.

4. Exact sequences, recurrences and characters

In the main section of this note we present some results concerning recurrence
relations for characters (i.e. generating functions for dimensions of the homogeneous
components) of both Feigin-Stoyanovsky’s type subspaces and principal subspaces.
For precise definitions of characters please consult papers mentioned below, because
definitions may differ.

Let us first present an overview of results obtained so far for principal subspaces,
having in mind they apply to Feigin-Stoyanovsky’s type subspaces in the case of
g̃ = sl(2,C)̃.

By describing the dual spaces of principal subspaces in terms of symmetric
polynomial forms vanishing on certain hyperplanes, Feigin and Stoyanovsky in
[23] obtained character formulas for principal subspaces of integer level standard
sl(2,C)̃-modules, as well as for vacuum standard sl(3,C)̃-modules.

As already mentioned in previous section, Georgiev in [13] used intertwining
operators between standard modules to obtain quasi-particle bases. Consequently,
he was able to calculate character formulas for principal subspaces of fundamental
sl(` + 1,C)̃-modules, while for higher integer levels he calculated characters for
W (k0Λ0 + kjΛj), k0, kj ∈ Z+, and j = 1, . . . , `.

Capparelli, Lepowsky and Milas extended Georgiev’s method to obtain the fo-
llowing exact sequences of principal subspaces of level k standard sl(2,C)̃-modules:

0 −→W ((k − i)Λ0 + iΛ1)
e
α/2
(k)−→W (iΛ0 + (k − i)Λ1)

oY(v(k−1)Λ0+Λ1 )
−−−−−−−−−−−→

−→W ((i− 1)Λ0 + (k − i+ 1)Λ1) −→ 0

0 −→W (kΛ0)
e
α/2
(k)−→W (kΛ1) −→ 0,

for all i = 1, . . . , k. Here e
α/2
(k) represents certain linear map between standard

modules, and oY(v(k−1)Λ0+Λ1) coefficients of suitably chosen intertwining operators
associated to standard modules (cf. [6, 7] for details). As a direct consequence of
this result they obtained recursions for characters of principal subspaces appearing
above (cf. (4.9) and (4.10) in [7]). It turned out that these recursions precisely
equal the previously known Rogers-Selberg recursions, whose solution has already
been given by Andrews (cf. [1, 2]). Thus they directly recovered formulas for
characters of principal subspaces of level k standard sl(2,C)̃-modules, confirming
results of [23, 13]:

χ(W (iΛ0 + (k − i)Λ1))(z; q) =
∑
n≥0

∑
N1+···+Nk=n
N1≥···≥Nk≥0

qN
2
1 +···+N2

k+Ni+1+···+Nk

(q)N1−N2 · · · (q)Nk−1−Nk(q)Nk
zn,
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for every i = 0, . . . , k, with (q)n = (1 − q)(1 − q2) · · · (1 − qn) for n ≥ 0, z and q
being formal variables.

As a continuation of the above mentioned approach, Calinescu in [4] obtained
a family of exact sequences for principal subspaces of basic sl(`+ 1,C)̃-modules:

0 −→W (Λ1) eλ
1

−→W (Λ0)
Yc(eλ1 ,z)−−−−−−→W (Λ1) −→ 0,

0 −→W (Λ2) eλ
2

−→W (Λ0)
Yc(eλ2 ,z)−−−−−−→W (Λ2) −→ 0,

...

0 −→W (Λ`)
eλ
`

−→W (Λ0)
Yc(eλ` ,z)−−−−−−→W (Λ`) −→ 0,

where eλ
j

are certain linear maps, and Yc(eλj , z) correspond to suitable intertwining
operators (cf. [4] for details). From these sequences Calinescu gets a complete set
of recursions for characters of principal subspace W (Λ0) (with A = (aij)1≤i,j≤`
being Cartan matrix of sl(`+ 1,C)):

χ(W (Λ0))(z1, . . . , z`; q) = χ(W (Λ0))(z1, . . . , (zjq)
ajj
2 , . . . , z`; q)+

+ (zjq)
ajj
2 χ(W (Λ0))(z1q

aj1 , z2q
aj2 , z3q

aj3 , . . . , z`q
aj` ; q),

for j = 1, . . . , `. By directly solving this system she obtains following character
formulas for principal subspaces of basic sl(`+ 1,C)̃-modules:

χ(W (Λi))(z1, . . . , z`; q) =
∑

n1,...,n`≥0

qn
2
1+···+n2

`+ni−n2n1−···−n`n`−1

(q)n1 · · · (q)n`
zn1

1 · · · z
n`
` ,

for i = 0, . . . , ` (and, for j = 0, n0 appearing in the numerator set to be zero), thus
confirming Georgiev’s result (cf. formula (4.20) in [13]).

In [5] Calinescu applies this approach to obtain two families of exact sequences
for principal subspaces of arbitrary level k standard sl(3,C)̃-modules:

0 −→W (iΛ1 + (k − i)Λ2)
eλ(k)−→W (iΛ0 + (k − i)Λ1)

Yc(v(k−1)Λ0+Λ1 ,z)−−−−−−−−−−−−→
−→W ((i− 1)Λ0 + (k − i+ 1)Λ1) −→ 0

0 −→W ((k − i)Λ1 + iΛ2)
eβ(k)−→W (iΛ0 + (k − i)Λ2)

Yc(v(k−1)Λ0+Λ2 ,z)−−−−−−−−−−−−→
−→W ((i− 1)Λ0 + (k − i+ 1)Λ2) −→ 0,

for any i with 1 ≤ i ≤ k. Given these sequences Calinescu derived a system of
recurrences for W (iΛ0 + (k − i)Λj), 1 ≤ i ≤ k and j = 1, 2 (cf. Theorem 4.2 in
[5]), and was able to show that it is satisfied by the following formulas previously
obtained in [13]:

χ(W (iΛ0 + (k − i)Λj))(z1, z2; q) =

=
∑

n1,n2≥0

∑
∑k
t=1 N1,t=n1

N1,1≥···≥N1,k≥0∑k
t=1 N2,t=n2

N2,1≥···≥N2,k≥0

q
∑k
t=1(N2

1,t+N
2
2,t−N1,tN2,t)+

∑k
t=1(N1,tδ1,jt+N2,tδ2,jt )

(q)N1,1−N1,2 · · · (q)N1,k(q)N2,1−N2,2 · · · (q)N2,k

zn1
1 zn2

2 ,
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where jt = 0 for 0 ≤ t ≤ i and jt = j for i < t ≤ k. Going a step further,
Calinescu calculates previously unknown character formulas for W (iΛ1 +(k− i)Λ2)
for 1 ≤ i ≤ k − 1 (cf. Corollary 4.1 in [5]).

Let us now turn to Feigin-Stoyanovsky’s type subspaces. Since these subspaces
do not differ from principal subspaces in the case of sl(2,C), we will start presenting
the results obtained for g = sl(3,C). Feigin, Jimbo, Miwa, Mukhin and Takeyama in
[10] embed the dual space of principal subspace W (Λ) for level k standard modules
into the space of symmetric polynomials, where they introduce the so-called Gordon
filtration. By explicitly calculating components of the associated graded space
(using vertex operators), they obtained principally specialized character formulas
for W (Λ) in the case of Λ = k0Λ0 + k1Λ1, with k0, k1 ∈ Z+ such that k0 + k1 = k:

χ(W (k0Λ0 + k1Λ1))(z; q) =(4.1) ∑
n≥0

∑
l1+l2=n
l1,l2≥0

∑
∑
j jmi,j=li
i=1,2

q
tmAm−(diagA)·m+2c

(3)
k0
·m

(q2)m1,1 · · · (q2)m1,k(q2)m2,1 · · · (q2)m2,k

ql2zn,

where

A =
(
A(2) B(3)

B(3) A(2)

)
A(2) = (A(2)

ab )1≤a,b≤k, A
(2)
ab = 2min(a, b)

B(3) = (B(3)
ab )1≤a,b≤k, B

(3)
ab = max(0, a+ b− k)

c
(3)
k0

= (0, . . . , 0, 1, 2, . . . , k − k0︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
k

)

m = t(m1,1, . . . ,m1,k,m2,1, . . . ,m2,k).

We now provide an exposition of new results obtained for g = sl(` + 1,C) in
[14, 15]. In these papers we use both intertwining operators between standard
g̃-modules and the fact that the combinatorial bases are known (cf. Theorem 3.1)
to obtain the exact sequences of Feigin-Stoyanovsky’s type subspaces for standard
modules at arbitrary integer level, as well as the accompanying systems of recu-
rrence relations for their formal characters. Furthermore, we were able to obtain
the character formulas in some cases.

We review shortly the vertex operator construction of fundamental g̃-modules,
as well as a definition of Dong-Lepowsky’s intertwining operators (cf. [11, 22, 12,
8] for details).

Denote by M(1) the Fock space for the homogeneous Heisenberg subalgebra
and by C[P ] the group algebra of the weight lattice (with a basis eλ, λ ∈ P ). It is a
well-known fact that M(1)⊗ C[P ] obtains the structure of g̃-module by extending
the action of Heisenberg subalgebra via the vertex operator formula

(4.2) xα(z) = E−(−α, z)E+(−α, z)eαzα,

where xα are properly chosen root vectors, and zα = 1 ⊗ zα, zαeλ = z〈α,λ〉,

E±(α, z) = E±(α, z)⊗ 1 = exp
(∑

n>0 α(±n)z∓n
/

(±n)
)
⊗ 1. Then

M(1)⊗ C[P ] = L(Λ0) + L(Λ1) + · · ·+ L(Λ`)

and L(Λi) = M(1)⊗eωiC[Q] with highest weight vectors vΛi = 1⊗eωi , i = 0, . . . , `.
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We use certain coefficients of the following intertwining operators

(4.3) Y(1⊗ eλ, z) = E−(−λ, z)E+(−λ, z)eλzλeiπλc(·, λ),

with λ ∈ P and eλ = 1⊗ eλ = 1⊗ eλε(λ, ·) (cf. [8]).
Namely, for λi := ωi − ωi−1, i = 1, . . . , `, define

[i] := Resz−1−〈λi,ωi−1〉ciY(1⊗ eλi , z), i = 1, . . . , `.

By using (4.2) and (4.3) one can prove that for suitably chosen constants ci the
following relations for [i] hold:

L(Λ0)
[1]−→ L(Λ1)

[2]−→ L(Λ2)
[3]−→ . . .

[`−1]−−−→ L(Λ`−1)
[`]−→ L(Λ`)

vΛ0

[1]−→ vΛ1

[2]−→ vΛ2

[3]−→ . . .
[`−1]−−−→ vΛ`−1

[`]−→ vΛ` .(4.4)

By using commutator formula for intertwining operators one shows the important
fact that [i] commute with the action of x(π), with x(π) defined as in (3.1):

(4.5) x(π)[i] = [i]x(π), i = 1, . . . , `.

Furthermore, we will use the so-called simple current operator, a linear bijection
[ω] = eωε(·, ω) on M(1)⊗ C[P ] such that

L(Λ0)
[ω]−−→ L(Λ`)

[ω]−−→ L(Λ`−1)
[ω]−−→ . . .

[ω]−−→ L(Λ1)
[ω]−−→ L(Λ0)

[ω]vΛ0 = vΛ` , [ω]vΛi = xγi(−1)vΛi−1 , i = 1, . . . , `,(4.6)

together with important property

(4.7) x(π)[ω] = [ω]x(π+),

with x(π+) standing for monomial obtained from x(π) by raising degrees of all its
factors by one.

Considering higher level k standard g̃-modules, we will use the fact that for
Λ = k0Λ0 + · · ·+ k`Λ` such that k0 + · · ·+ k` = k, module L(Λ) is embedded in the
appropriate k-fold tensor product of fundamental modules with the highest weight
vector

vΛ = v⊗k`Λ`
⊗ · · · ⊗ v⊗k1

Λ1
⊗ v⊗k0

Λ0
.

For i = 1, . . . , ` and j = 0, . . . , ` denote by [i]j = 1⊗(k−j) ⊗ [i] ⊗ 1⊗(j−1) linear
maps between level k standard g̃-modules, keeping properties (4.4) and (4.5) of [i].
On k-fold tensor products of standard g̃-modules we use also [ω]⊗k, with formulas
analogous to (4.6) and (4.7).

We are now ready to state the result on exactness. Fix K = (k0, . . . , k`) such
that k0 + · · · + k` = k, ki ∈ Z+, i = 0, . . . , `. Denote W = Wk0,k1,...,k` = W (Λ)
for Λ = k0Λ0 + · · · + k`Λ`, and by v highest weight vector of L(Λ). Define also
m = ]{i = 0, . . . , `− 1 | ki 6= 0} and for t = 0, . . . ,m− 1 set

(4.8) It = {{i0, . . . , it−1}|0 ≤ i0 ≤ · · · ≤ it−1 ≤ `− 1, kij 6= 0, j = 0, . . . , t− 1}.
Now, denote

WIt = Wk0,...,ki0−1,ki0+1+1,...,kit−1−1,kit−1+1+1,...,k` ,

and by vIt the corresponding highest weight vector.
Define U(g̃1)−homogeneous mappings ϕt :

∑
It
WIt →

∑
It+1

WIt+1 by

ϕt|WIt
=
∑
i,ki 6=0
i/∈It

(−1)]{j∈It|j<i}[i]k0+···+ki−1 ,
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meaning its action on corresponding highest weight vectors is given by

ϕt(vIt) =
∑
i,ki 6=0
i/∈It

(−1)]{j∈It|j<i}vIt∪{i}.

Theorem 4.1. The following sequence is exact:

0→Wk`,k0,k1,...,k`−1

[ω]⊗k−−−→W
ϕ0−→
∑
I1

WI1
ϕ1−→ . . .

ϕm−1−−−−→WIm → 0.

Example 4.2. For Feigin-Stoyanovsky’s type subspaces of level 2 standard
sl(3,C)̃-modules we have the following family of exact sequences:

0→W0,2,0 →W2,0,0 →W1,1,0 → 0
0→W0,1,1 →W1,1,0 →W0,2,0 ⊕W1,0,1 →W0,1,1 → 0
0→W1,1,0 →W1,0,1 →W0,1,1 → 0
0→W0,0,2 →W0,2,0 →W0,1,1 → 0
0→W1,0,1 →W0,1,1 →W0,0,2 → 0
0→W2,0,0 →W0,0,2 → 0

The proof of Theorem 4.1 relies on the interplay between initial conditions
(3.3) for various dominant integral weights at the fixed level k (note that difference
conditions (3.2) are the same for all Feigin-Stoyanovsky’s type subspaces at the
same integer level), and on the use of properties (4.4) - (4.7), cf. [14] for details.

We proceed by defining formal character of W = W (Λ).

Definition 4.3. For x(π) = . . . xγ1(−2)a`xγ`(−1)a`−1 · · ·xγ1(−1)a0 define de-
gree d(x(π)) =

∑∞
j=0

∑`
i=1(j+1)ai+j`−1 and weight w(x(π)) =

∑∞
j=0

∑`
i=1 γiai+j`−1.

Formal character of W = W (Λ) is given by

χ(W )(z1, . . . , z`; q) =
∑

dimWm,n1,...,n`qmzn1
1 · · · z

n`
` ,

with Wm,n1,...,n` denoting the component of W spanned by basis monomial vectors
x(π)v of degree m and weight n1γ1 + · · ·+ n`γ`.

As a direct consequence of Theorem 4.1 we were able to obtain systems of rela-
tions connecting characters of all Feigin-Stoyanovsky’s type subspaces of arbitrary
integer level k standard sl(`+ 1,C)̃-modules:

∑
I∈D(K)

(−1)|I|χ(WI)(z1, . . . , z`; q) =(4.9)

= (z1q)k0 . . . (z`q)k`−1χ(Wk`,k0,...,k`−1)(z1q, . . . , z`q; q),

where D(K) denotes the set of all It+1 as defined in (4.8).
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Example 4.4. For Feigin-Stoyanovsky’s type subspaces of level 2 standard
sl(3,C)̃-modules we have the following system of relations:

χ(W2,0,0)(z1, z2; q) = χ(W1,1,0)(z1, z2; q) + (z1q)2χ(W0,2,0)(z1q, z2q; q)

χ(W1,1,0)(z1, z2; q) = χ(W0,2,0)(z1, z2; q) + χ(W1,0,1)(z1, z2; q)−
− χ(W0,1,1)(z1, z2; q) + (z1q)(z2q)χ(W0,1,1)(z1q, z2q; q)

χ(W1,0,1)(z1, z2; q) = χ(W0,1,1)(z1, z2; q) + z1qχ(W1,1,0)(z1q, z2q; q)

χ(W0,2,0)(z1, z2; q) = χ(W0,1,1)(z1, z2; q) + (z2q)2χ(W0,0,2)(z1q, z2q; q)

χ(W0,1,1)(z1, z2; q) = χ(W0,0,2)(z1, z2; q) + z2qχ(W1,0,1)(z1q, z2q; q)

χ(W0,0,2)(z1, z2; q) = χ(W2,0,0)(z1q, z2q; q).

If we now write

χ(Wk0,...,k`)(z1, . . . , z`; q) =
∑

n1,...,n`≥0

An1,...,n`
k0,...,k`

(q)zn1
1 · · · z

n`
` ,(4.10)

where An1,...,n`
k0,...,k`

(q) are formal series in formal variable q, system (4.9) reads

(4.11)
∑

I∈D(K)

(−1)|I|An1,...,n`
I (q) = qn1+···+n`A

n1−k0,...,n`−k`−1
k`,k0,...,k`−1

(q).

It is not hard to prove that the system (4.11) consists of relations that are
recursive and that it has a unique solution (not obvious by itself), cf. Propositions
6.2 and 6.3 in [14].

We solved (4.11) (and consequently (4.9)) in case of general ` and k = 1. In
other words, we obtained character formulas in form of (4.10) for Feigin-Stoyanovsky’s
type subspaces W (Λi) of fundamental sl(`+ 1,C)̃-modules, i = 0, . . . , `:

χ(W (Λi))(z1, . . . , z`; q) =
∑

n1,...,n`≥0

qn
2
1+···+n2

`+n1n2+···+n`−1n`+n1+···+ni

(q)n1(q)n2 · · · (q)n`
zn1

1 · · · z
n`
` .

We were also able to prove the following result:

Theorem 4.5. Let Λ = k0Λ0 + k1Λ1 + k2Λ2 be the highest weight of the level
k standard sl(3,C)̃-module L(Λ). For the character of Feigin-Stoyanovsky’s type
subspace W (k0Λ0 + k1Λ1 + k2Λ2) the following formula holds:

χ(W (k0Λ0 + k1Λ1 + k2Λ2))(z1, z2; q) =

=
∑

n1,n2≥0

∑
∑k
i=1 N1,i=n1

N1,1≥···≥N1,k≥0∑k
i=1 N2,i=n2

N2,k≥···≥N2,1≥0

q
∑k
i=1(N2

1,i+N
2
2,i+N1,iN2,i) · LN1,1,...,N1,k,N2,1,...,N2,k

k0,k1,k2
(q)

(q)N1,1−N1,2 · · · (q)N1,k(q)N2,k−N2,k−1 · · · (q)N2,1

zn1
1 zn2

2 ,

where LN1,1,...,N1,k,N2,1,...,N2,k
k0,k1,k2

(q) represents the “linear” term of the nominator:

L
N1,1,...,N1,k,N2,1,...,N2,k
k0,k1,k2

(q) =

=
∑

p∈Pk1+k2

qp1N1,1+···+pkN1,k+p
′
1N2,1+···+p

′
kN2,k

k∏
i=1

(1− δpi−pi+1,−1q
N1,i−N1,i+1),
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with Pk1+k2 = {(p1, . . . , pk) ∈ {0, 1}k|
∑k
i=1 pi = k1 + k2} and N1,k+1, pk+1 set to

be zero. Also, p′ denotes a k-tuple obtained from p by changing all except the first
k2 1’s to zeros.

One should mention that formulas in Theorem 4.5 represent a complete set
of full characters for Feigin-Stoyanovsky’s type subspaces of all standard sl(3,C)̃-
modules, which specially reinstalls the result (4.1). Theorem is proven by directly
checking that formulas for χ(W (k0Λ0 + k1Λ1 + k2Λ2))(z1, z2; q) satisfy the cor-
responding system (4.9); more precisely, by checking that matching An1,n2

k0,k1,k2
(q)

satisfy (4.11). This is done in a somewhat similar fashion as in Andrews’ method
for solving Rogers-Selberg recursions (cf. [1, 15]).

Example 4.6. Let us present “linear” terms in the nominators of character for-
mulas for Feigin-Stoyanovsky’s type subspaces of level 2 standard sl(3,C)̃-modules:

L
N1,1,N1,2,N2,1,N2,2
2,0,0 (q) = 1

L
N1,1,N1,2,N2,1,N2,2
1,1,0 (q) = qN1,2

L
N1,1,N1,2,N2,1,N2,2
1,0,1 (q) = qN1,1+N2,1 + qN1,2+N2,2(1− qN1,1−N1,2)

L
N1,1,N1,2,N2,1,N2,2
0,2,0 (q) = qN1,1+N1,2

L
N1,1,N1,2,N2,1,N2,2
0,1,1 (q) = qN1,1+N1,2+N2,1

L
N1,1,N1,2,N2,1,N2,2
0,0,2 (q) = qN1,1+N1,2+N2,1+N2,2 .

5. Further directions

There are further possible directions for the programme that uses intertwining
operators and combinatorial basis of Feigin-Stoyanovsky’s type subspaces for com-
puting exact sequences of those subspaces and solving systems of recurrences for
their characters. Namely, one could solve system (4.11) for some higher choices of
` and/or k. Furthermore, since all the “ingredients” are already here, it would be
interesting to try to pursue these ideas in the context of [24, 25] or [3], although
this seems to be substantially more challenging task then in [14, 15].
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