New Results on Kochen-Specker Setups

 Cluster Brain BlastMladen Pavičić
mpavicic@grad.hr
http://m3k.grad.hr/pavicic
Physics Chair
Faculty of civil Engineering
University of Zagreb

Kochen-Specker theorem

The Kochen-Specker theorem amounts to the following claim: In $\mathcal{H}^{n}, n \geq 3$, it is impossible to assign 1 s and 0 s to all vectors in such a way that

1. No two orthogonal vectors are both assigned 1;
2. In any subset of n mutually orthogonal vectors, not all of the vectors are assigned 0 .

KS vectors in each KS set form subsets of n mutually orthogonal vectors.

We arrive at one subset from another by a series of rotation in 2-dim planes around ($n-2$)-dim.

Orthogonal Spins

We have to measure spins in $3,4,5, \ldots$ dimensions. Of course in a Hilbert space.

Vectors are orthogonal \Rightarrow nonlinear equations

$$
\begin{aligned}
& \mathbf{a}_{B} \cdot \mathbf{a}_{C}=a_{B 1} a_{C 1}+a_{B 2} a_{C 2}+a_{B 3} a_{C 3}+a_{B 4} a_{C 4}=0 \\
& \mathbf{a}_{B} \cdot \mathbf{a}_{D}=a_{B 1} a_{D 1}+a_{B 2} a_{D 2}+a_{B 3} a_{D 3}+a_{B 4} a_{D 4}=0 \\
& \mathbf{a}_{B} \cdot \mathbf{a}_{E}=a_{B 1} a_{E 1}+a_{B 2} a_{E 2}+a_{B 3} a_{E 3}+a_{B 4} a_{E 4}=0 \\
& \mathbf{a}_{C} \cdot \mathbf{a}_{D}=a_{C 1} a_{D 1}+a_{C 2} a_{D 2}+a_{C 3} a_{D 3}+a_{C 4} a_{D 4}=0 \\
& \mathbf{a}_{C} \cdot \mathbf{a}_{E}=a_{C 1} a_{E 1}+a_{C 2} a_{E 2}+a_{C 3} a_{E 3}+a_{C 4} a_{E 4}=0 \\
& \mathbf{a}_{D} \cdot \mathbf{a}_{E}=a_{D 1} a_{E 1}+a_{D 2} a_{E 2}+a_{D 3} a_{E 3}+a_{D 4} a_{E 4}=0
\end{aligned}
$$

Mission Impossible

To solve these equations for all possible combinations for at least 18 vectors (no solutions below 18) we would need a million ages of the universe on all today's processors on the Globe working in parallel

Exponential \Rightarrow Polynomial

We first "translate" nonlinear equations into linear hypergraphs, diagrams, MMP diagrams.

Next, we impose conditions on generation of hypergraphs. Generation proves to be statistically polynomially complex (SPC).

We filter the obtained hypergraphs by additions conditions. The procedure is also SPC.

In the end we translate a rather "small" number (millions) of hypergraphs back into equations and solve them by means of interval analysis method. Its programs are SPC as well.

Algorithm

Vectors are vertices (points) and orthogonalities between them are edges (lines connecting vertices).

Thus we obtain MMP diagrams which are defined as follows:

1. Every vertex belongs to at least one edge;
2. Every edge contains at least 3 vertices;
3. Edges that intersect each other in $n-2$ vertices contain at least n vertices;

We denote vertices of MMP diagrams by
$1,2, \ldots, A, B, \ldots a, b, \ldots$ There is no upper limit for the number of vertices and/or edges in our algorithms and/or programs.

Generation of MMP diagrams

Solutions!!??

\backslash	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	total
18	1																1
19		1															1
20		1	$4+\boxed{1}$	1													
21			2	11	4	1											
22			1	9	36	23	12	3	1								18
23				2	19	76	79	58	27	11	3	1				85	
24				1	6	39	137	187	188	136	83	$40+\boxed{1}$	18	6	2	1	845
total	1	2	8	24	65	139	228	248	216	147	86	42	18	6	2	1	1233

Boxed in red are the solutions previously found by humans.

It would take over 150 years to generate all the solutions on a single PC


```
Last hour - Sorted descending v
```

CRONGI Grid > --choose a Source -
CRONGI Grid (5 sources) (tree new)

CPUs Total:	796
Hosts up:	77
Hosts down:	0

Hosts down: 0
Avg Load ($15,5,1 \mathrm{~m}$):
$50 \%, 51 \%, 51 \%$
Localtime:
2009-10-26 03:11

CRONGI-IRB-CE Grid (tree view)
CPUs Total: 132
Hosts up: 17
Hosts down: 0
Avg Load ($15,5,1 \mathrm{~m}$):
$77 \%, 77 \%, 77 \%$
Localtime:
2009-10-26 03:11

CRONGI-FESB-CE Grid (tree view)
CPUs Total: 132
Hosts up:
17
Hosts down:
0

Avg Load ($15,5,1 \mathrm{~m}$):
61\%, 61\%, 61\%
Locattime:
2009-10-26 03:11

CRONGI-ETFOS-CE Grid (tree view)

CPUs Total:	136
Hosts up:	17
Hosts down:	0

What have we obtained?
How do our solutions look like?

4-dim 24-24 MMP diagram

4-dim 24-24 MMP diagram

Let us peel off our 24-24 diagram!

It takes 20 min on a single PC to get all solutions.

tttp://arxiv.org/abs/0910.1311 to appear in Physics Letters A

