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a b s t r a c t

This study was designed to demonstrate robust performance of the novel dependent component analysis
(DCA)-based approach to demarcation of the basal cell carcinoma (BCC) through unsupervised decompo-
sition of the red–green–blue (RGB) fluorescent image of the BCC. Robustness to intensity fluctuation is
due to the scale invariance property of DCA algorithms, which exploit spectral and spatial diversities
between the BCC and the surrounding tissue. Used filtering-based DCA approach represents an extension
of the independent component analysis (ICA) and is necessary in order to account for statistical depen-
dence that is induced by spectral similarity between the BCC and surrounding tissue. This generates weak
edges what represents a challenge for other segmentation methods as well. By comparative performance
analysis with state-of-the-art image segmentation methods such as active contours (level set), K-means
clustering, non-negative matrix factorization, ICA and ratio imaging we experimentally demonstrate
good performance of DCA-based BCC demarcation in two demanding scenarios where intensity of the
fluorescent image has been varied almost two orders of magnitude.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction and objectives

Among the skin tumors, basal cell carcinoma (BCC) accounts for
about 80% of all non-melanoma skin cancers [1]. Increased occur-
rence of the skin cancer all over the world [2], implies the large
need for complementary methods for detection and accurate
demarcation of these skin cancers at an early stage to limit the
damage caused by the tumors [3]. Photodynamic diagnoses
(PDD) is a method for tumor demarcation that is based on the visu-
alization of a fluorophore, with the ability to accumulate in tumor
tissue, by the use of fluorescence imaging. A photosensitiser widely
used in clinical applications is d-5 aminolevulinic acid (ALA) in-
duced protoporphyrin IX (PpIX) [1,4–9]. ALA is a non-fluorescent
precursor of fluorescent PpIX, with a degree of selective accumula-
tion shown in a variety of malignancies [10]. Thus, by using suit-
able intensity excitation light, the PpIX can be located in the
tissue by virtue of its fluorescence. Visualization of the PpIX repre-
sents the basis of the PDD of the skin tumors and has been
exploited in the design of the fluorescence imaging systems
[1,3,11–16].

Image processing methods widely used for demarcation of the
BCC after administration with ALA induced PpIX are ratio imaging

method [1,11,13], and threshold based imaging [3]. As it has been
previously demonstrated in [17], accuracy of both methods for tu-
mor demarcation depends essentially on the optimality of the
threshold that up to some extent is defined heuristically. When
intensity of the fluorescence is fluctuating the threshold based
methods will introduce errors in tumor demarcation, what has
been demonstrated in [17]. However, robustness of tumor demar-
cation methods with respect to intensity fluctuation should be of
the interest in the early stages of the tumor development, in which
case detection and accurate demarcation is of special importance.
At this stage, in order to avoid possibility of misunderstanding,
we would like to emphasize difference between tumor demarca-
tion (that is main objective of this paper) and tumor diagnoses.
In tumor demarcation we are interested in accurate calculation
of the tumor boundaries, i.e. tumor localization [10]. This is
achieved by means of various image segmentation algorithms
[3,11–18]. On the other side the purpose of (noninvasive) tumor
diagnoses is identification of and differentiation between various
types of tumors [19–22]. In [19,21,22] multi-spectral imaging sys-
tems were used for the purpose of noninvasive tumor diagnoses
with spectral resolution significantly higher than in the case of
the RGB image.

As pointed out in [3], in order to obtain a reliable contrast
between tumor and normal skin in PDD, it is desirable to keep
the fluorescence variation in ALA treated normal skin as low as
possible. In the comprehensive study conducted in [3] it has been
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demonstrated that optimal contrast is achieved when ALA applica-
tion time is in the range 3–4 h. In such a case it is possible to define
optimal threshold and classify as BCC everything that is above cIa,
where Ia represents average intensity of the region with healthy
skin, and c represents factor that has been empirically found to
be c � 1.4 for 3–4 h of ALA application [3]. In our study we have
adopted different approaches to achieve robust tumor demarca-
tion: derivation of novel unsupervised image segmentation meth-
ods the performance of which remains invariant under wide range
of the variability of the fluorescence intensity. Variation of the fluo-
rescence intensity can be caused by several factors, either individ-
ually or combined: duration of the ALA application time, quality/
concentration of the ALA cream and/or intensity of the illuminating
light.

In [17] unsupervised decomposition of the red–green–blue
(RGB) fluorescent image has been performed by using independent
component analysis (ICA) [23,24] for the purpose of BCC demarca-
tion. ICA is relatively old theory derived over last almost 20 years
for unsupervised analysis of the multivariate data sets. Of the
interest for tumor demarcation is the capability of ICA algorithms
for unsupervised segmentation of multi-spectral and hyper-spec-
tral images [25–27]. Unsupervised segmentation by ICA is based
on assumption of statistical independence among the objects pres-
ent in the multi-spectral fluorescent image of the tumor, where
BCC is one object and surrounding healthy tissue is another object.
Because statistical independence is scale invariant, it is expected
that ICA will be robust with respect to the variation of the intensity
level.

The linear mixture model (LMM), introduced in Section 2.3, as a
representation of the multi-spectral image has this paper the fol-
lowing interpretation: columns of the basis matrix represent spec-
tral profiles of the materials present in the image, while rows of the
source matrix represent spatial distributions of the materials. That
is why blind source separation methods when applied to LMM of
the multi-spectral image perform its segmentation. As discussed
in more details in Section 2.3, adopted interpretation implies that
spectrally similar materials will also have partially statistically
dependent spatial distributions. As opposed to this interpretation,
approaches to blind spectral unmixing such as [27–29] are based
on the following interpretation of the LMM of the multi-spectral
and/or hyper-spectral image: columns of the basis matrix are
reflectance of the materials and columns of the source matrix are
fractional abundances representing the percentage of the pixel
footprint occupied by each material. Because sum of the fractional
abundances must be one, this sum-to-one constraint implies their
statistical dependence. Following our interpretation of the LMM,
we shall demonstrate that for the low-dimensional multi-spectral
images, such as RGB image for example, statistical independence
assumption among the spatial distributions of the objects present
in the image scene is violated due to the partial overlapping of the
spectra of the objects. Thus, coarse spectral resolution of the RGB
image causes partial statistical dependence between the objects
in the spatial domain and deteriorates performance of the ICA-
based approach to tumor demarcation problem. In this paper we
apply filtering-based dependent component analysis (DCA) [30–
36], to fix the statistical dependence problem systematically. This
is achieved combining the high-pass filtering like linear prepro-
cessing transform and ICA in transformed domain where statistical
independence among the objects present in the fluorescent multi-
spectral image is increased. High-pass filtering-based DCA selected
is selected due the known empirical fact [24,35,37], that it is the
low-frequency part of the source spectrum that is responsible for
statistical dependence among the sources. The main objective of
this paper is experimental demonstration of the capability of the
proposed DCA-based multi-spectral image decomposition to yield
an accurate estimate of the tumor demarcation line under high

degree of variability of the intensity of the fluorescent image. This
should lay down foundation for the design of the autonomous sys-
tems capable for robust calculation of the tumor demarcation lines
in the real world clinical conditions.

2. Materials and methods

2.1. Patients

Patients with histologically verified diagnoses of superficial
multicentric basal cell carcinomas in the lower right part of the
back were admitted in Outpatient department of dermatovenerol-
ogy in the Clinic of Dermatovenerology, Clinical Hospital Split. The
study protocol, patient information and consent forms were ap-
proved by an independent ethics committee before patients were
enrolled in the study. The ALA cream was prepared at the hospital
pharmacy. It consisted of 20% 5-ALA-HCl (Medac, Hamburg, Ger-
many) in an oinment base (Belobaza, Belupo, Koprivnica, Croatia),
2% of dimethylsulfoxide (DMSO) and 2% of edetic acid disodium
salt (EDTA) (Titriplex III, Merck, Germany). The cream was pre-
pared daily just prior the application. After cleaning the area with
a saline solution, the cream has been applied to a thickness of
approximately 1 mm covering the treated area and 1 cm of the sur-
rounding skin. The area was covered by plastic occlusive dressing
(Tegaderm, 3M, UK) and an aluminum foil on the top in order to
protect treated skin from exposure to environment light. The size
of the treated area was in the range 3 � 3 cm. Before imaging,
the occlusive dressing was removed and cream was wiped off
gently with gauze. After imaging, disinfection of treated area was
done and demarcation line was marked by tissue marking dye
(TBS, Triangle Biomedical Sciences, Inc., Durham, NC, USA). There-
after, surgical excision was obtained and specimens were fixed in
10% formalin and sent in the Laboratory for dermatopathology.

2.2. Fluorescence imaging

Fluorescence imaging has been performed by apparatus consist-
ing of commercial RGB digital camera with precise manual focus-
ing capability and illuminator. Illuminator is based on the cluster
of light emitting diodes arranged circularly around camera lens
and emitting in the range of 405 nm, which matches the absorp-
tion spectrum of PpIX. The fluorescence emission spectrum of PpIX
has a dominant peak at 635 nm. Both spot diameter and fluores-
cence intensity can be adjusted independently in the range of 2–
100 cm and 0.01–100 mw/cm2, respectively. Depending on spot
size and intensity applied, exposure time for capturing fluores-
cence images ranges from 0.01 to 10 s. The camera produced 24-
bit RGB colored image (8 bits per color) with spatial resolution of
2352 � 3136 pixels. Because the projection of the field of view
on the skin of the patients was approximately 10 � 10 cm this
yielded the pixel footprint of approximately 0.0014 mm2, i.e. the
spatial resolution in the experimental setup was extremely fine.

2.3. Multi-spectral imaging

RGB image is a multi-spectral image with the coarse spectral
resolution. It is suitable for the application of the multivariate data
analysis methods such as ICA and DCA in order to achieve unsuper-
vised extraction of the BCC spatial map. This holds true as long as
the fluorescent image consists of three or less objects. For the sake
of illustration Fig. 1a–c1 shows RGB fluorescent image of the BCC
acquired under different intensities of illumination with 405 nm

1 For interpretation of color in Figs. 1–3, 6–10, 12, the reader is referred to the web
version of this article.
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light. For the segmentation purpose multi-spectral image is repre-
sented in a form of the LMM [17,25,26,38–41]

X ¼ AS ð1Þ

where X 2 RN�T
0þ represents multi-spectral image consisting of N

spectral bands and T = P � Q pixels, A 2 RN�M
0þ represents basis or

mixing matrix and S 2 RM�T
0þ represents matrix of the M objects or

classes present in the image scene. Each row of X and S is a signal
or 1D image representation obtained from its 2D counterpart by
some 2D ? 1D mapping. Most common type of mapping is the col-
umn- or row-stacking procedure also called vectorization. Because
we are concerned with an unsupervised image decomposition prob-
lem, we assume X, A and S to be non-negative.

Representation of multi-spectral image with LMM (1) converts
image segmentation problem into LMM decomposition problem.
When mixing matrix A is known decomposition problem is effi-
ciently solved on supervised way through the least-squares ap-
proach. However, in a number of real word problems it is
impossible to know the mixing matrix A, in which case decompo-
sition problem must be solved in unsupervised manner. This is
quite a challenging problem because both mixing matrix A and ob-
ject matrix S must be estimated having at disposal multi-spectral
image matrix X only.

The LMM (1) is widely used in multi-spectral and hyper-spec-
tral remote sensing where 3D image cube contains co-registered
spectral images of the same scene. Within this application field,
N represents the number of spectral bands; rows xnf gN

n¼1 of X rep-
resent spectral images, and columns of X represent multi-spectral
pixel vectors at particular spatial locations, t 6 T, in the image; T
represents the number of pixels in the image, column vectors
amf gM

m¼1 of the basis matrix A represent spectral responses of the
materials present in the image, while rows of S represent spatial
distributions of these materials. Assuming that X represents an
RGB image the number of spectral bands equals N = 3. Adopted
interpretation of the LMM (1) converts image segmentation prob-
lem to blind source separation problem. Following this interpreta-
tion we immediately see that spectral similarity of the objects sm

and sn will affect the condition number of the basis matrix, because
the corresponding column vectors am and an become collinear.

When the objects have the same spectral responses the column
rank of the basis matrix is less than the number of objects M. More-
over, the corresponding objects become statistically dependent.
This is easily verified by assuming that two objects sm and sn are
spectrally very similar. Then an ffi cam, where c represents the
intensity scaling factor. The contribution of these two objects at
any pixel location t is: amsmt + ansnt ffi amsmt + amcsnt, implying that
sm and csn are indistinguishable, i.e. sm and sn are statistically
dependent. Hence, fundamental requirement imposed by the ICA
algorithms on the LMM fails when materials, tumor and surround-
ing healthy tissue, become spectrally similar. This occurs for exam-
ple when tumor is at an early stage of development. This spectral
similarity problem presents a motivation to look for an extension
of the basic ICA theory in order to achieve more accurate blind seg-
mentation/separation of statistically dependent objects. As op-
posed to adopted interpretation of the LMM (1) approaches to
blind spectral unmixing described in [27–29] presume that
columns of the basis matrix are reflectance of the materials and
columns of the source matrix are fractional abundances represent-
ing the percentage of the pixel footprint occupied by each material.
Since sum of the fractional abundances must be one, it implies that
sources (fractional abundances) are statistically dependent. Filter-
ing-based DCA used in this paper is not capable to take into ac-
count sum-to-one constraint but is suitable to remove low-
frequency part of the source spectra that causes dependence be-
tween the sources (spatial distributions of the materials present
in the image).

2.4. Dependent component analysis

The basic idea behind ICA is to decompose a set of multivariate
signals into a basis of statistically independent sources with the
minimal loss of information content so as to achieve detection
and classification. In the unsupervised segmentation problem,
which for the case of multi-spectral image is represented by
LMM (1), this implies estimation of the spectral reflectance matrix
A and materials spatial distributions matrix S having at disposal
multi-spectral image X only. As already said, ICA solves related

Fig. 1. RGB fluorescent images of the BCC from the first patient acquired under different intensities of illumination: (a) illumination with the maximal intensity I0; (b)
illumination with the intensity I0/9.15; illumination with the intensity I0/73.47; (d) RGB fluorescent image with demarcation line manually marked by the red dots.
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BSS problem under three assumptions made on the unknown
source signals smf gM

m¼1: (1) each source signal is an independent
identically distributed (i.i.d.) stationary random process; (2) the
source signals are statistically independent at any position; and
(3) at most one among the source signals has Gaussian distribu-
tion. The mixing matrix A although unknown is also assumed to
be non-singular. Then, the solution to the blind source separation
problem (BSS) is obtained with the scale and permutation indeter-
minacy, i.e. WA ¼ PK, where W represents the unmixing matrix, P
is a generalized permutation matrix, and K is a diagonal matrix.
These requirements ensure the existence and uniqueness of the
solution to the BSS problem up to the ordering, sign and scale
[23,24]. Thus, ICA algorithms possess the scale invariance property
what makes them attractive for the use in demarcation of the BCC
from the RGB fluorescence image when the absolute fluorescence
level may vary from measurement to measurement.

However, we have shown that spectral similarity between the
materials present in the multi-spectral image induces statistical
dependence among them. Thus, one of the basic assumptions upon
which the ICA theory is built on, statistical independence among
the objects, is violated when they become spectrally similar. Filter-
ing-based DCA represents an extension of the ICA in the solution of
the BSS problem with statistically dependent sources. The strategy
behind filtering-based DCA is to find a linear transform T that im-
proves statistical independence between the sources S in trans-
formed domain, i.e.

TðXÞ ¼ TðASÞ ffi ATðSÞ ð2Þ

Since low-frequency part of the source spectrum is responsible
for dependence among the sources [24,35,37], linear transform is
expected to behave as high-pass filter. Examples of such transform
are: high-pass filtering (HPF) [35]; innovation (Inn) [31]; low-pass
filtering with variable size [32], and wavelet transforms (WT)
[33,34]. HPF can be seen as a special case of the innovations based
preprocessing, wherein innovations provide data adaptive filtering.

Data adaptive filtering makes innovations an optimal choice for fil-
tering-based DCA. Arguments for using innovations (prediction er-
rors) are that they are more independent and more non-Gaussian
than original processes. This is of essential importance for the
use of ICA after innovations-based filtering. The innovation process
is defined as prediction error:

~smðtÞ ¼ smðtÞ �
XL

l¼1

bmlsmðt � lÞ m ¼ 1; . . . ;M ð3Þ

where bm is the vector of prediction coefficients. ~smðtÞ represents
new information that sm(t) has but is not contained in the past L
samples. When innovations representation (3) is applied row-wise
to the LMM (1) it follows:

eX ¼ AeS ð4Þ

However, it has been already demonstrated in [24,31,33], that
computationally very simple first order differentiator with the im-
pulse response h = [1 �1] yields good performance in the image
processing-type of applications. It can be seen as a first order inno-
vation process and has been used in our implementation of the
HPF-based DCA algorithm in the experiments reported in Section 3.

Because the sources in the new representation space will be less
statistically dependent, any ICA algorithm derived for the original
BSS problem represented by the LMM (1), can be used to learn
the basis matrix A. Once the basis matrix A is estimated, the
sources S are recovered by applying the pseudo-inverse of A on
the multi-spectral image X in (1). In our experiments we have used
enhanced version [42], of the FastICA algorithm [43,44] due to its
property of being asymptotically statistically efficient.

Non-negative matrix factorization (NMF) algorithms [45–48],
can be viewed as a special class of the DCA algorithms, because
they are also applicable to the LMM (1) since the variables in the
model are non-negative. The NMF algorithms do not impose statis-
tical independence and non-Gaussianity requirements on the

Fig. 2. Histograms of the grayscale versions of the RGB color images of the BCC respectively shown in Fig. 1a–c.
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sources. However, NMF algorithms generally require N�M. This
makes them not good candidate for unsupervised decomposition
problems when X represents a low-dimensional multi-spectral im-
age, such as RGB image, in which case N is small. Moreover, NMF
algorithms without additional constraints imposed on the sources
(the most often used constraints is sparseness) produce factoriza-
tion that is not unique [46,48]. Using a gradient descent approach
to NMF yields multiplicative NMF algorithms [45,46,48]. They are
known to be very slowly convergent and easily get stuck in local
minima. Therefore, in [47] an algorithm was recently derived that
is based on the use of second-order terms, Hessian, in the Taylor
expansion of a cost function to speed up convergence. Specifically,
the NMF algorithm used in the experiments in the cited paper
combines quasi-Newton optimization for basis matrix A and a
fixed-point regularized least-square algorithm for S, with com-
puter code provided in the appendix in [47]. Excellent performance
of this algorithm has been in [46,47]. We have used this NMF algo-
rithm in the comparative experimental performance analysis pre-
sented in Section 3. Despite the fact that no hard constrains were

imposed on the sources this NMF method yielded meaningful re-
sult, that however was inferior in relation to the one obtained by
HPF-based DCA algorithm.

3. Results

In study conducted in this paper we have proposed unsuper-
vised tumor demarcation method the performance of which re-
mains invariant under wide range of the variability of the
fluorescence intensity. To verify performance of various tumor
demarcation methods we have illuminated BCC on two patients
with different intensity levels ranging from some reference level
I0 to the level I0/73.47 in the case of first patient, i.e. from reference
level I0 to the level I0/58.67 in the case of second patient. Fig. 1a–c
shows fluorescent RGB images of the BCC of the first patient.
Images were acquired after illumination with the intensity I0,
Fig. 1a; intensity I0/9.15, Fig. 1b; and intensity I0/73.47, Fig. 1c.
Fig. 1d shows RGB image of the same tumor with demarcation line
marked by red dots. Fig. 10a–c shows fluorescent RGB images of
the BCC of the second patient. Images were acquired after illumina-
tion with the intensity I0, Fig. 10a; intensity I0/12.22, Fig. 1b; and
intensity I0/58.67, Fig. 10c. Through biopsy, described in Section
2.1, it has been verified that there is no tumor outside of the region
marked by red dots. Thus, Fig. 1d can serve as a reference in com-
parative performance analysis of the tumor demarcation methods.
The biopsy procedure has been also performed on the tumor of the
second patient.

Fig. 2a–c presents histograms of the grayscale images obtained
from RGB images shown in Fig. 1a–c by MATLAB command
rgb2gray. Evidently, not full dynamic range of the camera has
been used. However, it was our intention to verify the robustness
of the segmentation methods with respect to fluctuation of the
intensity of fluorescence without having any external interfering
factor. Therefore, once the camera was adjusted the setup was
fixed while images were acquired after intensity of the illuminat-
ing light has been varied.

Fig. 3. Evolution curve after 700 iterations calculated by the level set method
[46,49] and superimposed on the gray scale version of the fluorescent RGB image
shown in Fig. 1a.

Fig. 4. Segmentation results obtained by: (a) K-means algorithm applied on gray scale version of the Fig. 1a for the interclass distance set to 45; (b) similar as (a) but with
interclass distance set to 95; (c) ratio imaging method applied on fluorescent RGB image shown in Fig. 1a with threshold set to 5; (d) similar as (c) but with threshold set to 10.
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In addition to NMF, ICA, filtering-based DCA and ratio-imaging
algorithms we have also tested state-of-the-art intensity based im-
age segmentation methods. Representatives of this class of meth-
ods are active contour or level set methods [49–52] and
clustering-based methods [53,54]. In particular we have tested
recently derived level set algorithm [52], that exhibits robust
performance in the presence of weak boundaries and K-means
clustering algorithm [54]. A computer code for the MATLAB imple-
mentation of the level set algorithm [53] has been downloaded
from [55] under category: image segmentation. In the initialization
of the K-means algorithm we have used a priori information about
number of clusters to be 2. We have applied level set and K-means
algorithm on gray scale version of the RGB image shown in Fig. 1a,
and ratio imaging method [1,11,13] on the fluorescence RGB im-
age. We remind that Fig. 1a has been acquired under illumination

with maximal intensity. Fig. 3 shows evolution curve estimated by
the level set algorithm [52,55] after 700 iterations and superim-
posed on the gray scale version of the Fig. 1a. Although the contrast
on the original image was maximal, in comparison to other ac-
quired fluorescent images, the method failed to converge toward
tumor boundaries. Fig. 4a–b shows results obtained by K-means
algorithm based segmentation of the gray scale version of the
Fig. 1a, with two predefined values of the interclass distances in
the clustering procedure. Fig. 4c–d shows result obtained by apply-
ing ratio imaging method with two threshold levels, 5 and 10, on
the fluorescent RGB image shown in Fig. 1a. While K-means clus-
tering yielded robust result for different interclass distances, ratio
imaging method demonstrated great level of sensitivity with re-
spect to the threshold level that is difficult to define optimally.
When K-means algorithm was applied on the gray scale version

Fig. 6. BCC spatial maps in extracted from fluorescent RGB images shown in Fig. 1a–c by means of EFICA algorithm [36]. Extracted maps are normalized on interval [0, 1] and
shown in pseudo-color scale.

Fig. 7. BCC spatial maps in extracted from fluorescent RGB images shown in Fig. 1a–c by means of DCA-HPF algorithm. Extracted maps are normalized on interval [0, 1] and
shown in pseudo-color scale.

Fig. 5. Segmentation results obtained by K-means algorithm applied on gray scale version of the Fig. 1b for: (a) the interclass distance set to 45 and (b) the interclass distance
set to 95.

I. Kopriva et al. / Journal of Photochemistry and Photobiology B: Biology 100 (2010) 10–18 15
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of the fluorescent RGB image shown in Fig. 1b, with the same val-
ues for interclass distances as in Fig. 4a–b, obtained results are
shown in Fig. 5a–b. In direct comparison with Fig. 4a–b, as well
as with Fig. 1a–d, it is evident that K-means algorithm was not able
to yield stable estimate of the tumor class when contrast between
tumor and surrounding tissue decreased.

The following set of results demonstrates robustness of DCA
algorithms, specifically DCA-HPF algorithm, with respect to inten-
sity fluctuation of the fluorescent RGB images of the BCC. For this
purpose we first show in Fig. 6a–c the BCC spatial maps extracted
from Figs. 1a–c by means of the EFICA algorithm [42]. Evidently,

the contrast between BCC and surrounding tissue fluctuates and
it is impossible to define a single threshold in order to calculate tu-
mor demarcation line. On the contrary, BCC spatial maps shown in
Fig. 7a–c, that are extracted from Fig. 1a–c by means of DCA-HPF
algorithm, exhibit good contrast between BCC and surrounding tis-
sue. This enables to define a unique threshold set to 0.5. Demarca-
tion lines calculated by means of Canny’s edge extraction
algorithm from Fig. 7a–c, with threshold set to 0.5, are superim-
posed on the gray scale version of the original fluorescent RGB
images and shown in Fig. 8a–c. In direct comparison with Fig. 1a
and d it is evident that demarcation line remains stable, apart from
the fact that line on Fig. 8c is slightly affected by the noise. It is
however important to emphasize that DCA-HPF algorithm deliv-
ered stable estimate of the demarcation line when intensity of
the fluorescence image varied almost two orders of magnitudes.
To further support this statement we show in Fig. 9 length of
demarcation lines estimated by NMF and DCA algorithms for
different levels of the intensity of the illuminating light. Demarca-
tion lines from ICA extracted spatial maps of the BCC were not cal-
culated due to the fact that the results obtained with a fixed
threshold set to 0.5 were extremely poor.

To provide further arguments for robustness of the proposed
DCA-based tumor demarcation algorithms we have repeated pro-
cedure described above on the fluorescent images of the BCC of
the second patient. They are shown in Fig. 10a–c. BCC spatial maps
extracted from RGB images shown in Fig. 10a–c by means of DCA-
HPF algorithm are shown in Fig. 11a–c. Good contrast between BCC
and surrounding tissue is achieved. This enabled to define a unique
threshold set to 0.5 when calculating tumor demarcation line by
means of Canny’s edge extraction algorithm. It is important to
emphasize again that DCA algorithms delivered stable estimate
of the demarcation line when intensity of the fluorescence image

Fig. 9. Estimated lengths of the demarcation lines in pixels. Demarcation lines were
calculated by means of Canny’s edge extraction method with a fixed threshold set
to 0.5, and from the BCC spatial maps extracted from the fluorescent RGB images by
means of NMF and DCA algorithms. Legend: red circles – DCA-HPF algorithm
[30,31]; green diamonds – DCA WT algorithm [30]; blue triangles – DCA Inn
algorithm [28]; magenta stars – SO NMF algorithm [42].

Fig. 10. RGB fluorescent images of the BCC from the second patient acquired under different intensities of illumination: (a) illumination with the maximal intensity I0; and (b)
illumination with the intensity I0/12.21; illumination with the intensity I0/58.67.

Fig. 8. BCC demarcation lines calculated by means of Canny’s edge extraction method from spatial maps shown in Fig. 7a–c, with a fixed threshold set to 0.5. Demarcation
lines were superimposed on the gray scale version of the fluorescent RGB images shown in Fig. 1a–c.
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varied almost two orders of magnitude. This is demonstrated in
Fig. 12, where lengths of demarcation lines estimated by NMF
and DCA algorithms are shown for different levels of the intensity
of the illuminating light.

Although with the low computational complexity among com-
pared methods, DCA-HPF algorithm exhibited good performance
in terms of the robustness of the estimated demarcation lines. In
the case of first patient the mean value of length of the demarca-
tion line extracted by DCA-HPF algorithm was 1427.2 pixels with
a standard deviation of 150 pixels. DCA WT algorithm yields mean
value of 1724.1 pixels and standard deviation of 745.6 pixels. In the
case of second patient the mean value of length of the demarcation
line extracted by DCA-HPF algorithm was 462.43 pixels with a
standard deviation of 33 pixels. DCA WT algorithm yields mean va-
lue of 448.29 pixels and standard deviation of 23.27 pixels.

Computation times were estimated on the RGB image shown in
Fig. 1a with the size of 500 � 700 pixels, in MATLAB environment
on a 2.4 GHz Intel Core 2 Quad Processor Q6600 based desktop
computer with 4 GB RAM. They are respectively given for the
HPF, WT, Inn and SO NMF algorithms as follows: 8.1 s, 7.8 s,
15.5 s and 10 s. In the implementation of the innovation-based
DCA algorithm a 10th order linear prediction filter has been used.

4. Discussion

The fluorescence contrast between the tumor and normal skin
is of essential importance for the reliable demarcation of the tumor

tissue from the normal skin by means of PDD. This implies low var-
iation of the intensity of the fluorescence image of the ALA treated
normal skin [3]. However, variation of the fluorescence intensity
may be caused by the variation of several factors, either individu-
ally or combined: duration of the ALA application time, quality/
concentration of the ALA cream and/or intensity of the illuminating
light. Hence, in the conducted study we have presented novel ap-
proach for robust tumor demarcation: unsupervised image seg-
mentation methods the performance of which remains invariant
under wide range of the variability of the fluorescence intensity.
The approach exploits spectral and spatial diversities between
the tumor and the surrounding skin in the recorded fluorescent
multi-spectral RGB image. It is based on the recent extension of
the ICA theory known under the common name of DCA. DCA is
necessary to account for statistical dependence among the spatial
maps of the tumor and surrounding tissue. Statistical dependence
is caused by spectral similarity between the tumor and
surrounding tissue due to the coarse spectral resolution of the
RGB image as well as due to the deviation of discussed variables
from their optimal values. Unlike several state-of-the art image
segmentation methods, proposed DCA approach to tumor demar-
cation exhibited robust performance when intensity of the fluores-
cence has been varied almost two orders of magnitude. Such high
level of robustness is a consequence of the scale invariance prop-
erty of the used family of DCA algorithms. We conjecture that
DCA in combination with multi-spectral imaging systems may rep-
resent a good solution for a portable optical detection system
which does not require calibration and can be operated easily. This
should lay down foundation for the design of the autonomous sys-
tems capable for robust calculation of the tumor demarcation lines
in the real world clinical conditions.

5. Abbreviations

ALA d-5 aminolaevulinic acid
BCC basal cell carcinoma
BSS blind source separation
DC direct current
DCA dependent component analysis
HPF high-pass filter
ICA independent component analysis
Inn innovation
LMM linear mixture model
NMF non-negative matrix factorization
PDD photodynamic diagnosis
PDT photodynamic therapy
Pp IX protoporphyrin IX
RGB red–green–blue
WT wavelet transform

Fig. 12. Estimated lengths of the demarcation lines in pixels. Demarcation lines
were calculated by means of Canny’s edge extraction method with a fixed threshold
set to 0.5, and from the BCC spatial maps extracted from the fluorescent RGB images
by means of NMF and DCA algorithms. Legend: red circles – DCA-HPF algorithm
[30,31]; green diamonds – DCA WT algorithm [30]; blue triangles – DCA Inn
algorithm [28]; magenta stars – SO NMF algorithm [42].

Fig. 11. BCC spatial maps in extracted from fluorescent RGB images shown in Fig. 10a–c by means of EFICA algorithm [36]. Extracted maps are normalized on interval [0, 1]
and shown in pseudo-color scale.
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