
1 INTRODUCTION

Through the use of reliability models, reliability and
maintenance engineers use equipment life data to
estimate its probability to perform the required
functions and to support activities like: planning of
the spare parts, inventory and maintenance activities,
evaluating the personnel or choosing manufacturer
or supplier, Murthy & Rausand & Osteras (2008)
and Percy (2008). In growing complexity of systems
and the need to achieve more with leaner budget,
making the right decisions immediately after the
problem arises is crucial.

Some facts should be mentioned. Failures en-
countered during the operation of the equipment are
well founded on the fact that the data undoubtedly
reflect all influential factors on its reliability and as a
consequence the engineering reliability is failure
oriented. The main goal of engineering maintenance,
on the other hand, is to reduce the number of fail-
ures. Therefore, even if we are dealing with a com-
ponent that is in service for some time, the use of
reliability models is often limited by a lack of satis-
factory data upon which it can be based. This stands
for the so-called 'frequentists' approach to estimation
of unknown model parameters where null hypothe-
ses are possible if a sufficient data are observed. To
solve this problem we may build reliability model on
the data gathered with similar components. Consid-
ering the fact that operating conditions are not nec-
essarily the same, one may say that we are often
dealing with one-of-a-kind situations and the reli-
ability estimates founded on previous experience
alone are not always applicable.

Above mentioned clearly states that neither fail-
ure record or previous experience alone can solve
reliability and maintenance problems and it makes a
great deal of practical sense to use all the informa-
tion available.

It should be pointed out that the non-safety
equipment is expected to fail and the failure record
will increase with time so the concept of learning
from the data is applicable. Safety components that
are impractical to be monitored and due to respec-
tive failure modes are expected to fail are usually in
parallel or redundant configuration. Therefore the
well-prepared maintenance actions significantly
contribute to reliability of the system.

The Bayesian framework for model development
offers a possibility of taking the previous knowledge
and failure data into account. Therefore the model
development is a learning process and knowledge is
continually updated as more information becomes
available. Such analyses are most credibly per-
formed when subject matter experts are involved to
play a key role.

Almost all commercially available reliability da-
tabases provide only constant failure rates, see
Rausand & Høyland (2004) and OREDA (2002).
This may cause some problems. First of all, the ex-
ponential model is not a reasonable choice for
equipment that could endanger the people or envi-
ronment. Secondly, many failure modes listed are
prone to some kind of deterioration process, so the
exponential model is not expected. A further fact
should be mentioned in order to support the use of
this paper. Although the non-aging property would
seem to limit the usefulness of the constant failure
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rate (exponential model), it has continued to play a
critical role in reliability calculations. Many prob-
abilistic models, like reliability block diagrams or
Markov models, are founded on exponential prob-
abilistic model of failure and can be used without
too much difficulty whenever the respective failure
rates are given.

In this paper, first we present the interpretation of
the constant failure rate in reliability modeling. Next
we provide a brief overview of the key concepts of
Bayesian modeling relevant to later discussion.
Since the validity of the results depends on the va-
lidity of the assumptions required by the model, the
derivation of exponential model is presented. Fi-
nally, through some examples we will explain how
to incorporate prior knowledge such as generic data
and expert opinion into the estimation process.

2 CONSTANT FAILURE RATE IN
RELIABILITY MODELING

The example of generic data base is OREDA
(2002). OREDA (Offshore Reliability Data) is the
most known database whose main objectives are:
''collection and analysis of maintenance and opera-
tional data, establishment of a high quality reliabil-
ity database, and exchange of reliability, availabil-
ity, maintenance and safety technology among the
participating companies''. Failure events are gath-
ered from two or more installations, and reflect a
weighted average of the experience. All the failure
rates presented are based on the assumption that the
failure rate is constant and independent of time. The
data compiled in OREDA are directly relevant for
offshore conditions. However, in some cases, con-
sidering the maritime operating conditions and par-
ticular failure mechanism we might justifiably ex-
pect similar frequencies.

For example the failures of valves are presented
from population of 1170 items installed on 40 dif-
ferent offshore platforms. The accumulated (calen-
dar) time in service is 36.67·106 hours, and accumu-
lated operational time is 31.62·106 hours. During
that period the 1017 failures were recorded. Failure
rate is given as mean and its value is 31.05 per 106

and standard deviation is 18.89 per 106 hours for
calendar time. The lower and upper bounds with
90% confidence intervals, and are respectively
λL=7.74 and λU=67,14 failures per 106 hours.

From the foregoing discussion, the analyst must
have an opinion about parameters that must be ex-
pressed through a probability distribution. It is desir-
able that the distribution parameters have proper op-
erational interpretation. First question immediately
rises: why the constant failure rate is given even for
the failures of mechanical components that are
clearly caused by fatigue or wearout. Therefore the
exponential approximation of increasing failure rate
should be considered. The data available for the

analysis is usually the number n of failures during a
observation time in service ∆t = t2 - t1. The failure
rate estimated by n/t will thus be an Average Failure
Rate (AFR)
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where the R(t) is general reliability function and
λ(t) is the respective failure rate function. For the
Weibull model, the failure rate and reliability func-
tions are
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The Weibull probability density is
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where β is the shape parameter and θ is the scale
paramenter. Last three equations are different repre-
sentations of the same model. If the 'real' life distri-
bution is Weibull distribution with an increasing
failure rate function, β > 1, and we use a constant
failure rate estimate, we overestimate the failure rate
in the initial phase and underestimate the failure rate
in the last part of the observation or prediction inter-
val. This is illustrated in Figure.1.

Figure 1. AFR of the Weibull models with β parameter set to
1.4 and 2.5.

This general conclusion rejects all information
regarding most of the mechanical failures with in-
creasing failure rate, expressed in the form of expo-
nential model. To deal with the above shortcoming
we should consider the exponential model when
'real' Weibull model estimates β is in the range 1÷2.



Generally, in that range of β, it in unlikely that the
any kind of periodic maintenance is practically fea-
sible. In such cases, even if the failure rate is in-
creasing, reliability model can be reasonably well
developed on exponential basis. Validity of this ap-
proximation rises when observation window ∆t de-
creases.

In the case of the Weibull distribution, the shape
parameter β i usually related to particular failure
mode and the quality measures of the component in
hand and therefore has no operational meaning.
Therefore the parameter β can be assumed as failure
specific, and constant across the range of stress lev-
els. This cannot be assumed for the scale parameter
θ because it generally changes with the stress ap-
plied. Consequently θ can be assumed as usage or
operational specific parameter.

3 BAYESIAN INFERENCE
This section describes the concept of subjective or
personal probability. In Bayesian reliability analysis,
the statistical model consists of two parts: the likeli-
hood function, f(x│φ) and the prior distribution,
π0(φ). The distribution that represents our knowledge
about these parameters is the prior distribution,
π0(φ). The likelihood function is typically con-
structed from the sampling distribution of the data
and is considered as fixed. The sampling distribution
contains the vector of unknown parameters φ. Once
we acquire the failure data, we regard the sampling
distribution as a function of the unknown parame-
ters. In Bayesian analysis, the likelihood function
and the prior distribution are the basis for parameter
estimation and inference. Mathematically we can
combine prior knowledge with current data through
equation:
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Now, the failure model parameters are random
variables Φ in space Ω, it values φ (for example
Weibull parameters β and θ), are random variables
which behave according to distribution π0(φ). Hence,
before any failures being observed, a'priori estimate
about the expected value of φ from Φ is E[π0(φ)].
Furthermore

( ) ( ) ( )0f x f x, |ϕ ϕ π ϕ= (6)

constitutes the joint density and expression in de-
nominator of Equation 5
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is called the marginal density and can be inter-
preted as normalizing constant, i.e. a constant whose
role is to ensure that posterior π1(φ│x) is a proper

density function. Hence, posterior distribution is al-
ways proportional to joint density:

( ) ( ) ( )1 0x f x| |π ϕ ϑ π ϕ∝ (8)

This process must be repeated as another failure
is acquired and the posterior distribution of Φ be-
comes the prior. The available failure data is denoted
in chronological order by T={T1, T2, ..., Tn}. After
the n-th failure is observed, the prior distribution of
Φ , πn-1(φ), is updated to the posterior distribution of
Φ, πn(φ│T).

From computational viewpoint regarding the
foregoing scheme the first problem arises in solving
the integral in denominator of Equation 5. It is clear
that for the different choices of the prior distribution
π0(φ) the joint density, Equation 6, may take one al-
gebraic form or another. For certain choices of the
prior, the posterior has the same algebraic form as
the prior. Such a choice is a conjugate prior. Conju-
gate priors are shown in Table 1.

Table 1. Conjugate priors
Sampling Distribution Conjugate Prior

Binomial  (π) Beta
Exponential (λ) Gamma
Gamma (κ) Gamma
Multinomial (π) Dirichlet
Multivariate Normal (µ, Σ) Normal Inverse Wishart
Negative Binomial (π) Beta
Normal (µ, σ2 known) Normal
Normal (σ2, µ known) Inverse Gamma
Normal (µ, σ2) Normal Inverse Gamma
Pareto (β) Gamma
Poisson (λ) Gamma
Uniform(0, β) Pareto

There is no one 'correct' way of inputting prior in-
formation and different approaches can give differ-
ent results. From practical viewpoint, prior distribu-
tion should reflect the best available knowledge or
information about unknown parameters and should
not be specified simply for computational conven-
ience. If the conjugate prior distribution that pro-
vides an adequate representation of information can-
not be found, numerical technique, such as MCMC
should be used, Hamada et al. (2008) and Singpur-
walla (2006).

The first order, or so called 'classical', approach to
inference on future failures replaces the unknown
parameters with respective mean value approxima-
tion E[φ]

( ) ( )f x f x ˆ| |ϕ ϕ≈ (9)

which generally yields good approximation in
presence of vast amount of data. Within the Baye-
sian framework it is correct to predict the future fail-
ures with prior-predictive distribution
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or with posterior-predictive distribution
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Since only difference between the two prediction
models is in chronological order, the distribution
that contains more data (the latest) is used for pre-
diction.

Typically physical and statistical arguments re-
garding the prior distribution model should be given
by the informed opinion of the analyst and/or any
chosen subject matter specialists. Arguments must
be supported on: physics of failure theory and com-
putational analysis, prototype testing, generic reli-
ability data and past experience with similar devices.
The foregoing Bayesian updating framework is a
general one. Now, its application will be illustrated
by considering revision of an initial estimate of the
failure rate in the gamma-exponential conjugate
model.

The exponential distribution in terms of the fail-
ures is
( ) ( )f x xexp= Λ −Λ (12)

with Λ, x > 0. The constant failure rate Λ should
be treated as a random variable, and it is necessary
to specify the form of the distribution that it follows.
The model assumed is again exponential

( ) ( )0 expπ λ ν νλ= − (13)

with ν, λ > 0. In Equation 13, ν is the parameter of
this distribution. The dimension of ν is lifetime, be-
ing the inverse of those of λ. If λ designates an esti-
mate of Λ then Equation 12 becomes

( ) ( )f x exp x| λ λ λ= − (14)

with λ, x > 0. And after the occurrence of the first
failure T1, Equation 5 results in:
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In this equation, λ is the unknown parameter of
interest distributed with posterior π1(λ│T1) and π0(λ),
given in Equation. 13, is the prior distribution of λ.
Subsequently f(T1│λ), given in Equation 14, is the
likelihood function that updates a prior distribution.
Equation 13 is computationally convenient but seri-
ously limited in expressing prior knowledge because
it has only one parameter. Within the Bayesian
framework we are free to choose other forms of pri-
ors. Equation 13, can be assumed in gamma form
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with κ, α, λ >0. Expected value and variance of
the gamma distribution are
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Gamma prior, Equation 16, is equal to exponen-
tial prior, Equation 13, when α0=1 and κ0=ν. Gamma
distribution can generate a wide variety of shapes for
the prior distribution by simply modifying the nu-
merical values assigned to parameters α0 and κ0
without impacting mathematical simplicity.

The posterior mean (expected value) is the most
frequently used Bayesian parameter estimator. The
posterior mode (maximum belief) and median (cen-
tral value) are less commonly used alternative esti-
mators. Prior to first failure all inference should be
founded on the α0, κ0. The occurrence of the first
failure T1 gives the evidence that must be considered
in order to validate the assumptions stated by the
prior distribution. The marginal density becomes
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and by applying Equation 15 the posterior is
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That is according to Equation 16 also the gamma
distribution with parameters α1= α0+1, κ1= κ0+T1 and
expected value
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After the second failure T2 the calculation is re-
peated starting from Equation 18. If the parameters
α0 and κ0 are replaced with α1 and κ1, and time to
failure T1 with T2 we obtain:
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which is gamma distributions with parameters
α2= α0+2 and κ1= κ0+T1+T2. Consequently, for the
failures T={T1, T2, ..., Tn} we get gamma distribution
with parameters
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This form is applicable only if the parameters are
integers. Further generalization can be presented in
the general form of gamma distribution
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and any real and positive values can be used for
expressing the prior distribution. The expected value
of the failure rate is
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and variance.
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Some comments are in order now. From Equation
24 and 25, it is clear that the weight given to the
prior decreases as the sample size increases. In other
words: evidence from the data has higher weight
than the prior information. By employing Equations
24 and 25 with previously presented example of ge-
neric data regarding the valve one may calculate pa-
rameters α0 and κ0.
Considering the maintenance reality much of the
failure data will be subjected to censoring. That is
dealt with ease by employing the likelihood princi-
ple inherent to foregoing scheme
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with F=1-R. Posterior-predictive distribution of
the gamma-exponential model is
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4 ILLUSTRATIVE EXAMPLES
The key to the Bayesian modeling, is the specifica-
tion of a prior probability distribution on φ, before

the data analysis. After describing how to calculate
Bayesian model, we are presenting some examples
in order to illustrate some of the main aspects related
to prior specification. The data chosen to demon-
strate different aspects of updating in chronological
order is: 16, 4, 55, 10, 8, 7, 19, 22, 13 and 11. We
assume that failures occur independently according
to the exponential distribution. As stated before we
are about to estimate the constant failure rate after
each of the failures. Therefore we initially carry out
a qualitative check to see how the all of data fits to
exponential distribution, Figure 2. The graph ap-
pears to indicate a trend in the range 0÷20 but the
lack of more data and the absence of additional in-
formation clouds this conclusion.

Figure 2. Exponential probability plot of complete data set.

It is well known that the maximum likelihood es-
timate is strongly biased for the small data sets, but
just, for comparison purposes the same data were
used in maximum likelihood estimate (MLE) of the
reliability model, Figure 3.

Figure 3. MLE estimate for the complete data set with expo-
nential model (90% confidence interval).



The failure rate λ=0.055 will be used as the refer-
ence value in the future discussion. This should not
be considered as the correct reliability model, but
just as the result that will be reached MLE in case all
of the data is available.

The gamma distribution is flexible and therefore
capable to express a prior knowledge. By varying
the parameters α0 and κ0 of gamma prior distribution
Equation 16, we can find a distribution that ap-
proximately represents our prior belief about λ, and a
standard Bayesian analysis can be carried out. When
there is very little prior knowledge about the model
parameters an non-informative or diffuse prior dis-
tribution preferred. In this case, we would typically
specify a prior distribution that is at least approxi-
mately uniform over the range of indifference, Fig-
ure 4.

Figure 4. Bayesian updating process with diffuse prior distri-
bution.

The first distribution (T0=0) shows our prior be-
lief about λ, and since the α0=1 the prior is exponen-
tial. Note that the mass of this prior distribution is
spread over a wide range. The lower and upper
credibility bounds of our estimate are denoted by λL
and λU respectively. In the two subsequent graphs
are the posterior distributions. In the middle is a
posterior distribution after the first failure T1=16 and
in the bottom is a posterior distribution after the
fourth failure T4=10. It is evident that following the
information gained from the data, updating process
relatively quickly adjust our estimate of the first
stage prior. Also, with more data the estimate
bounds narrows. In Bayesian updating scheme we
are generally interested on estimates after the first
few failures. After the 10th failure, Figure 5 the
Bayesian results resemble to MLE shown on Figure
3. This illustrates a very general property of Baye-
sian statistical procedures. In plain terms, the data
easily swamp the information in the prior and dif-
fuse priors allow us to compare the results with the
MLE. In large samples, they give answers that are
similar to the answers provided by MLE.

Bayesian interval on Figure 5 agrees with the
MLE confidence interval on Figure.3, though their

probabilistic interpretations are different. The MLE
is a frequency statement about the likelihood that
numbers calculated from a sample capture the true
parameter and provides us a confidence interval for
an unknown parameter. On the Bayesian side the pa-
rameter estimates, along with credibility intervals,
are calculated directly from the posterior distribu-
tion. Credibility intervals are legitimate probability
statements about the unknown parameters, since
these parameters now are considered random, not
fixed. The credibility level for Bayesian model is
also set to 90%.

Figure 5. Bayesian updating process with diffuse prior distri-
bution (90% credibility interval).

Although in large samples broad prior distribu-
tion give answers that are very similar to the answers
provided by classical statistics, in small samples re-
sults depend on the chosen prior distribution. If we
choose prior distributions that assign non-negligible
mass to the region surrounding the 'true' value of a
parameter, then the posterior distribution will slowly
converge, Figure 6. Such a scenario is likely to occur
if low failure rate, given by a manufacturer is
adopted for analysis. Because of the attitude of peo-
ple involved in estimate we call this prior to be 'op-
timistic'.

Figure 6. Bayesian updating process with an 'optimistic' prior
distribution.



This demonstrates how the Bayesian solution de-
pends on the prior adopted. It can be viewed as ei-
ther advantage or disadvantage, depending on how
you regard the prior density; as representative one to
real prior information, and the aim of the investiga-
tion.

The informative prior distributions assign most of
the prior weight around the 'true' value of the pa-
rameter estimated. They are appropriate only if our
belief is founded on a quality information about the
parameters. Therefore the prior model must be
strongly supported by experts. If not, our updating
process will converge more slowly even than the
MLE and the evidence provided by early failures
will not provide any significant impact on posterior
distribution. This is shown on Figures 7 and 8. On
the Figure 7 we use a wide, but still informative
prior, and the 'true' estimate is well covered. The ex-
pected value of our estimate quickly converges to
the estimate shown in Figure 2. In this case the prior
is gamma with α0=8.5 and κ0=100.

Figure 7. Bayesian updating process with an 'broad' gamma
prior distribution.

The results for gamma prior with α0=12.5 and
κ0=350 are shown on Figure 8.

Figure 8. Bayesian updating process with a 'narrow' gamma
prior distribution.

In this case the mean of the prior is closer to the
'true' value than in Figure 8, but the 'true' value is

less covered. This result suggests that small intervals
should be adopted only when there is plenty of rele-
vant information, and larger intervals when there is a
lack of information. Note that the standard deviation
in OREDA (2002) is relatively high comparing to
mean values of failure rate.

The main valid assumption if a successful reli-
ability model is to be established is the specification
of the sampling distribution. These arguments
should be founded from the physics-of-failure on the
device in question. Weibull distribution is frequently
used in reliability analysis to fit failure data, because
it is capable to handle decreasing, constant and in-
creasing failure rates. Also the Weibull distribution
is very flexible and it is not uncommon to fit a small
set of failure data equally well as the 'real' failure
distribution. Since the Weibull distribution is not a
member of the exponential family Bayesian models
are not amenable to simple analyses with conjugate
priors. Weibull distribution has two parameters that
must be considered.

We may suppose that components in this multi-
parameter problem are independent so that their joint
prior density is the product of corresponding uni-
variate marginal priors. From the previous discus-
sion it seems reasonable to simplify the analysis by
assuming constant parameter β =3.5. We assumed
the uniform prior on θ over the range 1÷10, and
through the numerical methods the posterior is cal-
culated for one failure T1=4.25·103, Figure 9

Figure 9. Prior and posterior distributions for Weibull example.

The respective posterior predictive distribution is
calculated numerically and is presented in Figure 10.

Figure 10. Posterior predictive distribution for Weibull exam-
ple after the first failure.



5 CONCLUSION
When dealing with small data sets Bayesian infer-
ence represents excellent alternative to frequentist
approach. Is is founded on the previous knowledge
and on the concept of subjective probability that is
non existent in the 'objective' concepts of frequen-
tists approach.

Since it is unlikely in most applications that data
will ever exist to objectively validate the reliability
model our estimate must relay on the other sources
of information. Since the most of the generic data
provides only constant failure rate, updating process
for the exponential sampling distribution is de-
scribed in detail. In this paper the probabilistic con-
cept for such analysis is discussed and, considering
the closed form easily applicable solution is given.

The accompanying discussion describes the spe-
cial care that should be given to the prior model se-
lection. Narrow intervals should be adopted only if
there is plenty of relevant information and larger in-
tervals when there is a lack of information. In other
words the analyst must subjectively find balance
between optimistic and indifferent attitudes. The
first results in narrow priors, and it is unlikely that
data will lead the model to better estimates. The sec-
ond attitude produces broad priors, the results are
similar to classic inference and the advantage of
Bayesian method is not fully utilized.
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