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Abstract – Testing task schedulers on Linux operating system 

proves to be a challenging task. There are two main problems. The 

first one is to identify which properties of the scheduler to test. 

The second problem is how to perform it, e.g., which API to use 

that is sufficiently precise and in the same time supported on most 

platforms. This paper discusses the problems in realizing test 

framework for testing task schedulers and presents one potential 

solution. Observed behavior of the scheduler is the one used for 

“normal” task scheduling (SCHED_OTHER), unlike one used for 

real-time tasks (SCHED_FIFO, SCHED_RR). 

I. INTRODUCTION 

Starting from Linux kernel version 2.6.23 task scheduler was 

changed from O(1) [1] to Completely Fair Scheduler (CFS) 

[2]. This caused a lot of discussion in the Linux community [3]. 

Arguments used to support the claim that “this scheduler is 

better than the other” varies from (subjective) user experience 

in everyday activities to (objective) results of some benchmark-

ing programs. Opinion of the authors of this paper is that 

benchmarking programs currently used are too hard on sched-

uler, putting it in atypical working environment and testing 

only some of it's property. Therefore, more systematic ap-

proach is necessary. One such attempt will be presented in this 

paper. Identification activity of important scheduler properties 

can start with most discussed properties: scheduler efficiency, 

behavior under heavy loads and scheduling interactive tasks. 

Testing for efficiency 

Efficiency, in scheduler context, represents the ability of a 

system to perform more operations, to complete more tasks in 

less time using less system resources. For example, if a collec-

tion of jobs under some scheduler completes in less time than 

with second scheduler, then the first one is more efficient. To 

be efficient, scheduler should have small overhead and better 

scheduling decisions. Basic benchmarking of scheduling effi-

ciency could be performed with collection of predefined tasks. 

Tasks may be independent, they can have dependencies (e.g., 

preceding-successor ordering), or they can use the same re-

sources and synchronize themselves [4]. The benchmark could 

end when all tasks finish their jobs, or when predefined time 

elapses, in which case task's progress can be used for evalua-

tion. 

An example of extreme test for scheduler efficiency can be 

done with a set of tasks that exchange a token in a circular pat-

tern [5]. Implementation of this benchmark could use pipes, 

messages or some synchronization mechanisms. Most of the 

time system will run in scheduler, because passing a token is a 

very short activity which is followed by activating next task 

that has received the token. This kind of tests will measure 

scheduler ability to switch between tasks. 

Testing efficiency requires ability to start and simultaneously 

run a set of various tasks. E.g, tasks can communicate or not, 

continuously run or have sleep periods, have high priority, etc. 

Testing for interactivity 

Interactivity testing considers system's response times to 

user commands, input/output events, interactive applications, 

multimedia applications and similar. All those activities behave 

in a similar pattern: most of the time they do not require system 

attention (processing), but when they do, they should be proc-

essed as soon as possible. E.g., user may be annoyed by de-

layed reaction on his activities, like typing commands in shell, 

or using graphic interface. Multimedia applications may not 

have required quality if they experience long delays (sound 

might have pauses, video may skip frames). For desktop com-

puters, which are mostly used by single user (at a time), sched-

uler should put precedence to user requests, and boost priority 

of foreground application when needed. For example, Micro-

soft Windows operating systems have a fairly simple scheduler 

[6], oriented toward single user systems
1
 that satisfies require-

ments of foreground applications. Background applications get 

unused time, or at least bits of processor's time to avoid task 

starvations [7]. 

Testing for interactivity could be done with user who uses 

interactive applications in different working environments 

(e.g., different system loads). One problem with such approach 

is in quantification: how good or bad is the scheduler, how to 

compare schedulers, how scheduling changes with load? An-

other problem is in test repetition: how to repeat certain condi-

tions that lead to particular system behavior. 

Another way of testing interactivity is to eliminate the user 

from the test – construct test framework that will quantify 

scheduler behavior with synthetic interactive applications. 

Those tests might be more objective, but may also be too syn-

thetic, i.e. they might miss to test some important scheduler 

behavior that occurs in real usage scenarios. 

Synthetic tests can be used to evaluate several scheduler be-

haviors. The first one is regarding delays from events occur-

rence and start of their processing (in associated tasks). The 

second is in event processing durations (which can be inter-

rupted and further delayed). Number of events processed too 

late may be indicator that scheduler is not performing as ex-

pected or system is not in normal state (e.g., heavy loaded). 

Tasks used for interactivity testing could be modeled as peri-

odic tasks, i.e. the ones that act on periodic events. Period 

length and event processing time could be test parameters. 

Many events in real systems do not arrive periodically but are 

1 “Single-user system” in this context is used to describe system usage 

scenarios, not capabilities. System could have “multi-user” capabilities, 

but if in tested scenario is used only by single user, scheduler behavior will 

be evaluated as for single-user system. 



aperiodic or sporadic. Still, using a periodic task or several 

with different periods such events can be simulated. In the end, 

system's reaction time is important for tests and that property 

should be investigated, not event occurrence patterns. Envi-

ronment modeling can be extended with background tasks 

simulating different system loads.  

Testing under different loads 

Testing scheduler behavior under different system loads in-

volves changing load and repeating tests. Since tests must be 

repeatable, even background load should be carefully modeled. 

Tasks for background load (worker tasks) could continuously 

consume all computing power when scheduled or use only part 

of given computing time. In a simple implementation this could 

be achieved with adding sleep interval that follows working 

interval. With duration of work and sleep intervals various 

background loads can be modeled. Other types of background 

tasks may include a set of tasks that intensively use scheduler, 

such as token passing tasks or even interactive tasks. 

Background tasks priority can be lower, equal or even higher 

than priority of testing tasks. 

Testing for scalability 

Since multiprocessor systems have gone mainstream (as  real 

multiprocessor or as multi-core) and are present in almost any 

new computer system, it is important to look into scheduler 

behavior in this environment. Testing schedulers for scalability 

requires no special changes in the test framework, but just ade-

quate test parameters and appropriate result interpretation. 

Scheduler must be aware of hardware characteristics and try 

to exploit them for achieving maximal performance. As an ex-

ample, it is a common practice to associate tasks with particu-

lar processor, trying to exploit data already present in proces-

sors caches across successive task run time (interrupted by ker-

nel calls and other tasks). However, if this is implemented by 

multiple run-queues, one for each processor, periodic balancing 

could be needed, preventing starvation and obtaining fair share 

of computing time for all tasks in system. �
esting for fairness 

On a single-user systems, scheduler must satisfy require-

ments of a single user. Application currently used by the user 

(foreground application) is usually most important for user at 

that time, and should receive maximum system's attention. 

Scheduler should be aware of foreground application and raise 

its priority when it comes to foreground. 

On multi-user systems scheduler must be fair. Fairness can 

be defined per user or per task. In per user concept, fair sched-

uler will balance different user's tasks execution times so that 

they distribute available computing time equally. In per task 

concept, all tasks should get fair (equal) amount of computing 

time. However, neither all users nor all tasks are equal. Some 

may be more important than other (e.g., “root” compared to a 

normal user). Differentiation is achieved trough different task 

(or/and user) priorities. For example, on UNIX like systems 

priority for non-real-time tasks is called nice level. The lower 

nice value is, a higher priority the task has. Values for nice are 

in range from -20 to 19. If the first task has nice of n and the 

second n+1, than the first task should receive more computing 

power than the second, e.g. 10% more [8]. Scheduler must take 

into account tasks priorities and accordingly distribute avail-

able computing power. 

To test for fairness, test application should create task set, 

run it for some time, and compare tasks advancements. If tasks 

have same priorities, advancements should be similar, other-

wise, task priorities should be seen in tasks progress. 

II. TEST FRAMEWORK ARCHITECTURE 

Scheduler testing should be performed with specific tasks. In 

a test framework it must be possible to define various tasks 

types. One way to achieve it, is to define generic properties 

which in combination define particular task type. 

In a single test a collection of tasks can be used, some with 

same and some with different properties. Tasks with same 

properties can be grouped together and create a task group. 

Proposed configuration file skeleton is shown in Fig. 1.

global { 
   test_name = “example”; 
   duration = 60 s; 
   run = interactive[1], background[3]; 
} 
tasks { 
   interactive { 
      #definition of task properties 
   } 
   background { 
      #definition of task properties 
   } 
} # comment from # to end of line  

Fig. 1. Test configuration skeleton 

Besides test name and duration, global section must define 

which tasks to create and run. For that purpose, group names 

and number of tasks to create are used, as shown in Fig. 1 with 

the run keyword. Task group properties are defined within 

tasks {} section, separately for each task group. 

Defining worker tasks 

Worker tasks come in two categories: in one are those that 

use all computing time, and in the other one are those that 

don't. Modeling the first group is done with a simple program 

loop, that will consume given computing time (processor's 

time). However, in order to measure task progress a number of 

finished loops can be counted. If a processing within the loop is 

too simple, a number of completed loops will be very large. It 

is preferred that the processing within single loop take measur-

able amount of time, e.g., one millisecond. In that way loop 

count will directly measure computing time a task had spent. 

Creating such job could be done by an inner loop that performs 

some simple operations a number of times. Since computing 

power differs across different processors, number of inner loop 

iterations (e.g., loops_per_ms) can be calculated in advance, 

before test is started. This could be performed in several ways.  

The first approach could be to guess a number of iterations 

based on some system property, e.g., processor's speed. Execu-

tion of the calculated number of iterations should then be 

timed. Based on execution time, iterations could be corrected 

(even several times). However, some measurements must be 



invalidated if timings are significantly longer – they are proba-

bly caused by task switch. Time measuring should be done 

with precise system calls, such as clock_gettime() [9]. 

In the second approach the same loop can be run for ex-

tended period of time. Then, using consumed user time re-

trieved from the system (e.g., with getrusage()) number of it-

erations that will yield a required time period for one inner 

loop can be calculated. 

Both approach were tested and conclusion is that the second 

approach has a small advantage as it's results are little more 

consistent across several executions. But absolute accuracy is 

actually not needed. For comparing task progression its only 

necessary that jobs within iterations are the same, so that com-

pleted iterations can be used for comparison. Number of itera-

tions only approximates task computation time, and its accu-

racy is less important for worker tasks. In test framework, al-

though both methods were implemented, second approach is 

preferred. Before executing a test, a number of iterations for 

inner loop that will consume one millisecond time is defined in 

an environment variable and is used in the tests. 

Defining worker tasks that don't work all time, require defin-

ing working time and sleeping time within single iteration [10]. 

Both worker task types can be in simplified form described 

with a pseudo code in Fig. 2.

worker_task { 
   for iter = 0 to inf do { 
      work(working_time); 
      sleep(sleeping_time); 
   } 
}  

Fig. 2. Worker tasks 

Sleeping can be achieved in a number of different ways. Sys-

tem call clock_nanosleep() is chosen because of its high resolu-

tion. If a code like the one in Fig. 2 is used in test with more 

than one task from same task group then all the tasks will try to 

start execution at the same time, and then sleep at the same 

time, at least at the start of the test. Later they will probably 

desynchronize. However, it would be a good idea to desyn-

chronize them intentionally at the start, with a randomization of 

their first working time duration. 

Defining interactive tasks 

As described before, interactive tasks can be modeled by pe-

riodic tasks. Periodic activity may be modeled by periodic sig-

nals sent to tasks, or tasks can suspend themselves until time of 

the next event (which can be precalculated). Both methods are 

used in real interactive applications, hence both should be used 

(separately) and tested. 

Fig. 3 shows proposed implementation of interactive tasks 

using signal and sleep method. 

Implementing periodic signals can be done in several differ-

ent ways. A one solution is to use system call setitimer() which 

periodically sends signal to the calling task. With system call 

pause() task stops itself until signal is received. In signal han-

dler function, times of start and end for event processing 

should be saved for later analysis (or analysis could be started 

in handler function).

interactive_task{ 
   if (interactive_signals_defined()) { 
      set_signal_handler(signal_handler_function); 
      create_periodic_timer(period); 
   } 
   if (interactive_sleep_defined()) 
      start_time = get_time(); 
   for iter = 0 to inf do { 
      if (interactive_signals_defined()) 
         pause(); 
      if (interactive_sleep_defined()) { 
         signal_handler_function(); 
         sleep_until(start_time + iter * period); 
      } 
   } 
} 
signal_handler_function() { 
   save_start_time; 
   simulate_event_processing; 
   save_end_time; 
}  

Fig. 3. Interactive tasks with signal and sleep method 

Without signals, interactive task should be delayed until next  

event occurrence. Clock used in get_time() and sleep_until() 

should be real time clock (or monotonic clock). Parameter to 

sleep_until() is absolute time, not relative. Relative waiting 

could result in prolonged periods due to eventual task switch-

ing. System calls that give required functionality and don't use 

signals are clock_gettime() and clock_nanosleep(). 

For both implementations, “interactivity ratio” can be de-

fined by defining period and event processing times. Real in-

teractive tasks have period that is usually much longer than 

processing time. 

Defining collaborative tasks 

Collaborative (communicating) tasks represents tasks that 

communicate, exchange data or synchronize themselves, like 

token-passing communication. Collaborative tasks use sched-

uler more extensively than other task types, because scheduler 

is invoked much more frequently. Besides token-passing col-

laboration, another collaborative tasks widely used in multi-

tasking applications are the ones that use shared resource pro-

tected by critical section mechanisms. Similar widely used task 

collaboration is with “barrier type” synchronization. In this 

synchronization all task are blocked at certain point in program 

until all other tasks reach the same point. Only then all tasks 

are released and may continue until next synchronization point. 

All mentioned tasks have a start part, and an end part, as 

shown in Fig. 4. 

cooperative_task { 
   for iter = 0 to inf do { 
      if (token_pass_defined()) { 
         token_pass_wait(); 
         token_pass_process(); 
         token_pass_send(); 
      } 
      if (critical_section_defined()) { 
         critical_section_enter(); 
         critical_section_process(); 
         critical_section_leave(); 
      } 
      if (barrier_defined()) { 
         barrier_wait(); 
      } 
   } 
}  

Fig. 4. Collaborative tasks 



Defining additional task properties 

Each task, even within the same task group, can have differ-

ent priority. The simplest priority assignment is to set same 

priority to all tasks. A bit more complex assignment is to give 

priorities in a sequential order, e.g., first task gets priority p, the 

second p+1, the third p+2, etc. The priorities of the tasks and 

the assignment policy is a task group property (that is defined 

in the configuration file). 

Single task can be represented by a thread in multi-threaded 

process, or as a separated process (with only one thread). Some 

systems may handle threads and processes in different way and 

the test framework, as specified here, support the evaluation of 

this difference (e.g., switching between threads from the same 

process might be faster than between threads from different 

processes). 

Defining universal task 

Universal task description should be able to describe all pre-

vious task types with their properties, as well as priority and 

representation (thread/process). Fig. 5 shows universal task 

code that includes all the behaviors from the previously dis-

cussed task types. Functions defined in the previous figures are 

not repeated since they are the same.

universal_task { 
   initializations(); 
   for iter = 0 to inf do { 
      iteration_specific(); 
      work(working_time); 
      sleep(sleeping_time); 
   } 
} 
initializations() { 
   set_task_priority(); 
   if (interactive_signals_check()) { 
      set_signal_handler(handler_function); 
      create_periodic_timer(period); 
   } 
   if (interactive_sleep_check()) { 
      start_time = get_time(); 
   } 
   sync_start_for_all_tasks(); 
} 
iteration_specific() { 
   # per type processing, as in Fig. 3 and Fig. 4 
}  

Fig. 5. Universal task behavior 

With the appropriate values of the task properties, various 

task types can be defined. E.g., for interactive tasks properties 

working_time, and sleeping_time should be set to zero. 

An example of a task definition, including all the properties, 

of which are some commented out, is shown in Fig. 6.

tasks { 
   example_task { 
      working_time = 50 ms; # zero if not defined 
      sleeping_time = 20 ms; 
      priority = 5; # or e.g. “sequential[3, 16];” 
      task_type = PROCESS; # (default) or THREAD 
      #specific = INTERACTIVE_SIGNALS[250 ms,5 ms];  
      #specific = INTERACTIVE_SLEEP[150 ms, 15 ms];  
      #specific = TOKEN_PASS[MSG, 5 ms]; 
      #specific = CRITICAL_SECTION[5 ms]; 
      #specific = BARRIER; 
   } 
}  

Fig. 6. Universal task definition 

Proposed task definitions, both as in definition file and as 

task behavior defined with pseudo code, allow definition not of 

just previously mentioned task types, but also a task with 

mixed properties. 

III. SELECTING AND DEFINING TESTS 

In the previous sections test conditions and scheduler proper-

ties that should be tested are defined. Also, test framework 

structure and configurations are presented. In this section few 

examples of concrete configurations are presented. 

First test, as shown in Fig. 7, consists of a set of worker tasks 

with same priorities.

tasks { 
   worker { 
      working_time = 10 ms; 
      priority = 5; 
   } 
} 
global { 
   test_name = “worker tasks”; 
   duration = 60 s; 
   run = worker[10]; 
}  

Fig. 7. Test configuration with worker type tasks 

Using configuration from Fig. 7, test framework will create 

10 tasks (worker[10]) and run them for one minute (duration = 

60 s). At the test's end, various statistic are reported, e.g., the 

number of iterations completed, used “user” and “system” 

times, number of context switches that were performed on task, 

task priority, task identification number like process and/or 

thread id, etc. (see Fig. 8). For a given test, comparing iteration 

numbers from all tasks should give us a measure of the sched-

uler fairness. Also, different schedulers could be used on same 

system, they can be compared for efficiency (comparing itera-

tions). 

The tests were performed on Ubuntu distribution with Linux 

kernel 2.6.31 (x86_64), with one to four processors (cores) set 

to constant (maximal) processor's frequency (and hyper-

threading ability switched off). Test results for configuration 

from Fig. 7 (not given here in raw form) showed that scheduler 

is satisfactory fair in distributing available computing time. 

When only one processor was activated, tasks got almost the 

same computing time (numbers of iterations are very close). 

When more processors are activated, tasks iterations are mostly 

close to mean value. However, few tasks may have signifi-

cantly lower or higher values for iteration, with a deviation of 

up to 25 percent (from several experiments). Since tasks are 

independent, with four processors number of iterations was 

four time larger – compared to test with single processor. 

When processors' speed was set to “on demand” and hyper-

threading ability was activated (default settings!), test showed 

major progress difference between tasks, indicating scheduler 

is not yet appropriately adapted for such hardware environment 

(in respect to fairness). 

Changing priorities assignment to sequential will show how 

initial task priority contribute to given computing time. If the 

configuration from Fig. 7 is modified by changing line 4 to: 

priority = sequential[1-10]; 



then the first created task will get priority of one and the last 

one will got the priority ten. The result from a single execution 

of the test is presented in Fig. 8 and Fig. 9. Repeating the tests 

shows similar results.

TN  Name    PID    NICE ITERS     UTIME(C)  UTIME     STIME   CW(v/i)  
-------------------------------------------------------------------- 
0   sample  2352    10  5454      54.540000 55.260000 0.000000 1/1740  
1   sample  2353    11  4487      44.870000 45.400000 0.000000 1/1335  
2   sample  2354    12  3195      31.950000 32.280000 0.000000 1/1062  
3   sample  2355    13  2489      24.890000 25.460000 0.000000 1/892  
4   sample  2356    14  2064      20.640000 21.200000 0.000000 1/924  
5   sample  2357    15  1554      15.540000 15.730000 0.000000 1/749  
6   sample  2358    16  1395      13.950000 14.360000 0.000000 1/840  
7   sample  2359    17  1169      11.690000 11.870000 0.000000 1/723  
8   sample  2360    18  1099      10.990000 11.140000 0.000000 1/770  
9   sample  2361    19  673       6.730000  6.920000  0.000000 1/641  
'sample':  iter_sum=23579 (235.79 s), avg=2357, stdev=1575 

Fig. 8. Test results for worker tasks with different priorities 

Column UTIME(C) presents calculated run time based on it-

erations completed and assuming accurate inner loop timings. 

Columns UTIME and STIME present data for “user” and “sys-

tem” time respectively, collected using getrusage() system call. 

Difference between UTIME(C) and UTIME comes from inaccu-

racy from both inner loop calibration and inaccuracy of the 

statistic collected by the system (kernel). The last two columns 

CW(v/i) contain numbers of context switches performed on 

task, both voluntary (when task blocks itself, like blocking on 

semaphore) and involuntary (task was switched by scheduler). 
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Fig. 9. Priority and progress relation 

Bars in the Fig. 9 show the number of iterations achieved by 

all tasks. Since each task has different priority, each task pro-

gress was different. Comparing tasks with priority difference of 

one and their iterations, an average ratio of 1.25 was calculated 

in favor of higher priority task (lower “nice” number). Line 

above bars in Fig. 9 shows trend-line if ratio is to be exactly 

1.25. The results show good conformity with trend-line. How-

ever, not all tests gave such results. Tests with shorter period on 

multiprocessor have larger deviations from trend-line, although 

globally the same ratio is followed. 

Introducing sleep time into previous configuration, tests be-

come less intensive on the scheduler, but the relative results are 

similar: fairness and respect for different priorities didn't 

change. 

Tests with collaborative tasks can show several scheduler 

properties. With tasks that intensively collaborate, context 

switching ability can be measured. The example configuration 

for such test is shown in Fig. 10.

tasks { 
   token_pass { 
      working_time = 0 ms; 
      priority = 5; 
      specific = TOKEN_PASS[MSG, 0 ms]; 
   } 
}  

Fig. 10. Token pass task 

Section global is not shown in the Fig. 10 because it is simi-

lar to the same section given in the Fig. 7. Working time is set 

to zero both for task iteration and token processing, forcing 

task to block immediately after passing token on (messages 

were used for passing token). Number of instructions task per-

form in single iteration before it's switched is almost negligible 

compared to task switching time and scheduler activity, which 

are in focus. 

With critical section and barrier synchronizations, scheduler 

can also be tested in extreme conditions, putting all working 

times to zero. However, those tests are also suitable for evaluat-

ing possible gains from multiprocessor systems when a job can 

be executed by collaborative tasks. Also, with proper distribu-

tion of tasks across multiprocessor, scheduler can help in im-

proving performance of such applications. For example, when 

collaboration can be defined by critical section synchroniza-

tion, and at some point in application execution only two non-

blocked tasks are present on the same processor (one as active 

and second as a ready task), it would be desirable that the 

scheduler moves the second task to another processor. It could 

be that first (active) task has just exit critical section and un-

blocked second one (that is scheduled on same processor). First 

task could spend a majority of its current time slice in non-

critical section, further delaying second task from executing its 

critical section, and releasing other task that could run on dif-

ferent processor. This switch should be done regardless of other 

tasks in system (tasks from other applications). However, such 

scheduler behavior shouldn't be coded per situation basis, oth-

erwise, a lot of heuristic can also be coded in scheduler, who 

could became more complex, slower and possibly not work for 

all situations. But still, since multiprocessors are reality, some 

simple heuristic regarding scheduling a multi-task application 

should be applied if possible. 

Interactivity behavior can be tested with previously defined 

interactive task. Two main parameters define interactive task: 

period in which event recur, and event processing time. In Fig. 

11 definitions of two tasks were present: first one activated 

with signal and second one which is waked on timer expiration. 

tasks { 
   interactive_signal { 
      specific = INTERACTIVE_SIGNALS[150 ms, 5 ms];  
   } 
   interactive_sleep { 
      specific = INTERACTIVE_SLEEP[100 ms, 15 ms]; 
   } 
}  

Fig. 11. Token pass task 

Tests on low loaded system, with configuration as in Fig. 11, 

showed very good scheduler interactivity behavior. Also, short-

ening period (even down to 1 millisecond on tested system) 

didn't increase reaction delay. Loading system with moderate 



“background”, reactions becomes little slower, but as long as 

their period is long enough (at least 10 milliseconds) and back-

ground tasks have lower priority, reactions are tolerable. 

With heavier system loads overall delay in event processing 

grows. It depends on application if this longer delays (e.g., 10 

to 20 milliseconds) are still acceptable. In example, if user uses 

multimedia application to play music while working on some-

thing else, regardless of that work, music should be played 

without degradation in quality. Since music player uses only 

small percent on computing power, scheduler should give him 

processor's time as soon as requests is made. 

IV. CONCLUSION 

Evaluating most active part of an operating system – its task 

scheduler – is a challenging problem. First, the required sched-

uler behavior must be defined for all (most) usage scenarios. 

Second, methods for testing scheduler in those scenarios, 

methods that are also realizable within given system and its 

interfaces, must be designed and implemented. Limitations 

from both: used interfaces and simplifications, must be consid-

ered when analyzing test results. 

In this paper, an attempt to define required scheduler behav-

ior is presented and elaborated. Based on the presented ideas 

the test framework is designed and using test framework differ-

ent basic tests are defined and performed, with brief comments 

of obtained results. 

On the implementation side several problems were encoun-

tered. Interface used in the test framework is chosen to be 

compatible with most Linux based systems. However, preci-

sion of those interfaces, as well as behavior, slightly changes 

across different kernel versions. 

The first implementation problem was how to create simu-

lated work with precisely timed execution (determine number 

of loop iterations that give required duration). Timing is only 

required for creating tasks with given work/sleep ratio, for de-

fining work time for collaborative and interactive tasks. Timing 

simple loops showed to be unreliable method since it can be 

interrupted by the scheduler for a short or even longer time 

(e.g., task switching). Using longer loop and collecting used 

“user” time from system relies on imprecise system interface. 

However, the later approach turned out to be more consistent in 

repeated tests and is thus preferred method. Based on test ex-

periences, its accuracy its approximately within 10%, which is 

satisfactory for tests. 

The next problem was how to implement “sleep” period. On 

some systems the interface used (clock_nanosleep) showed to 

be quite accurate. On the others, it wasn't so accurate, probably 

due to a different time slice and a minimal sleep period. On 

those systems, if test results are to be meaningful and sleeps are 

required, longer periods should be used. 

Time measurement interfaces suffer from the same problems 

as implementation of sleep – somewhere are accurate down to 

1 millisecond and below, somewhere lower bound is higher. 

The test framework was built for scheduler testing only and 

could be inadequate for other system tests, like performance 

evaluation. It should be noted that simple program changes 

(e.g., type and scope of a variable) can noticeably change loop 

number a task can execute within same time period. Utilized 

simulated work in (inner) loop includes simple logic operations 

on integer numbers, and may not relate for real tasks that per-

haps use float point arithmetic or are memory intensive. How-

ever, approximate comparison between different systems, from 

performance perspective, can be made (using the same number 

of inner loop iterations – bypassing calibration). 

Based on tests performed during and after building test 

framework, the results roughly follow expectations. On multi-

processor, fair division of computing time its harder to achieve. 

Interactive application are treated better than expected (based 

on past experience), but that could be in part because of the 

tested system (newer kernel and hardware). 

Future work will include extensive testing with the con-

structed framework on more diverse hardware/software sys-

tems, creation of test configuration that more accurately model 

real working scenarios and test particular scheduler property or 

more of them simultaneously. 

Someone could ask why putting such effort on building and 

testing schedulers since programmer can significantly influence 

application scheduling by setting appropriate priority and 

scheduling policy. E.g., for an interactive application, a real-

time scheduling could be chosen, removing problems possibly 

caused by other tasks. That could be true, but first, running 

such application would require higher user privileges, and sec-

ond, more important, adding scheduling issues to process of 

software development would further complicate already com-

plex process. Complexity is primary reason for software errors 

and poor quality in today's applications, and should not be fur-

ther boosted. That applies to schedulers as well. 
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