
Production Planning Problem with Sequence
Dependent Setups as a Bilevel Programming

Problem

Zrinka Lukač, Kristina Šorić, Vǐsnja Vojvodić Rosenzweig
Faculty of Economics Zagreb

Kennedyev trg 6

10000 Zagreb, Croatia

e-mail: zlukac@efzg.hr, ksoric@efzg.hr, vvojvodic@efzg.hr

November 30, 2004

Abstract

Each of n products is to be processed on two machines in order
to satisfy known demands in each of T periods. Only one product
can be processed on each machine at any given time. Each switch
from one item to another requires sequence dependent setup time.
The objective is to minimize the total setup time and the sum of the
costs of production, storage and setup. We consider the problem as a
bilevel mixed 0-1 integer programming problem. The objective of the
leader is to assign the products to the machines in order to minimize
the total sequence dependent setup time, while the objective of the
follower is to minimize the production, storage and setup cost of the
machine. We develop a heuristics based on tabu search for solving the
problem. At the end, some computational results are presented.

Key words: production, two machines, sequence dependent setup times,
bilevel mixed 0-1 integer programming problem, heuristics based on tabu
search.

1



1 Introduction

Our work is motivated by the problem confronted by a pharmaceutical com-
pany. The considered company has to produce certain products in order to
satisfy the known demands for each period of the planning horizon T and
with minimum production, setup and storage costs. In the considered com-
pany, there are two assembly lines, each of them with its machine producing
the final form of the product. These two machines represent the bottleneck
of the production and are different in the sense of different capacities, tech-
nologies, production costs, setup costs and setup times for the same product,
but both of them are appropriate for the production of all the products. Due
to the different types of pharmaceutical products, each switch of these ma-
chines from one product to another requires the sequence dependent setup
time, that is, the need to clean up after each product results in significant
setup times. Each machine can process only one product at a time.

We can say that the described problem can be determined as a kind of
a classical deterministic capacitated lot sizing problem with sequence inde-
pendent setup costs and sequence dependent setup times, on two machines
(in this case, representing the bottleneck of the production process), without
the possibility to produce more than one product in a certain period.

But, due to the market changes and the present competition, a senior
manager in the considered firm wants to satisfy the demand for different
products and to be ready, if possible, for other orders. Also, he tried to
avoid the underutilization of human and capital resources. In this sense, he
wants to minimize the total setup time regardless of the costs of production,
storage and setup. In this way he wanted to avoid the bottleneck mentioned
above. Because of his request, we introduce the hierarchy into the problem
and model it as a bilevel mixed 0-1 integer programming problem where the
senior manager acts as the leader and the middle manager controlling the
machines acts as the follower. The leader of the bilevel problem minimizes
the sum of the total setup time assigning the products to the machines. Since
the machine capacities are expressed in time units, shorter setup time leaves
more time for production. More time for production further implies better
performance in terms of satisfying the demand, preparedness for other orders
and avoiding the bottleneck. After the leader’s decision about how to reduce
the setup time, the follower can operate to minimize his production, storage
and setup cost of the machines.

A good review of scheduling problems involving setup consideration and

2



its importance could be found in Allahverdi, Gupta, Aldowaisan (1999) which
mentions other works dealing with the minimization of the total setup time
listed and commented. Sumichrast (1987) considers the problem of minimiz-
ing the total setup time and scheduling parallel processors in a make-to-stock
environment with sequence dependent setup costs.

Generally, in a basic bilevel programming problem, the first decision-
making level (upper-level) is called the leader and the second level (lower-
level) the follower. The leader makes a decision by first optimizing his objec-
tive function. The follower observes the leader’s decision and reacts in a way
that is optimal for him. A vast majority of research on bilevel programming
has concentrated on the linear version of the problem. Studies of this kind
can be found in, for example, Vicente and Calamai (1994) or in Vicente,
Savard and Judice (1996).

One of the first papers in the bilevel mixed integer programming deal-
ing with the heuristics were the works of Moore and Bard (1989) and Wen
and Huang (1996). Moore and Bard developed a basic implicit enumeration
scheme that finds good fesible solutions. A series of heuristics are then pro-
posed in an effort to strike a balance between accurancy and speed. Wen
and Huang applied the Simple Tabu Search Algorithm to solve a very simple
problem. The most recent work in this area proposing a similar model to
the one considered in this paper is the paper of Cao and Chen (2006). They
addressed a capacitated plant selection problem in a decentralized manufac-
turing environment where the principal firm and the auxiliary plants operate
independently in an organizational hierarchy. The problem was considered
as a bilevel mixed 0-1 integer programming problem with the leader’s goal
to minimize the opportunity costs of over-setting production capacities in
the opened plants and the follower’s costs of production and transporta-
tion among the opened plants and the principal firm. They transformed the
problem and then applied the available software for small dimensions of the
problem.

Ben-Ayed and Blair (1989) proved that even bilevel linear programming
problems are NP-hard. Therefore, solving a bilevel mixed-integer program-
ming problem needs a heuristics.

Following the structure of the model we are considering here, the follower
has to solve a kind of a deterministic capacitated lot sizing problem with
sequence independent setup costs and sequence dependent setup times, on
two machines. This is one of the most difficult lot-sizing problem and even
the capacitated lot sizing problem has been shown to be NP-hard (Bitran

3



and Yanasse, 1982). When setup times are included in the model, finding a
feasible solution to the capacitated lot sizing problem also becomes an NP-
complete problem (Garey and Johnson, 1979). Based on these results, it is
very hard to propose an algorithm giving the optimal solution. Therefore,
research on developing effective heuristics is needed. A good review of models
and algorithms in this area is given in Karimi, Fatemi Ghomi and Wilson
(2003). Also, some previous work on lot sizing and scheduling is presented in
Drexl and Kimms (1997) and Wolsey (1997). These papers list a number of
authors working on these problems. However, very few of them consider the
problems including sequence dependent setup times. Hung, Chen, Shih and
Hun (2003)considered the production planning problems with setups, but
the setups were not sequence dependent. Gupta and Magnusson (2005) have
studied a version of the problem with sequence dependent setup costs and
times and proposed a heuristics to solve it. Their goal was to minimize the
setup and inventory costs, while for the large scale instances of the problem,
the setup times are fixed, positive and the same.

In the next section , we will formulate the model defined as a bilevel mixed
0-1 integer programming problem. The objective of the leader is to assign
the products to the machines in order to minimize the total setup time, while
the objective of the follower is to minimize the production, storage and setup
cost of the machine. The considered problem is called Production Planning
Problem with Sequence Dependent Setups. In Section 3 we introduce and
explain the proposed heuristics based on tabu search. First we are defin-
ing the way of constructing the initial solutions and after that, the way of
constructing their neighborhoods. At the end of this section the heuristics
computer implementation is presented. The numerical results and the con-
clusions are reported in Section 4, and finally, in Section 5 we discuss the
future work.

2 Formulation of the problem

In order to formulate the above described problem, let us introduce the
following notations:

1. Index:

4



• i - product type, i = 1, 2, ..., n

• j - machine type, j = 1, 2

• t - planning period, t = 1, 2, ..., T

2. Parameters:

• dit - the demand for product i in period t

• pitj - the unit production cost of product i in period t on machine j

• hit - the unit storage cost for product i in period t

• kitj - the fixed setup cost for item i in period t on machine j

• uiltj - the setup time from item i to item l in period t on machine j

• ctj - the capacity of machine j in period t expressed in units of time

• aij - the consumption of machine j per unit of item i expressed in units
of time

3. Variables:

• xitj - the amount of product i produced in period t on machine j

• sit - the inventory (stock) of product i in period t

and

yitj =

{
1, if machine j is set up for product i in period t
0, otherwise

wiltj =

⎧⎪⎨
⎪⎩

1, if machine j is set up for product l in period t
and was set up for product i in period t − 1

0, otherwise

zij =

{
1, if product i is produced on machine j
0, otherwise

5



The bilevel mixed 0-1 integer programming problem formulation is

minzF (w) =
n∑

i=1

n∑
l=1,l �=i

T∑
t=1

2∑
j=1

uiltjwiltj

subject to

minf(x, y, s) =
n∑

i=1

T∑
t=1

(
2∑

j=1

pitjxitj + hitsit +
2∑

j=1

kitjyitj)

si,t−1 +
2∑

j=1

xitj = dit + sit ∀i, t (1)

n∑
i=1

n∑
l=1,l �=i

uiltjwiltj +
n∑

i=1

aijxitj ≤ ctj ∀t, j (2)

xitj ≤ Myitj ∀i, t, j (3)

wiltj ≥ yi(t−1)j + yltj − 1 ∀i, l, t, j, i �= l (4)

wiltj ≤ yi(t−1)j ∀i, l, t, j, i �= l (5)

wiltj ≤ yltj ∀i, l, t, j, i �= l (6)

n∑
i=1

yitj ≤ 1, ∀t, j (7)

yitj ≤ zij, ∀i, t, j (8)

xit, sit ≥ 0, yitj, wiltj, zij ∈ {0, 1}
where M is the upper bound on the production capacities. The constraints
(1) represent the flow conservation constraints for each item in each period.
Also, the constraints (2) describe the capacity limitations for each machine
in each period. Here it is obvious that by minimizing the setup time, we
have more time for the production. With more time for production, the

6



feasibility set of the considered problem is larger and it is easier to satisfy
the required demand. The constraints (4), (5) and (6) represent the quadratic
constraints wiltj = yi(t−1)j · yltj. If the machine j is set up for product i in
period t − 1, and it is set up for product l in period t, then yi(t−1)j = 1,
yltj = 1 and wiltj = yi(t−1)j · yltj = 1 · 1 = 1. This fact follows from the
constraints (4), too. If the machine is set up for product i in period t − 1,
and it is not set up for product l in period t, then yi(t−1)j = 1, yltj = 0
and wiltj = yi(t−1)j · yltj = 1 · 0 = 0. This fact follows from the constraints
(6), too. Also, if the machine is not set up for product i in period t − 1,
and it is set up for product l in period t, then yi(t−1)j = 0, yltj = 1 and
wiltj = yi(t−1)j · yltj = 0 · 1 = 0. This fact follows from the constraints (5),
too.At the end, if the machine is not set up for product i in period t − 1,
and it is not set up for product l in period t , then yi(t−1)j = 0, yltj = 0 and
wiltj = yi(t−1)j · yltj = 0 · 0 = 0. This fact follows from the constraints (5) and
(6), too. The constraints (7) refer to a single mode of production.

This is a NP-hard problem and in order to solve it, we introduce heuristics
based on tabu search. The motivation for the generation of the starting
solutions was the fact as follows. If zij = 1, ∀i, j (every product can be
produced on every machine), the dimension of the problem is very large.
We have many variables and many constraints. The feasibility set is large
as possible. But, fixing zij to 0 or 1, we decrease the number of variables
and constraints (see the constraints (3) and (8)). The proposed heuristics is
described in the following section.

3 Heuristics

In order to generate the starting solutions of the tabu search, first we devise
a way to assign the products to the machines for production. Let N1 be the
set of all products that are going to be produced on machine 1, let N2 be the
set of all products that are going to be produced on machine 2, and let N0

be an auxiliary set. We allow a product to be produced on both machines
as well. Because of machine deterioration, we can assume without a loss of
generality that setup times uiltj are proportional, proportionality r > 1, i.e.
uil,t+1,j = ruiltj for a certain factor r. Therefore we fix time to be t = 1.
Then we fix the machine. When we assign two products for production on

7



the machine j, the sequence in which they are going to be produced is still
not determined. Therefore we are considering the sum of the set-up times
uil1j + uli1j. If for the sum of the setup times on the first machine for pair
of products i and l inequality uil11 + uli11 ≤ k holds for certain value of k,
then we assign both products i and l to be produced on the first machine,
i.e. i, l ∈ N1. If the sum of the setup times for products i and l on the
second machine is less than or equal to k, i.e. uil12 + uli12 ≤ k, then we
assign products i and l to be produced on the second machine, i, l ∈ N2.
If there exists a product i not assigned to any machine, we put it to set
N0 = {i /∈ N1

⋃N2}. After we have done this, the products from the set N0

are allowed to be produced on the machines, randomly. Now that we have
sets N1 and N2, values of variables zij are fixed since Nj = {i : zij = 1}, and
the size of the problem is reduced significantly.

Figure 1.

For different values of k we get different starting solutions, and thus we
achieve diversification of the search. Shortly we denote the values of the
decision variables in the K-th starting solutions by x[K], y[K], s[K], w[K], z[K].

For each solution we construct exactly four neighborhood points. First
we find the pair of products i and l assigned to be produced on the first
machine for which the setup time uilt1 is maximal. Then we construct the
first neighborhood point by leaving product l to be produced on the first ma-
chine and sending product i to be produced on the second machine, and the
second neighborhood point by leaving product i to be produced on the first
machine and sending product l to be produced on the second machine. The
other two neighborhood points are obtained by finding the pair of products
assigned to be produced on the second machine for which the setup time uilt2

is maximum, and by sending either product i or l to be produced on the first
machine.

Figure 2.

The basic step of the search is being repeated until a fixed number of
consecutive iterations is reached without providing any improvement of the
leader’s objective function.

To prevent reversal move, we introduce a tabu list in a form of the set
TABU consisting of last L moves, where L is fixed and prescribed. The

8



aspiration level A(F (z)) has been set to the value of the upper level objective
function of the current solution z. When a solution z is found, it is allowed
to go to a solution z′ within neighborhood N(z) by a tabu move only when
the upper level objective value of z′ is larger than that of z. When a certain
solution is found, we allow a move to another solution from its neighborhood
by tabu move only if it satisfies aspiration criterion, i.e. if it leads to a smaller
value of the leader’s objective function than that of the aspiration level.

Let NS denote the total number of the generated starting points, and let
K denote their counter, let NU denote the allowed number of uphill moves
during the search part, and let I denote the counter to search among the
neighborhood points.

The body of the heuristics looks like this:

Heuristics

Step 1 (Initialization)

Step 1A Set K = 1.

Step 1B Set J = 0. Set I = 1. If K > NS, go to Step 4. Otherwise, go to
step 2A.

Step 2 (Choice)

Step 2A Generate K-th starting point z[K]. Fix z[K] and obtain x[K], y[K], s[K], w[K]

by solving the follower’s problem (1)-(8). If K = 1 , set

x∗ = x[K], y
∗ = y[K], s

∗ = s[K], w
∗ = w[K], z

∗ = z[K]

and set
F ∗ = F (x[K], y[K], s[K], w[K], z[K])

Go to Step 2B.

Step 2B If I ≤ 4, find I-th neighborhood point z′
[I] and obtain x′

[I], y
′
[I], s

′
[I], w

′
[I]

by solving the follower’s problem (1)-(8). Go to Step 2C.

If I > 4, go to Step 2D.

9



Step 2C If such obtained point is tabu and fails to satisfy the aspiration
condition, set I = I + 1 and go to Step 2B. Otherwise, record

F [I] = F (x′
[I], y

′
[I], s

′
[I], w

′
[I], z

′
[I]),

set I = I + 1, and go to Step 2B.

Step 2D As new current solution (x[K], y[K], s[K], w[K], z[K]) chose the point
(x′

[I], y
′
[I], s

′
[I], w

′
[I], z

′
[I]) for which

F = min
{
F [I] : I = 1, ..., 4

}

Set B to an index of that point.

Step 3 (Update)

Step 3A Update tabu list TABU and the value of the aspiration level. If

F ∗ ≥ F , set J = J + 1 and go to Step 3B.

If F ∗ < F , set F ∗ = F , set

x∗ = x′
[B], y

∗ = y′
[B], s

∗ = s′[B], w
∗ = w′

[B], z
∗ = z′

[B]

set I = 1, set J = 0 and go to Step 2B.

Step 3B If J > NU , set K = K + 1 and go to Step 1B. Otherwise, set
I = 1 and go to Step 2B.

Step 4 (Termination) STOP. The solution is obtained.

Figure 3.

4 Computational results and conclusions

The heuristics is implemented in the AMPL programming language and uses
CPLEX. All computations were performed on PC having Pentium IV 2.4
GHz processor and 1Gb RAM. The mixed-integer problem arising in Step

10



2B (the follower’s problem (1)-(8)) is solved using CPLEX 8.0 mixed integer
programming package, i.e. its branch and bound procedure.

Ten separate runs were made for each class of the problem. The data
were generated according to uniform distribution using Excel, and taking
into account the requirement that the costs increase as time passes, as well
as requirements for setup costs. Namely, if the setup time required for switch-
ing from a product i to a product l is small, the setup time for switching
from product l to product i is large and vice versa. Otherwise, the problem
would not be the problem with sequence dependent setup times and would
not describe the problem confronted by a pharmaceutical firm that we are
considering here. Table 1 displays the size of the problem classes, as well as
the CPU time (in seconds) required by the heuristics to reach termination.

Problem Class No. of No. of Average
(T,n) Variables Constraints CPU time
(4, 3) 138 212 1.09375
(4, 4) 216 376 1.73438
(5, 4) 268 470 1.96875
(6, 4) 320 564 2.54688
(10, 5) 760 1470 4.9688
(15, 5) 1135 2205 5.375
(15, 8)∗ 2536 5670 14.4844
(20, 5) 1510 2940 6.09375

Table 1. Problem Classes together with CPU time

∗The CPU time for the problem class (15, 8) is obtained by limiting the
number of branch-and-bound nodes in CPLEX procedure for finding optimal
solution of the mixed-integer follower’s problem emerging in Step 2A and
Step 2B (1)-(8). It should be mentioned that when the algorithm was run
for this problem class without any limitations on the number of branch and
bound nodes, it did not reach termination even after approximately 20 hours
of working. However, the solution obtained by heuristics when a number of
branch and bound nodes in MIP procedure for solving the follower’s problem
was limited was much better than the solution obtained after 20 hours of
computing without limitations on the number of nodes, which shows that
the heuristics itself had more influence on the quality of the solution.

11



As it can be seen from Table 1, the number of products to be produced
most significantly influences the dimension of the problem in terms of the
number of variables, as well as in terms of the number of constraints. Fur-
thermore, the computational time increases significantly as n increases, which
can be seen by comparing the CPU times for problem classes (20, 5) and
(15, 8) , where CPU time for problem class (15, 8) is obtained by limiting the
number of branch and bound nodes..

Table 2 shows values of objective functions F and f obtained by solving
one instance of each class of the problem for the corresponding one-criterion
problem obtained by taking into account only the leader’s or the follower’s
objective function respectively, and by solving the bilevel problem.

Problem Class One-criterion problem Bilevel problem
(T,n) Objective F Objective f Heuristics

(4, 3)
F = 1

f = 25681
F = 22

f = 22271
F = 9

f = 24205

(4, 4)
F = 8

f = 52000
F = 25

f = 40112
F = 18

f = 42655.7

(5, 4)
F = 15

f = 64743
F = 39

f = 57345
F = 39

f = 57445.8

(6, 4)
F = 10

f = 98095
F = 88

f = 67414
F = 58

f = 75565.3

(10, 5)
F = 1

f = 230949
F = 99

f = 163144
F = 54

f = 207906

(15, 5)
F = 35

f = 404808
F = 293

f = 306161
F = 214

f = 344164

(15, 8)∗
F = 134

f = 787943
F = 282

f = 611075
F = 206

f = 632781

(20, 5)
F = 135

f = 680318
F = 757

f = 409362
F = 679

f = 425351

Table 2. Comparison of the results for the one-criterion problem and the
bilevel problem

Once again, the solution of the bilevel problem for problem class (15, 8)
is obtained by setting the limit on the number of branch and bound nodes in
solving the follower’s mixed-integer problem emerging in Step 2A and Step
2B.

12



Table 3 shows the initial partitions of the tabu search heuristics for solv-
ing the bilevel problem and optimal partitions of products to the machines
obtained by the heuristics for the same instances of problem classes as in
Table 2.

Problem Class Initial Optimal
(T,n) partition partition

(4, 3)
N1 = {2}
N2 = {1, 3}

N1 = {2, 3}
N2 = {1}

(4, 4)
N1 = {1, 2, 3}
N2 = {4}

N1 = {1, 2, 3}
N2 = {2, 4}

(5, 4)
N1 = {1, 2, 3}
N2 = {4}

N1 = {1, 2, 3, 4}
N2 = {1, 2, 3, 4}

(6, 4)
N1 = {1, 3, 4}
N2 = {2}

N1 = {1, 2}
N2 = {3, 4}

(10, 5)
N1 = {2, 5}
N2 = {1, 3, 4}

N1 = {5}
N2 = {1, 2, 3, 4}

(15, 5)
N1 = {3, 4, 5}
N2 = {1, 2, 5}

N1 = {3, 4}
N2 = {1, 2, 3, 4, 5}

(15, 8)∗
N1 = {2, 3, 4, 5, 6, 8}
N2 = {1, 3, 5, 6, 7, 8}

N1 = {2, 3, 4, 5, 6, 7}
N2 = {1, 3, 5, 6, 8}

(20, 5)
N1 = {2, 5}
N2 = {1, 3, 4}

N1 = {2, 4, 5}
N2 = {1, 2, 3, 4, 5}

Table 3. Partition of products to the machines in the starting and optimal
solution

Partitions obtained by solving the one-criterion problem always consist
of N1 = {1, .., n}, N2 = {1, .., n}, regardless of whether solving the follower’s
or leader’s problem is solved.

Finally, for each class of the problem the bilevel problem is solved by
slightly modified heuristics obtained by randomly generating starting points
of the tabu search in Step 2A instead of constructing them as described
in Section 3 (Figure 1). The starting points of the modified heuristics are
obtained by randomly assigning products to the machines for production.
However, such heuristics mainly produces solutions of poorer quality, and
sometimes, unlike the initial heuristics, it does not even reach the feasible
solution at all, due to the limitations of the search.

13



5 Future work

The results showed that the greatest computational burden on heuristics
lies in solving the mixed integer follower’s problem appearing in Step 2A and
Step 2B, (1)-(8). Moreover, the solution obtained by heuristics when limiting
the number of branch and bound nodes in the mixed integer procedure for
solving these problems proved to produce the overall bilevel problem solution
of better quality and in less computational time. Therefore, in order to solve
the problem instances of higher dimension, we want to develop heuristics
based on Lagrange relaxation for solving the follower’s problem in Step 2A
and 2B (1)-(8), and then compare the results obtained in such a way with
the results of heuristics proposed and studied in this paper.

References

[1] A. Allahverdi, J.N.D. Gupta, T. Aldowaisan, A review of scheduling re-
search involving setup consideration, Omega, The International Journal
of Management Science 27 (1999) 219-239

[2] O. Ben-Ayed, C.E. Blair, Computational difficulties of bilevel linear pro-
gramming, Technical notes (1989) 556-560

[3] G.R. Bitran, H.H. Yanasse, Computational complexity of the capacitated
lot size problem, Management Science 28 (1982) 1174-1186

[4] D. Cao, M. Chen, Capacitated plant selection in a decentralized manufac-
turing environment: A bilevel optimization approach”, European Journal
of Operational Research 169 (2006) 97-110

[5] A. Drexl, A. Kimms, Lot sizing and scheduling - Survey and extentions,
European Journal of Operational Research 99 (1997) 221-235

[6] M. Garey, D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, San Francisco, CA (1979)

[7] F. Glover. Tabu Search. Kluwer Academic Publishers, Dordrecht, 1997.

[8] Diwakar Gupta, Thorkell Magnusson, The capacitated lot-sizing and
scheduling problem with sequence-dependent setup costs and setup times,
Computers & Operations Research 32 (2005) 727-747

14



[9] Y. Hung, C. Chen, C. Shih, M. Hung. Using tabu search with ranking
candidate list to solve production planning problems with setups, Com-
puters & Industrial Engineering 45 (2003) 615–634

[10] B. Karimi, S.M.T. Fatemi Ghomi, J.M. Wilson, The capacitated lot
sizing problem: a review of models and algorithms, Omega, The Interna-
tional Journal of Management Science 31 (2003) 365-378

[11] Z. Lukač, K. Šorić, V. Vojvodić Rosenzweig, Production Planning Prob-
lem with Sequence Dependent Setups, Proceedings of 10th International
Conference on Operational Research, September 22-24, 2004, Trogir,
Croatia, 25-33

[12] J.T. Moore, J.F. Bard, The mixed integer linear bilevel programming
problem, Operations research 38 (1990) 911-921

[13] R.T. Sumichrast, Scheduling parallel processors to minimize setup
time,Compters & Operations Research 14 (1987) 305-313

[14] L. Vicente, P. Calamai, Bilevel and multilevel programming: A bibliog-
raphy review, Journal of Global Optimization 5 (1994) 291-306

[15] L. Vicente, G. Savard, J. Judice, Discrete Linear Bilevel Programming
Problem, Journal of optimization theory and application 89 (1996) 597-
614

[16] P. Wen, D. Huang, A simple Tabu search method to solve the mixed
integer linear bilevel program, European Journal of Operational Research
88 (1996) 354-362

[17] Laurence A. Wolsey, MIP modelling of changovers in production plan-
ning and scheduling problems, European Journal of Operational Research
99 (1997) 154-165

15


