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Using a graph approach to quantum systems, we show that descriptions of 3-dim Kochen-Specker (KS) setups
as well as descriptions of 3-dim spin systems by means of Greechie diagrams (a kind of lattice) that we find
in the literature are wrong. Correct lattices generated by McKay-Megill-Pavicic (MMP) hypergraphs and
Hilbert subspace equations are given. To enable future exhaustive generation of 3-dim KS setups by means of
our recently found stripping technique, bipartite graph generation is used to provide us with lattices with equal
numbers of elements and blocks (orthogonal triples of elements)—up to 41 of them. We obtain several new
results on such lattices and hypergraphs, in particular on properties such as superposition and orthoraguesian
equations.
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I. INTRODUCTION

We make use of hypergraphs (defined in Sec. III) and
bipartite graphs (defined in Sec. V) to describe large 3-
dim quantum setups. One way to describe a quantum
system in Hilbert space is through the use of lattices,
specifically Hilbert lattices (Def. II.3), and our approach
is based on a correspondence between graphs and lattices.

Many authors have tried to justify empirically a
mathematically well-proved ortho-isomorphism between
a Hilbert lattice and the lattice of subspaces of an infinite-
dimensional Hilbert space, which has been worked out
by over the last 60 years.1,2 The finite-dimensional case
was elaborated even earlier by G. Birkhoff and J. von
Neumann.3 The results were crowned by the result of
Maria Pia Solèr4 that the field (e.g., complex numbers)
over which the Hilbert space can be defined follows from
the Hilbert lattice conditions.

Yet, a satisfactory empirical justification has not been
achieved. First steps have been attempted with a descrip-
tion of spin-1, i.e., 3-dim systems. Several authors5–15

have obtained a number of results in applications of the
so-called Greechie diagrams (see Subsec. II G) to spin sys-
tems. For instance, a correspondence found between or-
thomodular lattices and MMP hypergraphs (see Sec. III,
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Def. III.1) enabled an exhaustive generation of all 3-dim
Kochen-Specker (KS) sets with up to 24 vectors.16

On the other hand, many results on equations hold-
ing in Hilbert lattices (see Sec. II B) have recently been
obtained.17–21 An immediate idea was to verify these
equations on the sets for which an experimental setups
was designed—KS sets. To our surprise it turned out that
the standard KS setups described by Greechie diagrams
do not allow a verification of these equations. Moreover
known KS systems described by Greechie diagrams do
not pass even the property of modularity which any spin
lattice should pass. Hence, something was missing in the
known description of those sets.

A missing link between empirical quantum measure-
ments and its lattice structure was a proper description
of a correspondence between the standard quantum mea-
surements, which use Hilbert space vectors and states,
and Hilbert lattices, which make use of Hilbert space
subspaces that contain these vectors and/or are spanned
by them. What hampered a search for such a correspon-
dence was a too narrow focus on orthogonality via lattices
represented by Greechie diagrams (Def. II.12).

As we show in Subsec. II G Greechie diagrams cannot
serve the purpose because they in general turn out not
to be subalgebras of a Hilbert lattice (Theorem II.12).

We give two examples which were most elaborated in
the literature: empirical reconstruction of quantum me-
chanics via lattice theory and a description of Kochen-
Specker’s setups via lattice theory. The examples show
how the application of the Greechie diagrams lead these
elaborations to a dead end.

As for the empirical reconstruction, B. O. Hultgren, III
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and A. Shimony used Greechie diagrams in their detailed
attempt to build up a Hilbert lattice of a realistic quan-
tum system for a 3-dim spin-1 system passing through
Stern-Gerlach filters.5,6 They did not succeed in building
a Hilbert lattice because the Greechie diagrams, as we
show below (Th. II.12), are not subalgebras of a Hilbert
lattice. They failed to obtain some features they thought
they should have obtained and they obtained some fea-
tures they thought they should not have obtained. As
for the former features, e.g., superposition, we show that
they do not cause necessarily problems (see the remark
after Lemma II.2). As for the latter features, it has been
shown that their appearance was due to the fact that
they did not take into account both electric and magnetic
fields.22 However, even if Hultgren and Shimony had used
them they could have only repaired some faulty Greechie
diagrams. In particular, they could have patched the
missing links in their Fig. 3 (dashed lines) and with them
their lattice would read: 123,456,789,ABC,58B (using
MMP hypergraph encoding, described below).

As for the KS setup, S. Kochen and E. P. Specker23 in
their proof used a partial Boolean algebra (PBA), which
is a very general class of algebras. The closed subspaces
of a Hilbert space form a particular, specialised PBA.
However, conditions that make PBA isomorphic to a lat-
tice of Hilbert space subspaces have not been discov-
ered, although steps in that direction have been taken
by D. Smith.12,24,25 The equivalence of PBA and atomic
ortholattices was proved by I. Pitowsky in 1982.26 Ap-
parently misled by this equivalence, some authors have
represented KS setups by means of Greechie diagrams
in a series of publications.7–11 In Sec. III, we show that
KS setups cannot be described by means of Greechie dia-
grams because Greechie diagrams are not subalgebras of
a Hilbert lattice.

Now, in Sec. III we show that both a lattice recon-
struction of quantum mechanics and a lattice description
of KS setups must take nonorthogonal subsets into ac-
count. They are required by the conditions and equa-
tions that must hold in every Hilbert space.27 This
is the reason why KS setups cannot be described by
means of Greechie diagrams, as we prove for all known
spin-1 KS setups, notably Kochen-Specker’s23, Peres’28,
Kernaghan’s29, Bub’s30, and Conway-Kochen’s30.

We also find a way to obtain lattices that we can use
to describe a quantum setup to any desired degree of
accuracy. They make use of subspaces that contain non-
orthogonal vectors and/or are spanned by them. The
subspaces that appear in them are filtered by the afore-
mentioned conditions and equations that must hold in
every Hilbert space. We call such lattices MMPLs (see
Def. III.2 and Fig. 8).

However, our programs written for a generation of arbi-
trary MMP hypergraphs that can be used for a construc-
tion of MMPLs with more than 30 vectors take too much
time. Therefore, we consider lattices that have some of
the properties MMPLs require and lack some others, with
the idea—which turns out to be rewarding—of getting

lattices with more than 40 vectors that can be obtained
faster and that can in turn give all interesting MMPLs
by means of different very fast algorithms and programs.
For instance, to obtain all 4-dim KS sets with 18 through
24 vectors requires several months on a cluster with 500
3GHz CPUs, while in Ref. 16 we found an algorithm and
a program to obtain them all from a single KS set with
24 vectors in less than 10 min on a single PC. This 24
vector KS set also belongs to the aforementioned class of
lattices that have “some of the properties MMPLs require
and lack some others.” Vectors correspond to atoms in
lattices and to vertices in MMP hypergraphs, and tetrads
correspond to blocks in lattices and edges in MMP hy-
pergraphs. MMP hypergraphs are defined in Ref. 14 and
in Sec. III, Def. III.1.

The aforementioned “10 min” method we call a strip-
ping technique.16 It consists in stripping blocks off of a
single initial KS set with 24 vertices (vectors) and 24
edges (tetrads) until we reach the smallest such sets—
called critical KS sets—in the sense that any of them
would cease to be a KS set if we stripped any further
blocks away. The technique provided us with all 1232
KS subsets with vector component values from {-1,0,1}
contained in the 24-24 class of KS {-1,0,1} set.

We also applied the same technique to 60-60 KS sets
that we obtained from a 60-75 set and generated a huge
number of critical sets (for 60-65 through 60-75 we rig-
orously verified that no critical set exists and for 60-61
through 60-64 we confirmed that statistically with a high
confidence). All the KS sets and critical sets we gener-
ated in this way form a new KS class (we call it “60-75 KS
class”) which is disjoint from the 24-24 class.31 The small-
est critical set from this class is a 13-26 KS set shown in
Fig. 1 of Ref. 31.

In the above generation of 4-dim KS sets by the strip-
ping technique we were fortunate to find covering KS sets
with the same number of vertices and edges (24-24, 60-
60). For 3-dim KS sets no such covering set with the
the same number of vertices and edges is known so in
this paper we pave the road of its generation by means
of bipartite graphs (see Secs. V and VI).

As we report in Sec. V, such a generation of bipartite
graphs is still computationally too demanding. We pre-
viously considered 3-dim systems with equal number of
atoms (vertices) and blocks (edges) with up to 38 atoms
and blocks.15 Now we use much faster algorithms and
programs and are able to reach 41 atoms and blocks.
This is still not enough for a realistic system, but we
obtain several important properties of such classes of lat-
tices that might help us to obtain even better algorithms
and reach the 50 atoms required for generation of realistic
KS setups with the help of the stripping technique.

The results we invoke and make use of are well-known
in lattice theory. They have not been reformulated in
Hilbert space theory itself, so, we present all our results in
the lattice theory, and only when it would really help the
reader to see what a Hilbert-space version of particular
properties and axioms would look like, do we formulate
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some result directly in the Hilbert space parlance as, e.g.,
in Theorems II.9 and II.10. Hence for the reader who is
not too familiar with the lattice theory, we first introduce
and characterise its basic notions in Sec. II, and here we
give a general framework in which we shall make use of
the lattice theory.

A spin state of a system is assumed to be repeatedly
prepared, manipulated, and/or filtered by a device. The
directions of vectors of the spin projections coincide with
the orientations of the device. Hilbert space subspaces
that contain these vectors form lattices. To distinguish
between device orientations and spin orientations we use
the term experimental setup to mean a description of the
devices and their fields. We use the term formalised setup
to mean a theoretical description of the quantum sys-
tems.

We start with a very general class of lattices—
orthomodular lattices (OMLs) (see Def. II.2). Elements
of spin-1 OMLs correspond to subspaces (1-dim rays and
2-dim planes) spanned by Hilbert space vectors which
must satisfy two classes of conditions:

(1) Equations, e.g., the orthoarguesian and Godowski
equations (see Table I for a summary of these and other
equations mentioned);

(2) Quantified expressions, e.g., the superposition prin-
ciple [Def. II.3(3); Eq. (18)].

They are essential for understanding the ramification
of all quantum setups:

(1) Equations that fail in a subalgebra of a lattice will
also fail in the lattice (see Lemma II.2 below). So no
experimental setup for which quantum mechanical equa-
tions cannot have a solution can be used for measuring
properties of a quantum system. Such setups are non-
quantum setups;

(2) Quantified expressions that fail in a subalgebra of
a lattice may, however, pass in the lattice (see the re-
mark after Lemma II.2 below). Smaller setups, in which
e.g. superposition cannot be measured, are “sub-setups”
of setups in which superposition is possible.

Quantum setups and quantum lattices refer to systems
whose OMLs are subalgebras of a Hilbert lattice. Semi-
quantum lattices refer to systems whose OMLs are not
subalgebras of a Hilbert lattice. Examples of the former
are proper KS lattices in the sense of being subalgebras
of a Hilbert lattice.

Semi-quantum lattices with equal number of atoms
and blocks we consider are atomic lattices. They admit
real-valued and vector states, satisfy superposition, and
yet violate, e.g., orthoarguesian equations. To deal with
them we can use Greechie diagrams because we consider
lattices that consist of concatenated orthogonal triples
and are not subalgebras of a Hilbert lattice.

To generate semi-quantum lattices we proceed as fol-
lows. We first use algorithms that exhaustively gener-
ate cubic bipartite graphs. We then show that they are
equivalent to MMP hypergraphs which in turn corre-
spond to OMLs with equal numbers of atoms and blocks.
We generate OMLs with up to 41 of atoms and blocks,

and prove that they all have the above features. The ob-
tained OMLs narrow down the non-quantum classes of
OMLs and might enable us to generate quantum classes
of OMLs of high complexity and KS setups. They also
enable us to obtain several new results in Hilbert lat-
tice theory that rely on the features that the generated
OMLs possess. In Sec. V, we analyse the properties of
the OMLs obtained in Sec. VI, and provide a new type of
graphical representation for them in Sec. VII. We discuss
the obtained results in Sec. VIII.

The “negative results” that we consider in this pa-
per (classes of lattices that do not pass particular equa-
tions) we have recently used as a tool for generating other
equations21 and, in the case of the aforementioned 4-dim
KS sets, for generating new KS sets.

Our results also provide us with novel algorithms and
results in the theory of bipartite graphs and hypergraphs.
Lattices that do not admit strong sets of states serve
as inputs to algorithms for finding new Hilbert lattice
equations, and lattices that admit just one state serve
for establishing new lattice features and theorems.32,33

Bipartite graphs have recently been studied extensively
in the field of quantum information. A bipartite entan-
glement of the states constructed from the algebra of a
finite group with a bilocal representation (G) acting on a
separable reference state has been studied in Ref. 34. If
G is a group of spin flips acting on a set of qubits, these
states are locally equivalent to bipartite (two-colorable)
graph states and they include GHZ, CSS, cluster states,
etc. Equivalence of CSS states (of which GHZ states are
a special case) and bipartite graph states has been shown
in Ref. 35.

Graph states form class of multipartite entangled
states associated with combinatorial graphs (see, e.g.,
Refs. 36 and 37) and have applications in diverse areas of
quantum information processing, such as quantum error
correction and the one-way model.

On the other hand, bipartite graphs have been shown
to have an important application for quantum search and
related quantum walks, span-programs, and search algo-
rithms such as Grover’s.38,39

II. PRELIMINARY DEFINITIONS AND THEOREMS

AND THE SEMI-QUANTUM LATTICES

This section covers most definitions and background
material. It is organized as follows.

• Hilbert lattices (Subsection II A)

• Overview of equations holding in Hilbert lattices
(Subsection II B)

• States (Subsection II C)

• Vector-valued states (Subsection II D)

• Superposition (Subsection II E)
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• Orthoarguesian equations (Subsection II F)

• Greechie diagrams (Subsection II G)

• Semi-quantum lattices (Subsection II H)

A. Hilbert lattices

The closed subspaces of a Hilbert space H form an alge-
bra called C(H), which is a member of the class of ortho-
modular lattices (OML). An OML, in turn, is a member
of a more general class called OL (ortholattices). We will
first define OLs, OMLs, and related structures, then we
will describe how the closed subspaces of Hilbert space
form a member of (some) of these classes of structures.

We define OL as follows, along with auxiliary constants
0 and 1, an ordering relation, and an implication opera-
tion. The binary operations ∪ and ∩ are called join and
meet respectively, and the unary operation ′ is called or-
thocomplementation. Recall that an algebra is an n-tuple
consisting of a base set and n−1 operations on that base
set.

Definition II.1. An ortholattice, OL, is an algebra
〈OL0,

′ ,∪,∩〉 such that the following conditions are sat-
isfied for any a, b, c ∈ OL0

40: a∪ b = b∪a, (a∪ b)∪ c =
a∪ (b∪ c), a′′ = a, a∪ (b∪ b ′) = b∪ b ′, a∪ (a∩ b) = a,
and a ∩ b = (a′ ∪ b ′)′. In addition, since a ∪ a′ = b ∪ b ′

for any a, b ∈ OL0, we define the greatest element of
the lattice (1) and the least element of the lattice (0),

1
def
= a ∪ a′ and 0

def
=a ∩ a′, respectively and the order-

ing relation (≤) on the lattice: a ≤ b
def
⇐⇒ a ∩ b =

a ⇐⇒ a ∪ b = b. Quantum (Sasaki) implication is
defined as a → b = a′ ∪ (a ∩ b).

When we say a lattice is an OL (or an OML, etc.) we
mean that the lattice is a member of the class OL (OML,
etc).

By adding an additional condition, we can restrict the
class OL to become the successively smaller (less general)
classes OML, MOL, and BA as follows.

Definition II.2. An ortholattice (OL) in which

b ≤ a & c ≤ a′ ⇒ a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c), (1)

b ≤ a ⇒ a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c), (2)

or a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c) (3)

holds, is an orthomodular lattice (OML), modular ortho-
lattice (MOL), or Boolean algebra (BA), respectively.

Our primary interest is in the subclass of OML called
HL (Hilbert lattices).

Definition II.3.41 An orthomodular lattice that satisfies
the following conditions is a Hilbert lattice (HL).

1. Completeness: The meet and join of any subset of
an HL exist.

2. Atomicity: Every non-zero element in an HL is
greater than or equal to an atom. (An atom a is
a non-zero lattice element with 0 < b ≤ a only if
b = a.)

3. Superposition principle: (The atom c is a superpo-
sition of the atoms a and b if c 6= a, c 6= b, and
c ≤ a ∪ b.)

(a): Given two different atoms a and b, there is at
least one other atom c, c 6= a and c 6= b, that
is a superposition of a and b.

(b): If the atom c is a superposition of distinct
atoms a and b, then atom a is a superposition
of atoms b and c.

4. Minimum height: The lattice contains at least two
elements a, b satisfying: 0 < a < b < 1.

These conditions imply an infinite number of atoms in
HL, as shown by Ivert and Sjödin.42

With suitably defined operations, the closed set of sub-
spaces of a Hilbert space, C(H), can be shown to be a
Hilbert lattice (a member of HL). The meet operation
a∩ b corresponds to the set intersection Ha

⋂
Hb of sub-

spaces Ha,Hb of Hilbert space H; the ordering relation
a ≤ b corresponds to Ha ⊆ Hb; the join operation a ∪ b
corresponds to the smallest closed subspace of H contain-
ing the set union Ha

⋃
Hb; and the orthocomplementa-

tion operation a′ corresponds to H⊥
a , the set of vectors or-

thogonal to all vectors in Ha. Within Hilbert space there
is also an operation which has no parallel in the Hilbert
lattice: the sum of two subspaces Ha + Hb, which is de-
fined as the set of sums of vectors from Ha and Hb. We
also have Ha +H⊥

a = H, i.e. the subspace that equals the
whole of Hilbert space itself. One can define all the lattice
operations on a Hilbert space itself following the above
definitions (Ha ∩ Hb = Ha

⋂
Hb, etc.). Thus we have

Ha ∪ Hb = Ha + Hb = (Ha + Hb)
⊥⊥ = (H⊥

a

⋂
H⊥

b )⊥,43

(p. 175) where Hc is the closure of Hc, and therefore
Ha + Hb ⊆ Ha ∪ Hb. When H is finite-dimensional or
when the closed subspaces Ha and Hb are orthogonal to
each other then Ha +Hb = Ha∪Hb. (Refs. 44, pp. 21-29,
45, pp. 66,67, 46, pp. 8-16)

Using these operations, it is straightforward to ver-
ify that closed subspaces C(H) of a finite- or infinite-
dimensional Hilbert space form an OML (Ref. 45,
pp. 66,67) and more specifically an HL (Ref. 1, pp. 105–
108,166,167). [In the case of a finite Hilbert space, C(H)
is also an MOL. (Ref. 1, p. 107)] Specifically, we have the
following theorem.

Theorem II.1. Let H be a finite- or infinite-dimensional
Hilbert space over a field K and let

C(H)
def
= {X ⊆ H | X⊥⊥ = X} (4)

be the set of all closed subspaces of H. Then C(H) is a
Hilbert lattice relative to:

a ∩ b = Xa ∩ Xb and a ∪ b = (Xa + Xb)
⊥⊥. (5)



5

A more difficult problem is to determine, given an HL,
how much of Hilbert space can be reconstructed from
it. An isomorphism is a bijection between two lattices
that preserves the lattice ordering (or equivalently the
meet and join operations). An ortho-isomorphism is an
isomorphism that also preserves the orthocomplement
operation. One can prove the following representation
theorem.47–49

Theorem II.2. For every Hilbert lattice (HL), there ex-
ists a field K and a Hilbert space H over K such that
the set of closed subspaces of the Hilbert space, C(H), is
ortho-isomorphic to HL. (Note that multiplication is not
necessarily commutative in this field, which some authors
call a “division ring” or “skew field.”)

In order to determine the field over which the Hilbert
space in Theorem II.2 is defined, we make use of a theo-
rem proved by Maria Pia Solèr.2,4 First, we need a defi-
nition.

Definition II.4. Let p and q be orthogonal atoms in a
Hilbert lattice and c be an atom different from p and q
such that c ≤ p∪q. Let x be any atom such that x � p∪q.
Let y an atom different from x and p such that y ≤ x∪p.
Define d1 = (c ∪ y) ∩ (q ∪ x) and d2 = (p ∪ d1) ∩ (q ∪ y).
Then (x∪d2)∩(p∪q) is the (unique) harmonic conjugate
of c with respect to p and q.

Now we can state the following application of Solèr’s
theorem to an HL lattice.2 (Th. 4.1)

Theorem II.3. The Hilbert space H from Theorem II.2
is an infinite-dimensional Hilbert space defined over a
real, complex, or quaternion (skew) field if the following
conditions are met:

• Infinite orthogonality: The HL contains a count-
ably infinite sequence of orthogonal atoms pi, i =
1, 2, . . .

• Harmonic conjugate condition: The HL contains
a corresponding sequence of atoms ci ≤ pi ∪ pi+1

such that the harmonic conjugate of ci with respect
to pi, pi+1 equals c′i ∩ (pi ∪ pi+1).

Thus we do arrive at a full Hilbert space, but as we can
see the axioms for the Hilbert lattices that we used for
this purpose are rather involved. This is because in the
past, the axioms were simply read off from the Hilbert
space structure and were formulated as first-order quanti-
fied statements that cannot be implemented into a quan-
tum computer. As opposed to this, the equations de-
scribing properties of Hilbert lattices and elaborated on
in Defs. II.6, II.10, Eqs. (16), (17), (35), and Th. II.11 are
directly applicable to experimental setups and that is the
reason why the results we obtain in this paper and in the
recent previous paper of ours have not been conjectured
previously.

B. Overview of equations holding in Hilbert lattices

The families of lattices OL, OML, MOL, and BA are
completely characterized by identities, i.e., equational
conditions. Such families are called equational varieties.
Equations, as opposed to quantified conditions, offer
many advantages, such as fast algorithms for testing fi-
nite lattice examples and the use of tools and techniques
from propositional calculus. At the very least, the ma-
nipulation of identities is much simpler both conceptually
and practically than the use of predicate calculus to work
with quantified conditions.

Until 1975, it was thought that the equations defin-
ing OML were the only ones holding in HL. Then Alan
Day discovered the orthoarguesian equation that holds
in any Hilbert lattice but does not in all OMLs.50 Since
then, much progress has been made in finding many new
equations that hold in HL and are independent from the
others.

By Birkhoff’s HSP theorem51 (p. 2), the family HL
is not an equational variety, since a finite sublattice is
not an HL. A goal of studying equations that hold in
HL is to find the smallest variety that includes HL, so
that the fewest number of of non-equational (quantified)
conditions such as those in Def. II.3 will be needed to
complete the specification of HL.

First we will summarize the equations known so far
that hold in HLs but not in all OMLs (see Table I). They
fall into three major categories: geometry-related, state-
related, and vector-state-related. The last hold in all
“quantum” HLs, i.e., those ortho-isomorphic to Hilbert
spaces with real, complex, or quaternion fields but not
necessarily with other fields.

TABLE I. Summary of known equations holding in (quantum)
Hilbert lattices

Equation Variety Based on Definition

Orthoarguesian 4OA geometry Eq. (34)

Generalized OA nOA, n ≥ 3 geometry Eq. (34)

Mayet’s EA EA geometry Ref. 21

Godowski nGO, n ≥ 3 states Th. II.4

Mayet-Godowski MGO states Def. II.8

Mayet’s E-equations En, n ≥ 3 vector Eqs. (16),
states (17)

The geometry-related equations are derived using the
properties of vectors and subspace sums that hold in a
Hilbert space. They include Day’s original orthoargue-
sian equation, the generalized orthoarguesian equations,
and Mayet’s EA equations.

The state-related equations are derived by imposing
states (probability measures) onto Hilbert lattices, and
include Godowski’s equations and Mayet-Godowski equa-
tions. (The justification for doing so is that such states
can be defined in Hilbert space, and we map them back
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to HL via the ortho-isomorphism of Th. II.2.) These
equations are derived by finding finite OMLs that do not
admit the “strong set of states” condition (Def. II.6) that
Hilbert lattices do admit, then analyzing the strong set
of states failure in a prescribed way in order to derive an
equation holding in HL but failing in the finite OML.

Vector-state-related equations are derived by imposing
“states” onto HLs that map to Hilbert-space vectors in-
stead of real numbers (again, justified by the fact that
such “states” can be defined in Hilbert space). They do
not always hold when the Hilbert-space field implied by
the representation theorem (Th. II.2) does not have char-
acteristic 0. (Characteristic 0 means, roughly, that the
number 1 added to itself repeatedly grows without limit.)
This remarkable property narrows down, from the equa-
tion alone, the possible fields for the Hilbert space. The
real, complex, and quaternion fields of quantum mechan-
ics have characteristic 0, so vector-state-related equations
do hold in all “quantum” HLs that have the additional
properties demanded by Solèr’s theorem in Th. II.3. The
vector-state-related equations known to date are Mayet’s
E-equations.

C. States

Definition II.5. A state on a lattice L is a function m :
L −→ [0, 1] (for real interval [0, 1]) such that m(1) = 1
and a ⊥ b ⇒ m(a ∪ b) = m(a) + m(b), where a ⊥ b
means a ≤ b′.

This implies m(a) + m(a′) = 1 and a ≤ b ⇒ m(a) ≤
m(b).

Now, let us recall that the KS theorem and the Bell
inequalities and equalities are all about states and their
experimental recordings that cannot be predetermined
i.e. fixed in advance. The latter states might be called
“purely” quantum,52 as opposed to those that can be only
predetermined and are called classical. We can formalize
these two kinds of states as follows.

Definition II.6. A nonempty set S of states on L is
called a strong set of classical states if

(∃m ∈ S)(∀a, b ∈ L)((m(a) = 1 ⇒ m(b) = 1) ⇒ a ≤ b)
(6)

and a strong set of quantum states if

(∀a, b ∈ L)(∃m ∈ S)((m(a) = 1 ⇒ m(b) = 1) ⇒ a ≤ b) .
(7)

We assume that L contains more than one element and
that an empty set of states is not strong.

Two important classes of equations that hold in all
OMLs with strong sets of states (and in particular all
HLs), but not in all OMLs, are the Godowski equa-
tions and the more general Mayet-Godowski equations.
Here we only define them for reference; for theorems and
proofs, see Refs. 19 and 21.

Definition II.7. Let us call the following expression the
Godowski identity:

a1
γ
≡an

def
=(a1 → a2) ∩ (a2 → a3) ∩ · · · ∩ (an−1 → an)

∩ (an → a1), n = 3, 4, . . . (8)

We define an

γ
≡a1 in the same way with variables ai and

an−i+1 swapped.

Theorem II.4. Godowski’s equations53

a1
γ
≡a3 =a3

γ
≡a1 (9)

a1
γ
≡a4 =a4

γ
≡a1 (10)

a1
γ
≡a5 =a5

γ
≡a1 (11)

. . .

hold in all OMLs with strong sets of states.

We call these equations n-Go (3-Go, 4-Go, etc.). We
also denote by nGO (3GO, 4GO, etc.) the OL variety
determined by n-Go, and we call equation n-Go the nGO
law.

Next, we define a generalization of this family, first
described by Mayet.54 These equations also hold in all
lattices admitting a strong set of states, and in particular
in all HLs.

Definition II.8. A Mayet-Godowski equation (MGE)
is an equality with n ≥ 2 conjuncts on each side:

t1 ∩ · · · ∩ tn =u1 ∩ · · · ∩ un (12)

where each conjunct ti (or ui) is a term consisting of
either a variable or a disjunction of two or more distinct
variables:

ti =ai,1 ∪ · · · ∪ ai,pi
i.e., pi disjuncts (13)

ui =bi,1 ∪ · · · ∪ bi,qi
i.e., qi disjuncts (14)

and where the following conditions are imposed on the set
of variables in the equation:

1. All variables in a given term ti or ui are mutually
orthogonal.

2. Each variable occurs the same number of times on
each side of the equality.

We call a lattice in which all MGEs hold an MGO; i.e.,
MGO is the largest class of lattices (equational variety)
in which all MGEs hold. The simplest known example
of an equation implied by an MGE that is independent
from all Godowski equations is19 (p. 775)

((a → b) → (c → b)) ∩ (a → c) ∩ (b → a) ≤c → a. (15)

Note that a strong set of classical states can be a special
case of a strong set of quantum states for which there
exists only a single state m in Eq. (7). According to the
following theorems, that means that both quantum and
classical states must be orthomodular.
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Theorem II.5. Any ortholattice that admits a strong set
of quantum states is orthomodular.

Proof. The proof follows from Theorem 3.10 of Ref. 17.
Note that an ortholattice that admits a strong set of
quantum states is much stronger than a bare OML be-
cause an infinite sequence of the Godowski equations
holds in every such lattice.

Theorem II.6. Any ortholattice that admits a strong
set of classical states is distributive and therefore also
orthomodular.

Proof. Eq. (7) follows from Eq. (6) and by Theorem II.5
an ortholattice that admits a strong set of classical states
is orthomodular. Let now a and b be any two lattice
elements. Assume, for state m, that m(b) = 1. Since the
lattice admits a strong set of classical states, this implies
b = 1, so m(a∩b) = m(a∩1) = m(a). But m(a′)+m(a) =
1 for any state, so m(a → b) = m(a′) + m(a ∩ b) = 1.
Hence we have m(b) = 1 ⇒ m(a → b) = 1, which means
(since the ortholattice admits a strong set of classical
states) that b ≤ a → b. This is another way of saying
aCb.55 By F-H (the Foulis-Holland theorem), an OML in
which any two elements commute is distributive.

This receives the following explanation within experi-
ments. Systems submitted to a series of preparations and
measurements are described in a Hilbert space, which is
often a product of Hilbert spaces, but in the Bell and KS
experiments, the experiments are counterfactual. If they
give different outcomes for the same observable under the
same preparation and detection depending on the prepa-
rations of other observables, then they might turn out to
be genuinely “quantum.” If, however, they always give
one and the same outcome for each observable, then they
are genuinely classical.

D. Vector-valued states

What underlies all quantum measurements is the or-
thomodular structure of subspaces, i.e., vectors and—as
recently shown by Mayet18—states that related to to the
fields over which both quantum and classical spaces are
built: real, complex, or quaternion (skew) field. These
Mayet vector states are admitted by quantum, classical,
and KS setups but also those that are wider than quan-
tum.

We stress here that the term setup basically means
a physical experimental arrangement of devices that ma-
nipulate and/or measure quantum systems. But when we
describe the behavior of a system subjected to these ma-
nipulations and measurements, we include the way the
devices affect the systems in the equations we describe
the systems with. Such a description, which includes the
operators and equations that refer to experimental ma-
nipulation and measurements, we also call a setup. In our
approach, the latter term refers to the particular set of

OML equations that apply to corresponding experimen-
tal manipulations—setup in the former meaning. When
an ambiguity in the meaning appears, we call the former
term an experimental setup or e-setup for short and the
latter term a formalized setup or f-setup for short. In this
paper, the distinction is always clear from the context.
For instance, KS setups are f-setups throughout because
no realistic experiment is discussed. We formalize the
definition of a setup as follows.

Definition II.9. An experimental setup (e-setup) is
an experimental arrangement of devices that manipulate
and/or measure quantum systems. A formalized setup
(f-setup) is a theoretical description of an experimental
setup within a Hilbert lattice or a Hilbert space formal-
ism. When it is clear from context which setup is meant
we use the term setup for both of them.

Not all OMLs admit Mayet vector states. There is a
class of lattice OML equations that characterize OMLs
that admit these states. Two smallest equations from the
class, E3 and E4, respectively, read:

a ⊥b & a ⊥ c & b ⊥ c & a ⊥ d & b ⊥ e & c ⊥ f

⇒ ((a ∪ b) ∪ c) ∩ (((a ∪ d) ∩ (b ∪ e)) ∩ (c ∪ f))

≤ (d ∪ e) ∪ f, (16)

a ⊥ b & a ⊥ c & a ⊥ d & b ⊥ c & b ⊥ d

& c ⊥ d & a ⊥ e & b ⊥ f & c ⊥ g & d ⊥ h

⇒(((a ∪ b) ∪ c) ∪ d) ∩ ((((a ∪ e) ∩ (b ∪ f))

∩ (c ∪ g)) ∩ (d ∪ h)) ≤ ((e ∪ f) ∪ g) ∪ h. (17)

These equations pass in most OMLs that characterize
properties of both quantum (Hilbert) and classical spaces
including all our lattices with equal number of vertices
(atoms) and edges (blocks) that we primarily consider in
this paper. However, Eq. (16) fails in (a) and (b) OMLs
from Fig. 2 and Eq. (17) fails in Fig. 2 (c).

E. Superposition

What also characterizes the quantum—as opposed to
classical—measurements as well as those wider than
quantum is the principle of superposition. Its main fea-
ture is that any two pure states can be superposed gen-
erate a new pure state. In a lattice a pure state m
corresponds to an atom a(m). (Atoms are defined in
Def. II.3(2).)

The following two theorems then cast the superposition
within an OML framework that we need.

Theorem II.7. [Th. 14.8.1 from1] Two pure states m, n
admit quantum superpositions iff the join of atoms a =
s(m) and b = s(n), a ∪ b, contains at least one different
atom c, which then satisfies: c 6= a, c 6= b, c ≤ a ∪ b.

Theorem II.8. [Th. 14.8.2 from1] An OML is classical
(distributive) iff no pair of pure states admits quantum
superpositions.
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The superposition from Theorem II.7 can be formu-
lated in prenex normal form (to make it easier to use
in conjunction with certain first-order logic algorithms,
including our latticeg.c program) as follows

(∃c)(∃z)(∀w) (18)

((((¬(a = 0) & ((¬(z = 0) & (z ≤ a)) ⇒ (z = a)))

& (¬(b = 0)& ((¬(z = 0) & (z ≤ b)) ⇒ (z = b))))

& ¬(a = b)) ⇒ ((¬(c = 0) & ((¬(w = 0) & (w ≤ c))

⇒ (w = c)))&((¬(c = a)&¬(c = b))&(c ≤ (a ∪ b)))))

where ¬, &, and ⇒ are classical metaoperations: nega-
tion, conjunction, and implication, respectively.

F. Orthoarguesian equations

In the end, there is a series of algebraic equations—
we call them generalized orthoarguesian equations (nOA,
n = 3, 4, . . . )—at least properly overlapping with those
characterizing states and superpositions, that must hold
in all lattices of closed subspaces of both finite- and
infinite-dim Hilbert space (and therefore in a Hilbert lat-
tice). They follow from the following set of equations
that hold in any Hilbert space.

Theorem II.9. Let M0, . . . ,Mn and N0, . . . ,Nn, n ≥
1, be any subspaces (not necessarily closed) of a Hilbert
space, and let

⋂
denote set-theoretical intersection and +

subspace sum. We define the subspace term Tn(i0, . . . , in)
recursively as follows, where 0 ≤ i0, . . . , in ≤ n:

T1(i0, i1) = (Mi0 + Mi1)
⋂

(Ni0 + Ni1) (19)

Tm(i0, . . . , im) = Tm−1(i0, i1, i3, . . . , im)
⋂

(Tm−1(i0, i2, i3, . . . , im) + Tn−1(i1, i2, i3, . . . , im)),

2 ≤ m ≤ n (20)

For m = 2, this means T2(i0, i1, i2) = T1(i0, i1)⋂
(T1(i0, i2) + T1(i1, i2)). Then the following condition

holds in any finite- or infinite-dimensional Hilbert space
for n ≥ 1:

(M0 + N0)
⋂

· · ·
⋂

(Mn + Nn)

⊆ N0 + (M0

⋂

(M1 + Tn(0, . . . , n))). (21)

Proof. (Originally given—in effect—in the proof of The-
orem 5.2 of17; a similar proof was also given by
R. Mayet20) We will use + to denote subspace sum when
connecting two subspaces and vector sum when connect-
ing two vectors; no confusion should arise. Let x be a
vector belonging to the left-hand side of Eq. (21). Then
x ∈ Mi + Ni for i = 0, . . . , n. From the definition of
subspace sum, x ∈ Mi + Ni implies there exist vectors
xi and yi such that xi ∈ Mi, yi ∈ Ni, and x = xi + yi.
From the last property, we have xi + yi = x = xj + yj or

xi − xj = −yi + yj, 0 ≤ i, j ≤ n. (22)

For the case n = 1 of Eq. (21), we need to prove

(M0 + N0)
⋂

(M1 + N1)

⊆ N0 + (M0

⋂

(M1 + ((M0 + M1)
⋂

(N0 + N1)))) (23)

Any linear combination of vectors from two subspaces
belongs to their subspace sum. Since y0 ∈ N0 and y1 ∈
N1, we have −y0 + y1 ∈ N0 +N1. Therefore by Eq. (22),
x0−x1 ∈ N0 +N1. Also, x0−x1 ∈ M0 +M1. Therefore

x0 − x1 ∈ (M0 + M1)
⋂

(N0 + N1). (24)

Since x1 ∈ M1, we have x0 = x1 + (x0 − x1) ∈ M1 +
((M0 + M1)

⋂
(N0 + N1)). Also, x0 ∈ M0, so x0 ∈

M0

⋂
(M1 + ((M0 + M1)

⋂
(N0 + N1))). Finally, since

y0 ∈ N0, we have x = y0+x0 ∈ N0+(M0

⋂
(M1+((M0+

M1)
⋂

(N0 +N1)))), proving that x belongs to the right-
hand side of Eq. (23) and thus establishing the subset
relation. This argument is illustrated by the following
diagram:

· · · ⊆ N0
︸︷︷︸

y0

+(M0
︸︷︷︸

x0

⋂
(M1
︸︷︷︸

x1

+((M0 + M1)
︸ ︷︷ ︸

x0 − x1

⋂
(N0 + N1)
︸ ︷︷ ︸

−y0 + y1 = x0 − x1

)))

︸ ︷︷ ︸

x0 − x1
︸ ︷︷ ︸

x1 + (x0 − x1) = x0
︸ ︷︷ ︸

y0 + x0 = x

.

For n > 1, notice that on the right-hand side, the
term T1(0, 1) = (M0 + M1)

⋂
(N0 + N1) in Eq. (23) is

replaced by the larger term Tn(0, . . . , n), with the rest of

the right-hand side the same. From the diagram above,
it is apparent that if we can prove

x0 − x1 ∈ Tn(0, . . . , n), (25)
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then Eq. (21) is established. We will actually prove a
more general result,

xi0 − xi1 ∈ Tm(i0, . . . , im), 0 ≤ i0, . . . , im ≤ n,1 ≤ m ≤ n
(26)

from which Eq. (25) follows as a special case by setting
m = n and i0 = 0, . . . , im = n.

We will prove Eq. (26) by induction on m. For the
basis step m = 1, the same argument that led to Eq. (24)
above shows that

xi0 − xi1 ∈ T1(i0, i1) = (Mi0 + Mi1)
⋂

(Ni0 + Ni1).

for 0 ≤ i0, i1 ≤ n. For m > 1, assume we have
proved xi0 − xi1 ∈ Tm−1(i0, i1, . . . , im−1) for all 0 ≤
i0, . . . , im−1 ≤ n. Then, in particular, we have the sub-
stitution instances

xi0 − xi1 ∈ Tm−1(i0, i1, i3, . . . , im) (27)

xi0 − xi2 ∈ Tm−1(i0, i2, i3, . . . , im) (28)

xi1 − xi2 ∈ Tm−1(i1, i2, i3, . . . , im). (29)

Combining Eqs. (28) and (29),

xi0 − xi1 = (xi0 − xi2 ) − (xi1 − xi2)

∈ Tm−1(i0, i2, i3, . . . , im) + Tm−1(i1, i2, i3, . . . , im).

Combining this with Eq. (27) and using Eq. (20),

xi0 − xi1 ∈ Tm−1(i0, i1, i3, . . . , im)
⋂

(Tm−1(i0, i2, i3, . . . , in) + Tm−1(i1, i2, i3, . . . , im))

= Tm(i0, . . . , im)

as required.

We will use the above theorem to derive a condition
that holds in the lattice of closed subspaces of a Hilbert
space. In doing so we will make use of the definitions
introduced at the beginning of Sec. II and the following
well-known44 (p. 28) lemma.

Lemma II.1. Let M and N be two closed subspaces of
a Hilbert space. Then

M + N ⊆ M
⋃

N (30)

M ⊥ N ⇒ M + N = M
⋃

N (31)

Theorem II.10. (Generalized Orthoarguesian Laws)
Let M0, . . . ,Mn and N0, . . . ,Nn, n ≥ 1, be closed
subspaces of a Hilbert space. We define the term
T

S

n (i0, . . . , in) by substituting
⋃

for + in the term
Tn(i0, . . . , in) from Theorem II.9. Then following con-
dition holds in any finite- or infinite-dimensional Hilbert
space for n ≥ 1:

M0 ⊥ N0 & · · · & Mn ⊥ Nn ⇒

(M0

⋃

N0)
⋂

· · ·
⋂

(Mn

⋃

Nn)

≤ N0

⋃

(M0

⋂

(M1

⋃

T
S

n (0, . . . , n))). (32)

Proof. By the orthogonality hypotheses and Eq. (31), the
left-hand side of Eq. (32) equals the left-hand side of
Eq. (21). By Eq. (30), the right-hand side of Eq. (21)
is a subset of the right-hand side of Eq. (32). Eq. (32)
follows by Theorem II.9 and the transitivity of the subset
relation.

Ref. 17 shows that in any OML (which includes the
lattice of closed subspaces of a Hilbert space, i.e., the
Hilbert lattice), Eq. (32) is equivalent to the mOA law
Eq. (34) for m = n + 2, thus establishing the proof of
Theorem II.11.

Definition II.10. We define an operation
(n)
≡ on n vari-

ables a1, . . . , an (n ≥ 3) as follows:

a1

(3)
≡a2

def
= ((a1 → a3) ∩ (a2 → a3)) ∪ ((a′

1 → a3) ∩ (a′
2 → a3))

a1

(n)
≡ a2

def
= (a1

(n−1)
≡ a2) ∪ ((a1

(n−1)
≡ an) ∩ (a2

(n−1)
≡ an)),

n ≥ 4 . (33)

Theorem II.11. The nOA laws

(a1 → a3) ∩ (a1

(n)
≡ a2) ≤ a2 → a3 . (34)

hold in any Hilbert lattice.

The class of equations (34) are the generalized or-
thoarguesian equations nOA discovered by Megill and
Pavičić.17,19 They also play a role in proving the semi-
quantum lattice theorem (Subsection II H).

The smallest of the generalized orthoarguesian equa-
tions is the following 3OA:

(x → z)∩(((x → z) ∩ (y → z)) ∪ ((x′ → z) ∩ (y′ → z)))

≤ y → z (35)

All nOA imply 3OA, so, if an OML does not satisfy 3OA
it will not admit any nOA.

G. Greechie diagrams

A Greechie diagram of an OML is a shorthand graph-
ical representation of a Hasse diagram of an OML.

Definition II.11. A Hasse diagram of an OML is a
graphical representation of an OML displayed via its or-
dering relation with an implied upward orientation. A
point is drawn for each element of the OML and line
segments are drawn between these points according to the
following two rules:

(1) If a < b in the lattice, then the point corresponding
to a appears lower in the drawing than the point
corresponding to a;
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2 A line segment is drawn between the points corre-
sponding to any two elements a and b of the lattice
iff either a covers b or b covers a. (a covers b iff
b < a and there is no c such that b < c < a.)

The most general definition of a Hasse diagram is given
for a partially ordered set (poset), but all we deal with in
this paper is a very special poset—OML—and therefore
we defined a Hasse diagram directly for an OML above.

Definition II.12. A Greechie diagram of an OML is a
graphical representation of a Hasse diagram of an OML
in which points represent atoms [Def. II.3(2)] and smooth
lines—called blocks—that connect points/atoms—
represent the orthogonalities between atoms.

The most general definition of a Greechie diagram is
also given for a poset but this is again too general for our
purpose. A precise definition can be found, for example,
in Ref. 45, p. 38, which includes conditions—e.g., that
there be no loops of order less than five—necessary for the
diagram to be an OML. To avoid certain complications,
we consider only those Greechie diagrams with three or
more atoms per block.

In Fig. 1 we show two Greechie diagrams and their
Hasse diagrams. The points in a Hasse diagrams that
represent mutually orthogonal atoms, which themselves
represent orthogonal vectors, span a hyperplane or the
whole space. Thus the orthogonalities imply that the
top elements under 1 in the diagrams are complements
of the atoms in the lowest level above 0.
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FIG. 1. 3- and 4-dim Greechie diagrams and their correspond-
ing Hasse diagrams shown above them.56 (Fig. 18, p. 84)

The Hasse diagrams shown in Fig. 1 is a subalgebra of
a Hilbert lattice but, as we show below (Th. II.12), al-
ready a 3-dim one with a third orthogonal triple attached
to it is not. Therefore, if we tried to arrive at complete
lattices in a realistic application by reading off all prop-
erties from a corresponding Hilbert space description, we
would end up with complicated and unmanageable prop-
erties. If we used just orthogonalities between, say, spin
projections of a considered system, we would arrive at an

incorrect description by means of Greechie diagrams. In
other words Greechie diagrams cannot represent all pos-
sible OMLs—to do so, we also need more complicated
interconnections of blocks called pastings45 (p. 48) that
we do not describe here.

As mentioned below Def. II.3, the number of atoms
in an HL is infinite, which means that finite Greechie
diagrams cannot represent an HL. However, because of
their practical advantages, it is natural to ask whether
Greechie diagrams can serve in the role of partial repre-
sentations or approximate representations of HLs, as has
been sometimes assumed in the literature as mentioned
in the Introduction. First, we make precise the notion of
a partial representation with the following definition.

Definition II.13. A subalgebra of an OL (and thus
an OML, HL, etc.) L = 〈L0,

′ ,∪,∩〉 is a set M =
〈M0,

′ ,∪,∩〉 where M0 is a subset of L0, the operations
′,∪,∩ of M are the same as the operations of L (op-
tionally restricted to M0), and M0 is closed under the
operations of L (and therefore of M).

Because the notion of subalgebra is crucial to our ar-
gument, we will elaborate on it slightly. Some literature
definitions can be misleading if not read carefully. For
example, Kalmbach45 (p. 22) omits the algebra compo-
nent breakdown as well as the word “same.” The reader
could interpret an OML M as being a subalgebra of L as
long as M0 is a subset of L0 and M0 is closed under the
operations of M (even if different from the operations of
L, which might be the case if the operation symbols are
interpreted as being local to their associated algebras as
is that author’s convention elsewhere). A careful defini-
tion can be found in e.g., Beran56 (p. 18).

Lemma II.2. If M is a subalgebra of L, then any equa-
tion (identity) that holds in L will continue to hold in
M . Equivalently, if an equation fails in M but holds in
L, then M cannot be a subalgebra of L.

Proof. This is obvious from the fact that the operations
on M are equal to the operations on L (when restricted to
the base set M0 of M). Any evaluation of an equation in
M , i.e. using elements from M0, will have the same final
value as the same evaluation in L. Since the equation
always holds in L, it will also always hold in M .

Remark. Note that the above lemma does not neces-
sarily apply to quantified conditions. A quantified con-
dition, such as superposition [Def. II.3(3); Eq. (18)], that
holds in a lattice may not hold in a sublattice. As a
trivial example, the quantified condition “has more than
two elements” does not hold in the two-element subalge-
bra consisting of 0 and 1. Although superposition holds
vacuously in the two-element subalgebra (because it has
only one atom), it fails in the 3-dim Greechie diagram of
Fig. 1, which is a subalgebra of any HL (in which super-
position holds).

In the case of an OML represented by a Greechie di-
agram, a subgraph is not necessarily a subalgebra. A
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counterexample is provided by Fig. 8a and Fig. 8b of
Ref. 57, where the first figure is a Greechie diagram that
is a subgraph of the second, but the corresponding OMLs
do not have a subalgebra relationship. In particular, an
equation holding in a Greechie diagram may not hold in
a subgraph of it, as that example shows.

The question as to whether Greechie diagrams can be
subalgebras of Hilbert lattices is answered by the follow-
ing theorem.

Theorem II.12. Any Greechie diagram containing
blocks that do not share atoms is not a subalgebra of
the lattice C(H) for a Hilbert space with dimension 3 or
greater.

Proof. Choose one atom from each such block that are
not shared with a common third block. (There will al-
ways be such atoms due to the requirement that there be
no loops of order less than five in a Greechie diagram.)
The join of these two atoms is the lattice unit. How-
ever, in any C(H), the join of any two distinct atoms
(one-dimensional subspaces spanned by vectors) whatso-
ever spans a 2-dimensional subspace, which for a Hilbert
space of dimension > 2 is not the whole space (lattice
unit). This violates the requirement of Def. II.13 that
the operations be the same.

Thus the only Greechie diagrams that can be subalge-
bras of a lattice of Hilbert space subspaces with dim > 2,
and thus of the ortho-isomorphic HL, are either single
blocks, such as in Fig. 1, or those in a “star” configura-
tion where all blocks share a common atom (Fig. 7).

H. Semi-quantum lattices

Now we can state our main theorem.

Theorem II.13. [Semi-quantum lattice algorithms]
There exist OMLs represented by Greechie diagrams that
admit superposition, real-valued states, and a vector state
given by Eq. (17) but do not admit other conditions that
have to be satisfied by every Hilbert lattice, in particu-
lar equations like the orthoarguesian and Godowski ones.
As a consequence of violating Godowski equations, these
OMLs do not admit strong sets of states.

We point out here that we developed special algorithms
and programs (e.g., states) that follow the definition
Def. II.6 of the strong set of states and are much faster
than those that check whether an equation passes in a
lattice. Besides, a lattice that satisfies Godowski equa-
tions need not admit a strong set of states.

The generation algorithms mentioned in Theorem II.13
are presented in Sec. V. The outcomes of our massive
computations, given in Sec. VI and based on these algo-
rithms, provide Theorem II.13 with the following corol-
lary:

Corollary II.13.1. [Semi-quantum lattices] There ex-
ists a class of OMLs that admit superposition, real-valued
states, and a vector state but do not admit other condi-
tions that have to be satisfied by every Hilbert lattice.

This corollary corresponds to the original KS theorem
and Theorem II.13 corresponds to the algorithms that
generate KS vectors as given in Ref. 58. Moreover, hope-
fully we shall be able use the same algorithms to generate
genuine and complete KS setups and prove a non-vacuous
KS theorem, because an OML that admits Mayet vector
states and superposition and all other Hilbert lattice con-
ditions corresponds to a realistic quantum system whose
measurement does not allow a classical interpretation.
For the time being, however, this project apparently ex-
ceeds today’s computing power.

As shown in the next sections, we can give the proof
of the theorems in several different ways. However, our
main proof is provided by algorithms for exhaustive gen-
eration of Greechie diagrams with equal number of atoms
and blocks generated from cubic bipartite graphs pre-
sented in Sec. V. We generated all such lattices from the
smallest ones with 35 atoms and 35 blocks through all
those that have 41 atoms and 41 blocks in which partic-
ular known Hilbert lattice equations fail. Thus, although
they satisfy a number of Hilbert lattice conditions they
represent impossible setups.

III. WHY 3D KOCHEN-SPECKER SETUPS CANNOT

BE DESCRIBED WITH GREECHIE DIAGRAMS, AND

HOW THEY CAN BE

In the Introduction we mentioned that the Hultgren
and Shimony tried to build up a lattice that would cor-
respond to a spin-1 Stern-Gerlach experiment. Orthogo-
nal vectors of spin-1 projections determine directions in
which we prepare spin projections of a particle or orient
our detection devices. We can choose one-dimensional
subspaces Ha, . . . ,He as shown in Fig. 1, where we denote
them as a, . . . , e. The first Hasse diagram shown in Fig. 1
graphically represents the orthogonality between the vec-
tors in a 3-dim space—in our case the ones between each
chosen vector and a plane determined by the other two.
In particular, the orthogonalities are a ⊥ b, c, d, e since
a ≤ b′, c′, d′, e′, b ⊥ c since a ≤ c′, and d ⊥ e since d ≤ e′.
Also, e.g., b′ is a complement of b and that means a plane
to which b is orthogonal: b′ = a∪ c. Eventually b∪ b′ = 1
where 1 stands for H.

That shows that if we wanted to use a Greechie di-
agram for some application or if wanted to just gen-
erate it or check on some of its properties we have to
use all the elements of its Hasse diagrams. So, our idea
is to use a graphical pattern of Greechie diagrams di-
rectly and to go around all the elements contained in
the Hasse diagrams. For that we needed another defini-
tion of a Greechie diagram which exploited only graph-
ical elements of its shorthand representation of a Hasse
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diagram—atoms and blocks. The following lemma pro-
vide us with such a definition.

Lemma III.1. A definition equivalent to Def. II.12 is
the following one59

(1) Every atom belongs to at least one block;

(2) If there are at least two atoms, then every block is
at least 2-element;

(3) Every block which intersects with another block is
at least 3-element;

(4) Every pair of different blocks intersects in at most
one atom;

(5) There is no loop of order less than 5,

where loop of order n ≥ 2—(b1, . . . , bn) is a sequence
of different blocks such that there are mutually distinct
atoms a1, . . . , an with ai ∈ bi∩bi+1 (i = 1, . . . , n; bn+1 =
b1).

Using this definition we recognize a Greechie diagram
as a special case of an MMP hypergraph.

Definition III.1. A hypergraph is a set of vertices
(drawn as points) together with a set of edges (drawn as
line segments connecting points). An MMP hypergraph
is a hypergraph in which

(i) Every vertex belongs to at least one edge;

(ii) Every edge contains at least 3 vertices;

(iii) Edges that intersect each other in n − 2 vertices
contain at least n vertices.

This definition enables us to formulate algorithms for
exhaustive generation of MMP hypergraphs, which are
exponentially faster than possible generation of Greechie
diagrams by means of Def. II.12, because MMP hyper-
graphs are just sets of vertices and edges with no other
meaning or conditions imposed on them. Any condition
we want lattices to satisfy we build into generation algo-
rithms, which can speed up the generation further. As
opposed to this, a lattice approach requires the gener-
ation of all possible lattices first and then filtering out
lattices that meet the condition. For the time being we
just assume that each vertex (atom; see below) is orthog-
onal to other two on the edge they share. But as opposed
to Greechie diagrams we shall also have relations between
nonorthogonal vertices.

We encode MMP hypergraphs by means of alphanu-
meric and other printable ASCII characters. Each vertex
(atom) is represented by one of the following characters:
1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z ! ” # $ % & ’ ( ) * - / : ; <
= > ? @ [ \ ] ˆ `{ | } ˜ , and then again all these characters
prefixed by ‘+’, then prefixed by ‘++’, etc. There is no
upper limit on the number of characters.

Each block is represented by a string of characters that
represent atoms (without spaces). Blocks are separated
by commas (without spaces). All blocks in a line form a
representation of a hypergraph. The order of the blocks is
irrelevant—however, we shall often present them starting
with blocks forming the biggest loop to facilitate their
possible drawing. The line must end with a full stop.
Skipping of characters is allowed.

For 3-atoms-in-a-block lattices, the biggest possible
loop is either n/2 (for an even n) or (n−1)/2 (for an odd
n), where n is the number of atoms. To see this this let
use all (or all except one for odd number of atoms) atoms
to form such a loop. If we did not count the first atom
in the first block, each concatenated new block would
contribute with two new atoms to the chain and when
we finally close the chain so as to form the loop, one of
the two new atoms in the last block will coincide with
the atom from their first block, which we did not take
into account at the beginning of our enumeration. That
means that all additional blocks will only connect atoms
already making the biggest loop (apart from the free re-
maining one in lattices with odd number of atoms). The
more restrictions we impose on a lattice the smaller the
biggest loop will be.

As a functional example, below we present lattices in
which Eq. (16) and (17) fail.
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FIG. 2. (a) OML L4217 in which Eq. (16) fails; (b) E3
19 in

which Eq. (16) fails; (b) E4
19 in which Eq. (17) fails.

We can now come back to the problem of finding lat-
tices that would correspond to realistic experiments. To
understand the problem better we shall discuss most
known 3D KS lattices that are usually considered to be
experimentally feasible. This will make clear why none of
these KS setups can be experimentally verified and why
they are not “quantum,” following the idea presented
in.60

We start with the original KS to show how it can be
represented as an MMP hypergraph in our notation: 123,

345, 567, 789, 9AB, BC1, . . . , D7z, . . . , 1z+U., as shown in
Fig. 3. The other atoms and blocks can easily be read off
from the figure of the hypergraph.

We give MMP hypergraphs of 4 well-known 3D KS se-
tups below to enable computer verification of our present
and other future statements on them. Notice that num-
ber of atoms and therefore the number of vectors is 192
and not 117 as commonly assumed. For an explanation
of this discrepancy see the comment on Fig. 6 in the text
below.

We establish an OML representation of KS setups as
follows. Three mutually orthogonal directions of spin
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FIG. 3. KS original setup.23. How to turn their figure into an MMP is in Ref. 58.

projections correspond to three atoms within a block, say
a, b, c in Fig. 1, because in an OML a ≤ b′ means a ⊥ b.
These three directions also correspond to the orientation
of a device we use to detect spin along them. Keeping one
of the directions fixed, say a in Fig. 1, means a rotation
of the other two in the plane spanned by d and e, what
corresponds to a ≤ d′ and a ≤ e′. As we show below,
the aforementioned Hilbert lattice equations require that
the OMLs also have relations between non-orthogonal
atoms and therefore we cannot represent the considered
KS setups by means of Greechie diagrams. Therefore
until we come to that point we shall speak only of MMP
hypergraphs.

Asher Peres found another highly symmetrical (in 3D)
but much smaller KS setup.61 Its MMP hypergraph ex-
hibits symmetry similar to the MMP hypergraph of the
original KS setup as shown in Fig. 4.
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FIG. 4. Peres’ KS MMP hypergraph.

The smallest known KS setup was found by Jeffrey
Bub.30 It is shown in Fig. 5 l
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FIG. 5. Bub’s MMP with 49 atoms and 36 blocks. Notice
that 12 bigger dots with a pattern (red online) represent just
4 atoms: 4, 5, 6, and +6.

In Fig. 6 we show MMP hypergraph of the Conway-
Kochen KS setup.30 It reads: 123, 249, 267, 9A+D, +1CK,

++1DE, 9QE, 35I, 3+6G, EHI, IJK, CP+7, +1+D+E, CO+G,

DN++7, DW++G, ++GRS, +7+V+T, S1+T, ++7TU, 1U+S,

+26+9, +2+6+7, ++1+2+3, +S+W+9, +S+R+G, +34+G,

+35+I, +T+U+I, +I+J+E, +9+Q+E, ++3++2+1, ++2+6++7,

++36++G, ++94++2, ++35++I, 1+1++1. It was considered
to be the smallest known KS setup, but it turned out

that we cannot remove atoms 7, G, Q, and others that
do not share two or more blocks because they represent
one of the three orientations of the spin projections.58,62

Hence, it has 51 and not 31 vectors as originally assumed.
This holds for all considered KS setups. Thus, Peres’ and
Bub’s setups contain 57 and 49 vectors and not both 33
as commonly assumed.
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FIG. 6. Conway-Kochen’s MMP. Notice that we cannot drop
blocks containing ++9, ++I, 7, and G because atoms 4, 5, 6,
and +6, from them also share two other blocks each. Why we
cannot drop atoms 7, G, H, J, etc., is explained in the text.

Our program vectorfind gives possible values of the
vectors corresponding to atoms belonging to orthogonal
triples of any of the above MMPs as explained in Ref. 58.
Using our program states,17 we can easily verify that
all the above MMPs interpreted as lattices, even Hasse
and Greechie diagrams, admit a strong set of states, and
using our program latticeg,17 we can prove that they all
really are OMLs (by confirming that Eq. (1) is satisfied
by all of them) and that they all admit Mayet vector
states characterized by Eqs. (16) and (17) (by verifying
that they pass in them).

On the other hand, using latticeg we can also show
that if we interpret MMP hypergraph as Greechie dia-
grams, none of the considered lattices is modular since
the modular law given by Eq. (2) fails in each of them.
This might come as a surprise since Birkhoff and von
Neumann3 proved that a finite-dimensional lattice has
to be modular. However, it turns out that this is be-
cause Greechie diagrams cannot describe relations be-
tween nonorthogonal vectors and planes they span.

To understand this better we exhaustively gener-
ated Greechie lattices with up to 16 blocks and then
filtered them all for modularity given by Eq. (2).
For each number of blocks we find only one mod-
ular lattice—the biggest one has 33 atoms and 16
blocks. They all have star-like shape as shown in
Fig. 7(a). In the figure we show the first four:
123, 123,145, 123,145,167, and 123,145,167,189—over each
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other—with vectors {{0,0,1}{0,1,0}{1,0,0}}, {{0,0,1}{1,-

2,0}{2,1,0}}, {{0,0,1}{1,-1,0}{1,1,0}}, {{0,0,1}{1,2,0}{2,-

1,0}} (over each other). And for all those lattices up
to 16 blocks we generated there is always only one such
star-like modular lattice among them. They all admit
strong sets of states, but because of their planar distri-
bution, they cannot describe spin vectors in a realistic
spin space.
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FIG. 7. (a) Greechie diagrams that correspond to modular
lattices with 1, 2, 3 and 4 blocks (over each other); (b) their
vectors triples; (c) the smallest non-modular lattice; (d) its
vector triples.

For a comparison, in Fig. 7 (c), we show the small-
est OML 123,145,267, with vectors {{{0,0,1}{0,1,0}{1,0,0}},

{{0,0,1}{1,-2,0}{2,1,0}}, {{0,1,0}{1,0,-2}{2,0,1}}} shown in
Fig. 7 (d), which allows a “3D” rotation that can cor-
respond to a more complex experimental setup than the
“2D” rotations given in Figs. 7 (a) and (b). This means
that Greechie/Hasse diagrams cannot represent even the
simplest experiment where we let a particle pass suc-
cessive magnetic fields, i.e., successive Stern-Gerlach de-
vices, mutually rotated along different axes by means of
Euler angles.

The same is true of the generalized orthoarguesian
equations nOA given by Theorem II.10 and Eq. (32) in
a Hilbert space and by Theorem II.11 and Eq. (34) in a
Hilbert lattice. If these equations failed in a sub-lattice,
they would fail in the lattice as well. And the point here is
that smallest orthoarguesian equation 3OA—and there-
fore all nOA with n > 3—fail in almost all known KS
Greechie diagrams. Peres’ fails nOA for n = 7. Again,
this means that we cannot represent KS setups with the
help of Greechie diagrams.

The details are as follows. We consider Bub’s KS setup.
To be able to apply our program vectorfind for finding
the vector components of Bub’s setup shown in Fig. 5,
we have to write down its MMP representation with-
out gaps in letters. So, we have 123,. . . ,DFH,. . . , where
we present only those Greechie/Hasse diagrams atoms
in which 3OA failed. Their Hilbert space vectors are:
1={0,0,1}, 2={1,0,0}, F={1,-2,-1}, and D={1,1,-1}.

In a Hilbert space representation, Bub’s KS setup does
pass 3OA. Let us consider 3OA in the following form

a ⊥ b & q ⊥ n

⇒ (a ∪ b) ∩ (q ∪ n) ≤ b ∪ (a ∩ (q ∪ ((a ∪ q) ∩ (b ∪ n)))).

In 3-dim Euclidean space, all subspaces are closed (they
are lines, planes, or the whole space), so a∪b = a+b, i.e.,
subspace join and subspace sum are the same. Thus, con-
verting joins in the previous equation to subspace sums
and using the orthogonality we get:

a ⊥ b & q ⊥ n ⇒ (a + b) ∩ (q + n)

≤ b + (a ∩ (q + ((a + q) ∩ (b + n)))). (36)

Now, using the subspaces determined by the afore men-
tioned vectors and their spans in a Hilbert space we
can easily check that Bub’s representation pass 3OA.
For instance, vectors 1, 2, F, and D, determine sub-
spaces {0,0,α}, {β,0,0}, {γ,-2γ,-γ}, and {δ,δ,-δ}, with
arbitrary coefficients α, . . . . They represent lines in
both 3-dim Hilbert space and 3-dim Euclidean space.
{0,0,α}+{β,0,0}= {β,0,α} is a plane spanned by 1 and
2, etc. We show a verification of Eq. (36) in Fig. 8.
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FIG. 8. A new kind of lattice (MMPL) in which Bub’s setup
passes 3OA. The inequality relation in Eq. (36) is represented
by the thick red line.

Such a lattice—we call it MMPL—can be used for a
Hilbert lattice representation of a Hilbert space setup by
the following procedure. Whenever we check an equation
and we need either a plane formed as a span of two exist-
ing lines or a line formed as an intersection of two existing
planes, we just add them to the basic Greechie/Hasse di-
agram that describes the triples of orthogonal spin vec-
tors. However, details of such a construction are not
within the scope of the present paper. We will elaborate
on it in a forthcoming publication and here we just give
a constructive definition.

Definition III.2. An MMPL is a lattice of setup in
which we explicitly state:

1. all orthogonality relation required by the setup
(spins within it);
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2. only those non-orthogonal relations that are re-
quired by equations and conditions that lattice
atoms of a particular setup have to satisfy for at
least one set of subspace (vector) components.

So, the most general MMPL would be a lattice that
would contain all possible atoms corresponding to all
possible Hilbert space subspaces allowed by all possible
Hilbert space conditions and equations. But our primary
goal of considering MMPLs is to enable our algorithms to
find minimal lattices for a particular setup which would
generate just one or just a desired set of vector com-
ponent values for orientation of spins and devices that
would handle these spins.

Next, the superposition condition given by Eq. (18)
fails in all considered KS OMLs. However, the superpo-
sition condition is a quantified expression that involves
an existential quantifier, so it is possible that it passes
in an enlarged lattice even though it fails in the original
one. For instance, Eq. (18) fails in any five block loop but
passes in the 36-36 OML shown in Fig. 11, which contains
five block loops. That means that we may be able to en-
large the above KS OMLs so as to admit superposition.
Of course, a first-order statement containing existential
quantifiers (when expressed in prenex normal form) that
holds in a lattice need not hold in a subalgebra of the
lattice. As a trivial example, the statement “There exist
16 elements” is true for a 16-element lattice but false for
a smaller subalgebra.

IV. LATTICES THAT ADMIT ALMOST NO HILBERT

LATTICE EQUATIONS

There are a number of OMLs that admit a full set of
states but do not admit a strong set of states and also
those that admit a strong set of states (and therefore
also a full set of states) but violate equations that must
hold in any Hilbert lattice. Using algorithms developed
in Ref. 17 and 19 we can easily generate such lattices.
For instance, a lattice with 13 atoms (one dimensional
Hilbert space subspaces) and 7 blocks (connected orthog-
onal triples of one dimensional Hilbert space subspaces)
shown in Fig. 9 (a) does admit a strong and therefore also
a full set of states but violates all orthoarguesian equa-
tions. Any Hilbert lattice admits a strong and therefore
a full set of states, and the orthoarguesian equations hold
in any Hilbert lattice.17,19

On the other hand, the 16-9 OML in Fig. 9 (b) sat-
isfies orthoarguesian equations and admits a full set of
states but does not admit a strong set of states, L42
from Fig. 2 (a) satisfies orthoarguesian equations and ad-
mits a strong set of states, but does not admit Mayet
vector state Eq. (16), while 16-10 OML in Fig. 9 (c) nei-
ther admits a strong (and therefore also not a full) set
of states nor satisfies the orthoarguesian equations. All
these OMLs and many more provided in Refs. 17 and 19
are examples semi-quantum lattices. Yet other examples
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FIG. 9. (a) A 13-7 OML that admits a strong set of states
but violates Hilbert-space orthoarguesian equations; (b) A
16-9 OML that does not admit a strong set of states but sat-
isfies orthoarguesian equations; (c) A 16-10 OML that admits
neither a strong nor a full set of states and violates all or-
thoarguesian equations.

are provided by lattices that satisfy the Godowski equa-
tions (corresponding to strong sets of states) of lower
order but violate those of higher orders.17 While all
OMLs admitting strong sets of states satisfy all Godowski
equations, there are examples showing the converse isn’t
true.19 (Fig. 10, p. 780)

Such examples can be exhaustively generated, but no
common structural feature has been recognized so far.
To be more precise, features and general rules for gener-
ation of infinite classes of lattices that admit a strong set
of states—Godowski equations,18,19,53,54,63 satisfy the or-
thoarguesian properties—nOA equations,17,19 and a class
of lattices that admit real Hilbert-space-valued states—
En equations,19,20 have all been discovered, but the rule
for generating all lattices that lack all these properties
has not been found. Since we still do not have a single
example of a complete realistic lattice for n ≥ 3, it would
be important to find a class of lattices that would nar-
row down the search for a complete lattice description of
Hilbert space. Therefore, in Sec. VI we consider a class
of OMLs that admit a field over which a Hilbert space is
defined but neither a strong set of states nor any of the
Hilbert space algebraic properties.

We stress here that an OML admitting a strong set of
states will satisfy the Godowski equations.18,19,21,53,54,63

Thus OMLs that violate Godowski equations do not ad-
mit strong sets of states. Moreover, most likely they
cannot be enlarged to admit such a set in order to sat-
isfy these equations—similarly to what we have with the
modular and orthoarguesian equations in Sec. III.

V. MMP HYPERGRAPHS WITH EQUAL NUMBER OF

VERTICES AND EDGES GENERATED FROM CUBIC

BIPARTITE GRAPHS

To avoid confusion with vertices and edges in (bipar-
tite) graphs in this section (and only in this section) we
use term atom for a vertex of a MMP hypergraph and
block for an edge of an MMP hypergraph. Since later
we shall consider the corresponding lattices anyway, this
terminology is not inconsistent. Here we describe the ex-
haustive computation of MMP hypergraphs with equal
numbers of atoms and blocks having 3 atoms in each
block and 3 blocks containing each atom. This special
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case allows exploitation of a connection with graph the-
ory in order to considerably speed up the generation com-
pared to our earlier methods57,58.

We begin by representing MMP hypergraphs as graphs
with two types of vertex. An atom a is converted to a
white vertex A, and a block b to a black vertex B. If
atom a lies in block b, then vertex A is joined by an edge
to vertex B. In graph theory terminology, the resulting
graph is cubic (each atom is in 3 blocks and each block
has 3 atoms), and bipartite (edges have ends of different
color). In Ref. 58, Sec. 5(x) we have shown that 3-dim
KS MMP hypergraphs have no loops of length less than
5. This corresponds to the graph having girth at least 10
(i.e., having no cycles of length less than 10). Apart from
taking the dual MMP hypergraph, which corresponds to
exchanging the colors of the vertices, isomorphism of the
MMPs corresponds to isomorphism of the graphs.

For definiteness, we consider the case of 41 atoms and
41 blocks. That is, we seek 82-vertex cubic bipartite
graphs of girth at least 10. The method used is an ex-
tension of one used in the non-bipartite case by McKay
et al.64.

We begin with 41 white vertices and 41 black vertices,
plus the 61 edges at distance at most 4 from an arbitrary
fixed edge. These 61 edges form a tree, since otherwise
there would be cycles of length less than 10. This start-
ing configuration is shown in Fig. 10, with dashed lines
indicating the places available for extra edges.

FIG. 10. Starting configuration for generation of 41-41 MMPs

The task is now to add 62 extra edges so that each
vertex has 3 edges and there are no short cycles. This is
a non-trivial task since there are 676 places where an edge
may potentially be placed, but fortunately many of the
possibilities are equivalent. We proceed using a backtrack
search together with some mechanisms for isomorphism
rejection. The backtrack search looks for an incomplete
vertex whose set of potential neighbours is as small as
possible, then recursively tries each of them.

Isomorphism rejection is achieved by two methods
which are described in detail in Ref. 65. First, the start-
ing configuration has a large group of symmetries and
we avoid trying more than one possibility that is equiva-
lent under those symmetries. This can be done without
explicit isomorphism testing since the structure of the
starting configuration is rather simple.

Second, when the space of supergraphs of any con-
figuration C has been completely explored, we reject
any future configuration C′ that contains C as a sub-
graph. This is valid since any cubic graph constructible
by adding edges to C′ was previously seen (up to isomor-
phism) when edges were added to C. This technique is
too expensive to apply throughout the search, because
subgraph finding is very difficult. As a compromise, we
applied the technique only limited circumstances with at
most 78 edges (the initial 61 edges plus 17 more). We
did this using the graph isomorphism package nauty66.

These isomorph-rejection methods are not complete,
so each isomorphism type of graph was generated a few
thousand times.

The complete search on order 41-41 involved about
1014 separate configurations and took approximately 60
GHz-years. The computation can be efficiently divided
into independent parts (see65 for an explanation), so it
was run over a few weeks on a multi-processor cluster.

VI. PROPERTIES OF LATTICES WITH EQUAL

NUMBERS OF ATOMS AND BLOCKS

In this section we consider OMLs that correspond to
MMP hypergraphs we obtain by means of methods pre-
sented in the previous section.

In Ref. 57 we mentioned five 35-35 OMLs (OMLs with
35 atoms and 35 blocks), eight 38-38s and gave a graphi-
cal representation of the single 36-36 (there is no 37-37).
They were obtained by different algorithms and at the
time we were not aware of their properties and did not
yet have tools to analyze them. In 15 we wrote down
all 35-35s and 38-38s, gave two graphical images of them
and obtained some features of them in a different con-
text. So, in this section we shall focus on 39-39s, 40-40s,
and 41-41s. In doing so, we will make use of a new way of
presenting MMP hypergraphs, because our previous one
becomes unreadable for so many edges. We introduce the
new way as opposed to the previous one in Fig. 11.

The new presentation is based on a feature of such big
lattices that one can recognize separate cycles of blocks
through a maximal set of vertices that belong to isolated
blocks that mostly do not take part in the cycles. The
terminology “isolated blocks” and “cycles” will be ex-
plained in Sec. VII. The approach stems from the way
the lattice 36-36 is presented in Fig. 2 from57 which is
here shown as the first figure of Fig. 11. We separately
present the three cycles in the remaining three figures
and see that we have three separated closed cycles. In all
the other cases below we also recognize three independent
cycles most of which are closed.

The cycles themselves will allow us to generate
new lattice equations following the procedure developed
in19,21,67, but they do not automatically follow possible
geometrical symmetries of the hypergraphs. In the 36-36
case they do, but, e.g., they do not exhibit the left right
symmetry of the 35-35 lattice shown in Fig. 12. Closed
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FIG. 11. 36-36 OML that admits exactly one state and is dual
to itself. It is given in the standard compact representation in
the 1st figure and in our separate cycle representation in the
other 3 figures. The figures are explained in detail in Sec. VII.

cycle representation does not exhibit any symmetry.
There are 11 eleven bipartite graphs with 78 vertices

that give 39-39 OMLs. Nine of them correspond to the
MMP hypergraphs that are dual to themselves—when we
exchange their atoms for blocks and vice versa we obtain
OMLs that are isomorphic to the original ones.

(39-39-00) : 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN,
6OP,6QR,7ST,7UV,8GO,8MV,9Ia,9LT,AKU,AQc,BPb,BXd,
CGS, CRY, DVW, DPa, EKO, EIX, FTb, FHQ, NSc, UYZ, MRX,
LWd,JWc,NZa,JYb,HZd.

(39-39-02) : 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN,
6OP,6QR,7ST,7UV,8GO,8XY,9KQ,9IT,AMP,AVd,BRa,BWb,
CGS, CQZ, DIP, DYb, EOW, ELd, FMX, FHU, LSa, KUb, NWZ,
JVZ,NTc,HRc,JXa,Ycd.

(39-39-03) : 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN,
6OP, 6QR, 7ST, 7UV, 8GO, 8MU, 9IT, 9QY, AKW, AHV, BNP,
BXZ,CGS,CQZ,DJP,Dac,EKO,EIX,FNY,FVb,SWd,MRd,UXa,
Jbd,LTc,LZb,WYa,HRc.

(39-39-04) : 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN,
6OP,6QR,7ST,7UV,8GO,8UX,9TZ,9Ia,ASW,ANP,BHV,Bbc,
CGS,CQa,DNX,DJb,EUY,EKZ,FIP,Fcd,KOb,MTc,LVa,MQY,
HRZ,RXd,JWY,LWd.

(39-39-05) : 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN,
6OP, 6QR, 7ST, 7UV, 8GO, 8XY, 9NU, 9Ra, AKW, AHQ, BMP,
BVc,CGS,CNb,DVY,DIa,EKO,EJd,FHU,FXZ,LSZ,IPZ,QYd,
WXb,MTd,LRc,Jbc,TWa.

(39-39-06) : 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN,
6OP,6QR,7ST,7UV,8GO,8XY,9MQ,9Td,AKZ,AJV,BRb,BHc,
COW, CKS, DNa, DVX, EQZ, EIY, FHU, FLd, GZa, NPc, JPd,
MUW,IWb,SYc,Tab,LRX.

(39-39-07) : 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN,
6OP, 6QR, 7ST, 7UV, 8GO, 8MU, 9IT, 9QY, AKW, AHV, BNP,
BXa,CGS,CQZ,DJP,DLd,EKO,EIX,FVY,FNc,Sab,MRb,UXZ,
JWb,Tcd,WZc,LYa,HRd.
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FIG. 12. 1st figure shows a 35-35 lattice presented by means
of its biggest loop, hexadecagon; it exhibits a left-right sym-
metry with respect to an axis through vertices V and Y. Three
other figures show the same OML in the separate cycle rep-
resentation. They are explained in detail in Sec. VII.

(39-39-09) : 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN,
6OP,6QR,7ST,7UV,8GO,8SX,9NV,9bd,AUY,AHZ,BJP,BLc,
CGW,CVc,DZb,DMP,EKO,EIU,FHT,FNQ,KZa,JSa,IRb,LTd,
QWa,WYd,MXY,RXc.

(39-39-10) : 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN,
6OP,6QR,7ST,7UV,8GW,8OY,9QZ,9IU,AKS,APb,BRa,BXc,
CGX, CKQ, DMb, DJT, ESW, EZc, FLa, FIP, HVb, HZd, NOd,
MRW,NUX,LVY,JYc,Tad.

Two bipartite graphs give 4 MMP hypergraphs that are
not dual to themselves.

(39-39-01a): 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN,
6OP,6QR,7ST,7UV,8GO,8SW,9Rb,9NX,AMP,AVZ,BHa,BQd,
CKO,CUX,DQY,DJW,EIP,ETa,FRc,FLZ,GYZ,Kab,LSd,HUc,
IXd,MWc,NTY,JVb.

(39-39-01b): 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN,
6OP,6QR,7ST,7UV,8GW,8MZ,9Sa,9Rd,AOX,AVY,BKb,BJc,
CGO,CKS,DNQ,DIU,EHY,ETc,FPZ,FLd,HRb,JPa,QWc,LVW,
MTX,IXd,UZb,NYa.

(39-39-08a): 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN,
6OP,6QR,7ST,7UV,8GO,8WX,9JU,9MR,ALY,AId,BVZ,BNP,
CGS, CLQ, DVW, DMd, EKO, EIT, FHY, FUc, KZa, Sab, QXc,
WYb,HRZ,NTX,JPb,acd.

(39-39-08b): 123, 145, 167, 289, 2AB, 3CD, 3EF, 4GH, 4IJ, 5KL, 5MN,
6OP,6QR,7ST,7UV,8GO,8Ua,9LT,9Ic,ASW,AKP,BJR,BNb,
CGS, CNc, DPY, DJa, EOX, ETb, FIV, FMQ, HQZ, HYb, KUZ,
MWa,WXd,XZc,VYd,LRd.

The above OMLs admit neither a strong set of states
nor any known property stronger than the orthomodu-
larity itself apart from the Mayet vector field Eq. (17).
One pair (39-39-01a,b) of the duals that are not dual to
each other admit at least two states while the other (39-
39-08a,b) admit one single state. All OMLs that are dual
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to themselves (39-39-00,-02–07,-09–10) admit exactly one
state (1/3 for each atom).

Bipartite graphs with 80 vertices that give 40-40
OMLs are much more numerous than those with 78 ver-
tices above. There are 174 such graphs and they give 80
OMLs that are dual to themselves. Among them there is
only one (40-40-038) that admits more than one state.
Among the others (94 graphs) there are eight OMLs
that admit more than one state (40-40-043a,b, -097a,b,
-111a,b, -130a,b).

There are 2515 bipartite graphs with 82 vertices that
give 4612 41-41 OMLs. 418 of the MMP hypergraphs
are dual to themselves and the other 4194 are not. The
latter graphs form 2097 pairs of duals that are not dual
to themselves. Of the former ones, 10 admit two or more
states (all the others admit only one single state) and of
the latter ones, 78 dual pairs admit two or more states
and the remaining 2019 pairs admit only one state. We
can recognize that the more vertices we have the smaller
is the portion of lattices dual to themselves.

The biggest loops of 39-39 are enneadecagons (19-
gons) and of 40-40 and 41-41 icosagons (20-gons)68 which
makes them inappropriate for the standard graphical
presentation—there are too many lines over each other in
their figures to discern patterns. Therefore and because
of the new feature of the existence of three separate cy-
cles for 3D OMLs with equal number of vertices (atoms)
and edges (blocks) we present details of our separate cy-
cle representation and give several figures in the next
section.

VII. SEPARATE LEVEL REPRESENTATION OF THE

MMP HYPERGRAPHS

As already mentioned in section VI, our new layout
of MMP hypergraphs is inspired by the presentation of
the 36-36 one given in Ref. 57 and repeated here as the
first figure in Fig. 11. Our goal is to simplify graphical
representation of big MMP hypergraphs and big arbi-
trary hypergraphs with the same number of atoms and
blocks, i.e., vertices and edges, respectively.

In the latter figure one can notice 9 radially placed
blocks which do not have common atoms (and which
therefore include 27 atoms), while 9 remaining atoms
form an inner ring. We call radial blocks independent
blocks and remaining atoms free atoms. The outermost
atom of each independent block is connected to the out-
ermost atoms of two other independent blocks by two
blocks, middle atoms of which are free atoms. These
connecting blocks form a cycle shown separately in the
second figure of Fig. 11 (as opposed to the original lay-
out, where oppositely placed independent blocks are con-
nected, we connect adjacent blocks). Similarly, middle
atoms of independent blocks are connected by blocks
with free atoms as their middle atoms and there is again a
cycle of connecting blocks (shown separately in the third
figure of Fig. 11). Finally, innermost atoms of indepen-

dent blocks are also connected with blocks that contain
one free atom. In the original layout free atoms are “last”
atoms of connecting blocks, but as the atoms in a block
can be freely permuted, we can again form a cycle, shown
here as the fourth figure of Fig. 11.

Based on described analysis of the layout of the 36-36
MMP, we break the representation of MMPs with equal
number of atoms and blocks into three separate levels.

The first step is to identify sets of independent blocks,
i.e., those that meet two criteria: they do not share atoms
and no three such blocks are connected by a single block.
In the archetype case of the 36-36 MMP all connecting
blocks (blocks that connect independent ones) contain
one free atom. When all sets of independent blocks are
found, we extract the largest ones.

In the second step, for each such set we try to iden-
tify all cycles that visit all independent blocks in the
set. Here we do not use the term “cycle” in the sense of
graph theory—our cycle is a sequence of blocks that con-
nect atoms of two independent blocks and pass through
a free atom (if required, atoms of connecting blocks are
permuted so that the free atom becomes the middle one).
The shortest cycle forms the first level of our presenta-
tion. Independent blocks and free atoms are arranged in
the sequence in which they are visited. But, as compared
to the archetypal 36-36 MMP, there are some differences:
(1) a cycle is usually not closed, that is, it does not finish
in the same atom in which it starts (as can be seen on
the uppermost blocks in the second figure of Fig. 12 and
first ones of Figs. 13 and 14), although sometimes it does
(first figure in Fig. 15); (2) in most cases some indepen-
dent blocks are visited two or even three times (Figs. 12,
13, and 15); (3) in most (maybe even all) cases some free
atoms are visited more than once and, of course, there
are free atoms that are not visited at all (all examples).
(Figs. 12, 13, 14 and 15).

If required—and if possible—atoms of independent
blocks are permuted so that the visited atom becomes
the first/outermost atom (if the block is visited twice,
then visited atom is placed in the middle).

In most cases we can find a second cycle that begins
and ends on the same independent block, but not in the
same atom; besides, these cycles usually do not visit all
independent blocks. This can be seen in all our exam-
ples: the third figure of Fig. 12 and the second figures of
Figs. 13, 14 and 15. Such cycles form the second level
of our layout (again, if required and if possible, atoms
of independent blocks are permuted so that connecting
blocks visit their second/middle atoms).

The remaining blocks are contained in the third
level. In some cases they again form a cycle: the third
figures of Figs. 14 and 15 (in fact, in these two examples
the second and third cycles can be regarded as a single cy-
cle, but we broke that cycle when the independent block
in which it began was visited for the second time). But
usually the third level contains two or even more uncon-
nected sequences of blocks. Namely, some blocks connect
one atom of some independent block and two free atoms,
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FIG. 13. 39-39-06 OML dual to itself
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FIG. 14. 40-40-34 OML dual to itself

that is, there are some blocks that do not connect two
independent blocks: the fourth figure of Fig. 12 and the
third figure of Fig. 13.

The previously described parts of our algorithm are
implemented in the C++ programming language using
the Boost Graph library.69 The program for the final
graph layout (including the calculation of the atoms’ co-
ordinates and drawing of the graph) is written in the
Asymptote70 vector graphics language based on Donald
Knuth’s METAFONT.

VIII. CONCLUSIONS

In this paper, we found a correct way to establish
a correlation between a lattice description and a Hilbert
space description of quantum systems as well as their
preparation, handling, and measurement. Our descrip-
tion also allows for a straightforward reconstruction of
the quantum formalism from empirically justified axioms.
In Sec. III we explain how this can be done and why
the previous descriptions from the literature were wrong.

Essentially they were wrong because they were based on
Greechie diagrams that handle only orthogonalities be-
tween Hilbert space subspaces and have no way to de-
scribe conditions and equations that have to be satisfied
in any Hilbert space or any Hilbert lattice quantum for-
malism and that involve detailed relations between non-
orthogonal subspaces.

We describe several families of equations and other
conditions that must hold in every Hilbert lattice in
Sec. II. We made use of correspondences between graphs
and lattices, which in turn correspond to Hilbert space
subspaces, in order to visualize and study 3-dim quan-
tum setups in Sections III–VII. In particular, we found
and investigated MMP hypergraphs (see Def. III.1) with
equal numbers of vertices and edges, which correspond
to bipartite graphs (Sec. V). Separately, we studied
Greechie diagrams used in the literature to represent
Kochen-Specker and other quantum setups (Secs. V and
IV) to see which Hilbert lattice properties hold and which
do not hold in them.

In Sec. III we developed a new graphical represen-
tation of the known KS setups by means of MMP hy-
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FIG. 15. 40-40-38 OML dual to itself

pergraphs (see Figs. 3, 4, 8, and 6) to visualize their
properties. Then, using our algorithms and programs,
we showed, in particular in Eq. (36) and Fig. 8, that
Greechie diagrams cannot represent KS setups because
they are not subalgebras of a Hilbert lattice. This is
obvious from the fact that in a Greechie diagram, the
join of nonorthogonal atoms (lines) a and q (in Fig. 8) is
the whole space (1), while in a Hilbert space, it is a plane
a+q. Therefore, if we wanted to have a lattice representa-
tion of KS setups, we should add lattice elements missing
in Greechie diagrams as shown in Fig. 8. This provides
us with a new type of lattices (MMPL) that include all
relations—between both orthogonal and non-orthogonal
elements—needed for a lattice description of a considered
quantum system. We define MMPL by Def. III.2. How-
ever, a detailed elaboration of such a representation is
outside of the scope of the present paper.

Application of such an approach is in any case com-
putationally unfeasible for the time being, and therefore
we consider non-quantum setups to narrow down classes
of lattices that we can use to obtain complex setups in
the future and in particular KS setups.

The Kochen-Specker theorem claims that there are
quantum experimental setups that cannot be given a clas-
sical rendering. Its proof was based on setups (KS setups)
that were considered quantum and to which it was impos-
sible to ascribe classical 0-1 values. A number of authors
have represented KS setups or indeed any spin-1 exper-
imental setup by means of Greechie lattices.5–13 How-
ever, in Sec. III we proved that no known 3-dimensional
KS setup represented by Greechie/Hasse diagrams, in
particular, Kochen-Specker’s, Bub’s, Conway-Kochen’s,
and Peres’ pass the equations that hold in every Hilbert
space. These KS setups themselves do, of course, pass
these equations in the Hilbert space itself.

A Hilbert space description of such systems is ortho-
isomorphic to a Hilbert lattice (Th. II.2).1 An OML
equipped with additional properties described in Sec. II
such as admitting strong sets of states and Mayet vec-
tor states, atomicity, the superposition principle, the or-

thoarguesian property, etc., is easier to handle in the lat-
tice theory than in the original Hilbert space. This is
because, e.g., Peres’ KS design, shown in Fig. 4, has 40
triples of mutually orthogonal vectors. The majority of
the vectors are orthogonal to vectors from other triples
and rotated at various angles in space with respect to
every other. We would have to extract this vector edi-
fice from the Schrödinger equations describing the deflec-
tions of a spin-1 system in electric and magnetic fields.
Lattices, as opposed to such a standard Hilbert space
approach, are easier to handle, but even they are too
demanding at present.

Therefore it is viable to approach the problem from
the other end, to see whether we can generate lattices
that would admit neither quantum nor classical interpre-
tation from the very start (see Subsec. refsubsec:semi).
Such finding of properties and lattices that are not suf-
ficient for a full i description of a quantum system (e.g.,
the aforementioned description by means of Greechie dia-
grams) is likely to enable us to achieve, eventually, a com-
plete lattice description (with superposition included) of
quantum experiments.

Here we stress that the superposition we refer to
above and in Theorem II.13 and Corollary II.13.1 is a
superposition of vectors contained in 1-dim Hilbert space
subspaces. As opposed to this, when we look at all pos-
sible superpositions of two vectors they span a plane in a
3-dim Hilbert space. That is trivial in the sense that for
some definite constants we can always find a value that a
superposition of two vectors has in particular direction,
but is nontrivial in the sense that for bigger lattices we
can find a superposition for vectors for which only mutual
orthogonalities are known.

Another reason for a “semi-quantum approach” is
that there exist several methods of finding and generat-
ing new properties and equations in the theory of OMLs
and Hilbert lattices based on the lattices that do not ad-
mit some states or other properties. The most relevant
here is a method of generating the Mayet-Godowski equa-
tions (Def. II.8) using lattices that do not admit strong
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sets of states.19,21 Based on all that together with sev-
eral previous results based on lattices admitting only one
state,32,33,71,72 in Sec. II we formulated the following the-
orem:

Theorem II.13 [Semi-quantum lattice algorithms]
There exist algorithms that generate finite sequences of
OMLs that admit superposition, real-valued states, and a
vector state given by Eq. (17) but do not admit other con-
ditions that have to be satisfied by every Hilbert lattice,
in particular equations like orthoarguesian and Godowski
ones (Subsection II B). As a consequence of violating
Godowski equations, these OMLs do not admit strong sets
of states.

Such a choice is determined by our recent finding
that OMLs with equal number of atoms and blocks pos-
sess and lack properties stated in the theorem. They all
satisfy the superposition principle and therefore do not
admit classical interpretation, they all admit real-valued
states, and they all admit a vector state which, when ap-
plied to Hilbert lattices, select those over which a field
(real, for the time being) can be defined. They admit nei-
ther strong sets of states nor orthoarguesian properties,
and this makes them non-quantum but suitable for gen-
eration of quantum properties such as Mayet-Godowski
equations.21 We generate them by means of novel algo-
rithms which first generate bipartite graphs (Sec. V) and
then convert them into hypergraphs that correspond to
OMLs with equal numbers of atoms and blocks as de-
scribed in Sec. V. These results substantiate the follow-
ing corollary of Theorem II.13:

Corollary II.13.1 [Semi-quantum lattices] There exists
a class of OMLs that admit superposition, real-valued
states, and a vector state but do not admit other con-
ditions that have to be satisfied by every Hilbert lattice.

To verify these and find new properties of lattices
with equal number of atoms and blocks we had to gen-
erate a significant number of them. Towards that goal
we developed several algorithms for generating and ver-
ifying properties on them as well as for their graphical
representations, in Secs. V, VI, and VII, respectively.

The generation was performed by representing lat-
tices as graphs then applying an extended algorithm that
exhaustively determines all the associated graphs.

As a final note, we point out that in Sec. III (ante-
penultimate paragraph) we obtained an important “by-
product” in the field of Hilbert lattice equations while
we were checking whether nOA equations (34) pass Peres’
OML that corresponds to Peres’ MMP hypergraph shown
in Fig. 4. In Ref. 17, we found the new infinite class of
generalized orthoarguesian equations of Theorem II.11,
but at the time the computing power of available clusters
were only sufficient to find lattices in which the equations
up to 4OA would pass and a 5OA fail. In Ref. 19 we gen-
erated lattices in which 6OA failed and OAs up to 5OA
passed. Such examples are important because they prove
that the equations form a successively stronger sequence
at least up to those orders. In Ref. 17, we proved that
all individual orthoarguesian equations previously found

(by other authors) were equivalent to either 3OA or 4OA.
When we found our nOA, it was unknown whether the
same might occur with nOA at the 6OA level.20 Our re-
sult (the aforementioned passing of 3OA through 6OA
and failure of 7OA in Peres’ lattice) dispels any doubt.
It was serendipitous that we obtained this result in this
way, because no present-day supercomputer is capable
of generating 7OA examples by brute force—at least not
with our present algorithms.
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4M. P. Solèr, “Characterization of Hilbert spaces by orthomodular
spaces,” Comm. Alg., 23, 219–243 (1995).

5B. O. Hultgren, III and A. Shimony, “The lattice of verifiable
propositions of the spin-1 system,” J. Math. Phys., 18, 381–394
(1977).

6B. O. Hultgren, III, A Lattice of Verifiable Propositions, Ph.D.
thesis, Boston University Graduate School (1974).

7K. Svozil and J. Tkadlec, “Greechie diagrams, nonexistence
of measures and Kochen–Specker-type constructions,” J. Math.
Phys., 37, 5380–5401 (1996).

8K. Svozil, Quantum Logic, Discrete Mathematics and Theoretical
Computer Science (Springer-Verlag, New York, 1998).

9J. Tkadlec, “Greechie diagrams of small quantum logics with
small state spaces,” Int. J. Theor. Phys., 37, 203–209 (1998).

10J. Tkadlec, “Diagrams of Kochen–Specker constructions,” Int. J.
Theor. Phys., 39, 921–926 (2000).

11J. Tkadlec, “Representations of orthomodular structures,” in Or-
dered Algebraic Structures: Nanjing; Proceedings of the Nanjing
Conference, Algebra, Logic and Applications, Vol. 16, edited by
W. C. Holland (Taylor & Francis, London, 2001) pp. 153–158.

12D. Smith, “Algebraic partial Boolean algebras,” J. Phys. A, 36,
3899–3910 (2003).

13D. J. Foulis, “A half-century of quantum logic—What have we
learned?” in Quantum Structures and the Nature of Reality, Pro-
ceedings of the Conference: The Indigo Book of Einstein Meets

Magritte, edited by D. Aerts and J. Pykacz (Kluwer Academic
Publishers, Dordrecht, 1999) pp. 1–36.
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19M. Pavičić and N. D. Megill, “Quantum logic and quantum com-
putation,” in Handbook of Quantum Logic and Quantum Struc-
tures, Vol. Quantum Structures, edited by K. Engesser, D. Gab-
bay, and D. Lehmann (Elsevier, Amsterdam, 2007) pp. 751–787.

20R. Mayet, “Ortholattice equations and Hilbert lattices,” in Hand-
book of Quantum Logic and Quantum Structures, Vol. Quantum
Structures, edited by K. Engesser, D. Gabbay, and D. Lehmann
(Elsevier, Amsterdam, 2007) pp. 525–554.
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