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Abstract: 
In this talk I analyse the structuralist theory of logic and the possible consequence 
of different logics sharing the same structure.  
I point out certain aspects of such theory that might be objected to as well as the 
reasons as to why such a theory does not after all fulfil the (possibly unjustified) 
expectation of getting defined a universal logical structure. 
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Even though structuralism is commonly associated with issues concerning the 

philosophy of mathematics, there is an account of it endorsed by Koslow (mainly 

in his book: Koslow, 1992, A Structuralist Theory of Logic, Cambridge University 

Press) which is one of the most appealing contemporary formulations of 

structuralism in logic. 

But, what does structuralism in logic amount to? Is it analogous with structuralism 

in mathematics? And if so, in which sense: do the two versions share the same 

tenets or the same motivation? 

I will try in this talk to answer these questions by presenting the basic ideas of 

Koslow’s theory. I will critically analyse his views and offer reasons for holding 

that some aspects of his structuralist account are flawed, as it is the case with 

structuralism in mathematics so that matter. I will also try to show that, even 

though that is not one of the aims that Koslow points out to, his theory of logic 

fails to achieve a satisfactory answer to the question of a possible reduction of 

logic to structure(s).    

As far as structuralism in mathematics is concerned, the statement that 

mathematics is about structures is twofold: mathematics is about different 



structures such as the vector space structure, the group structure etc., while the 

possibility of reducing mathematical theories to set theory or category theory, 

gives sense to viewing mathematics as about the (common) set-theoretic structure 

or the category structure. Philosophically speaking, the ontological reduction of 

mathematical objects to structures leads to interesting results that aim to solve 

some ontological, as well as epistemological, problems in the philosophy of 

mathematics (let me mention Resnik and Shapiro), even though it also brings to 

the surface some difficulties such as the problem of existing structures admitting 

non-trivial automorphisms.  

What about logic? In which sense could logical structuralism be analogous with 

the mathematical one?  

Could there be a (coomon) universal logical structure? As is well known, different 

logics are based on different principles.  Examples are legion: the necessary 

relevant connections between the premises and the conclusion in any argument 

given in relevance logic are not necessarily fulfilled in classical logic. 

Given the obvious disanalogies between mathematics and logic, I will try to 

answer the question about the possibility of existence of a common logical 

structure and, consequently, of a universal logic; I will do that through a 

discussion of the tenets of the structuralist account of logic.  

 

The lynch-pin of Koslow’s structuralist account of logic is the notion of 

implication structure and the definition of logical (and modal) operators relative 

to an implication structure. Let us see what these definitions amount to and what 

results they imply.  

An implication structure is any order pair: ((S, ⇒); where S is a non-empty set, 

while  “⇒” is an implication relation. 

An implication relation is (implicitly) defined as any relation that satisfies the 

following conditions: 

(1) Reflexivity:          A ⇒ A, for each A in S 

(2) Projection:         A1, A2, …, An ⇒ Ak,  for every k=1, …, n, and for each Ai in S  

                                 (i = 1, …,n) 

(3) Simplification:    If  A1, A1, A2, …, An ⇒ B, then  A1, A2, …, An ⇒ B, for all Ai 
                                 (i = 1, …,n) and B in S 

(4) Permutation:      If   A1, A2, …, An ⇒ B, then  Af(1), Af(2), …, Af(n) ⇒ B, for any 



                                 permutation f of  {1, …,n} 

(5) Dilution (or Thinning):   If   A1, A2, …, An ⇒ B, then  A1, A2, …, An, C  ⇒ B, 
for  

                                              any Ai  (i = 1, …,n), B and C in S 

(6) Cut:                     If   A1, A2, …, An ⇒ B, and B, B1, B2, …, Bm ⇒ C, then   
                                  A1, A2, …, An, B1, B2, …, Bm ⇒ C, for any Ai, Bj, B and C  
                                  (i, j = 1, …,n) 

 

Someone might object that a different choice of constraints would be more fruitful 

and economical since clearly Reflexivity follows from Projection, and Dilution 

follows from Projection and Cut. Nevertheless, Koslow keeps the list of 

constraints for the sake of greater articulateness, based on Gentzen’s theory.  

The examples of implication relations that immediately come to mind are the 

notion of semantic validity or the syntactic notion of deducibility for a set of 

sentences of some first-order logical theory. These examples though do not even 

exhaust all the possibilities.   

 The logical operators can act in a broad variety of settings, sentential and 
            otherwise. In particular, the actions of the operators on structures of sets, 
            names, and interrogatives, to cite just some nonstandard examples, are 
            mentioned because the items in these cases fail in an obvious way to be 
            syntactical or fail to be truth-bearers. (Koslow 1992, p.9) 

An interesting example is set inclusion: given any set of subsets of a non-empty 

set S, the ordered pair  (S, ⊆) exemplifies the implication structure.  

I find particularly interesting the example of erotetic logic, that will be mentioned 

later on. 

The possibility of getting such generality of definition is certainly a great virtue of 

Koslow’s theory and it makes structuralism in logic closer to the one in 

mathematics - just remember that is possible to get some rather weird group 

structure examples or mathematically unusual equivalence relations.  

Given the definition of implication structures, the logical operators are defined 

relative to such structures, i.e. as functions defined on structures. And here again, 

given the possibility of non-standard implication relations, the same applies to the 

operators as well.  

Let us take the example of the hypothetical operator H⇒. For any elements A and 

B in the implication structure (S, ⇒), H⇒(A, B) is the hypothetical having A as the 



antecedent and B as a consequent, if and only if the following conditions are 

fulfilled: 

(H1)  A, H⇒(A, B) ⇒ B 

(H2) H⇒(A, B) is the weakest element satisfying the condition (1). It means that, 

for any element T of the implication structure such that A, T ⇒ B, it follows that    

T ⇒ H⇒(A, B) 

Such a definition leaves open the answer to the question as to whether the 

hypothetical, given an implication structure, may fail to exist or not. And the 

following example solves the dilemma positively. 

Let us take the implication structure (S, ⇒), in which S={A, B, C, D} and the 

implication relation is given in the following way: 

                     A 

                     
                    B 

 
             C          D 

In such a structure, the hypothetical H⇒(A, B) does not exist (not to be confused 

with the fact that A⇒B); namely, H⇒(A, B) is, by definition, the weakest member 

T of S such that: A, T ⇒ B. Since A⇒B, the condition is fulfilled by any element 

of S, but there is no weakest element. C cannot be the weakest element since  A, D 

⇒ B, while D≠> C (see the condition (H2) above). D cannot be the weakest for 

the same reason.  

Such a definition does not put any constraints on truth conditions, syntactic 

features or others: 

 There is no appeal to truth conditions, assertibility conditions, or any 
syntactical features or semantic values of the elements of the structure. 
(Koslow 1992, p. 78) 

 
The fact that the elements of an implication structure are not necessarily syntactic 

objects having a special sign design or elements having a semantic value, is what  

makes the explanation/definition of the logical operators free of such constraints. 

 

Let me present now some critical remarks concerning the structuralism theory of 

logic just depicted. 



(1) Let us have a look at the six conditions - Cut - that any relation has to fulfill in 

order to be an implication relation. The main worry I see is about how is the left-

hand side of the expression A1, … , An ⇒B to be construed.  

If S is a non-empty set of sets and the implication relation is set inclusion, the 

sequence A1, … , An is the intersection of sets. Since the intersection of sets is 

their conjunction, it turns out that in order to interpret the sequence A1, … , An, i.e. 

in order to determine that the implication relation is set inclusion, we ought to 

know what the intersection, i.e. the conjunction of sets is. We therefore ought to 

know how a certain logical operator is defined prior to having determined an 

implication relation on a non-empty set. According to Koslow’s theory, it 

certainly should be the other way round.  

(2) Let me present now a critical remark concerning the structuralist account in 

erotetic logic, i.e. the logic of interrogatives.  

How are operators for interrogatives to be defined? 

Q - a set of interrogatives 

S - a set of sentences inclusive of the sentential direct answers to the questions in 

Q 

S’ = S ∪ Q. 

Interestingly enough, according to Koslow a direct answer need not be a true one: 

We shall use the term “interrogative” to include any question that has a direct 
answer. The most important feature of the direct answers to a question is that 
they are statements that, whether they are true or false, tell the questioner 
exactly what he wants to know – neither more nor less. (Koslow 1992, p.220) 

 

The implication relation on S’ (‘⇒q’) is defined as follows: 

M1?, M2?, …, Mn? and R?  -  questions in Q,  

F1, F2, …, Fm and G  -  statements of S (the set of M’s or the set of F’s may be 

empty but not both), and 

Ai  -  a direct answer to the question Mi? (i=1,…,n).  

We then define: 

(1.)  F1, F2, …, Fm, M1?, M2?, …, Mn? ⇒q R?  if and only if there is some direct   

answer B to the question R? such that  

       F1, F2, …, Fm, A1, A2, …, An ⇒ B 

(2.)  F1, F2, …, Fm, M1?, M2?, …, Mn? ⇒q G  if and only if     



       F1, F2, …, Fm, A1, A2, …, An ⇒ G 

I find such a definition problematic. Namely, let the set of F’s be empty (for the 

sake of simplicity), and let us examine the case in which a question implies a 

statement (the second condition in the definition). Let the statement G be any false 

statement, e.g. a false answer to the question R?. In this case, whether M1? ⇒q G 

or not depends on whether A1 ⇒ G, and the latter depends on what answer A1 (to 

the question M1?) we choose. If the answer we choose is a false one, then M1? ⇒q 

G, otherwise M1? ≠>q G. More generally, the same problem appears whenever the 

statement G is false. In this case, given a collection of interrogatives Mi? 

(i=1,…n), their respective direct answers Ai, and a set of true statements Fi 

(i=1,…n),  there is nothing in Koslow’s definition that allows us to uniquely 

determine whether F1, F2, …, Fm, M1?, M2?, …, Mn? ⇒q G or not.  

(3) Let me finally present a more general difficulty with the structuralist account 

of logic. Koslow shows that, even though we might expect that certain results that 

hold given the operators classically defined hold in non-standard cases too, it is 

not the case.  

The cases of implication structures in which (((A→B)→A)→A)  is not a theorem 

show us that much. Since these are features of the system, not of the structure, so 

it is not odd that such results are not necessarily present in non-standard 

implication structures. Nevertheless, to have a true hypothetical whenever the 

antecedent is false is not an unimportant result given the operators classically 

defined.  

So, two problems seem to arise at this point: how do we get from the semantic-

and-synthatic-features-free definitions to the syntactic rules for formula formation 

or the (semantic) truth tables? From prevent us from doing it is the fact that they 

do not follow from the structurally defined operators.  

And how can a system have so many basic features that are not, in some form or 

another, already present in the structure? In we think of the mathematical case, all 

the basic properties of, e.g. vectors (whatever system that we take – geometrical 

vectors, real numbers, etc.) are already present in the structure. And that is 

basically what makes the study of structures so fruitful in mathematics. 



In the presented theory, on the other hand, the characterization of the operators 

relative to the  implication structure obtain neither  the semantic nor the synthactic 

results expected in the defined implication structures.  

That is why I think that the depicted structuralist account of logic fails, 

notwithstanding its being original in many philosophical and logical aspects, to 

successfully solve the task of characterizing the logical operators relative to 

implication structures. For all the presented critical notes make us skeptical as to 

whether a general logical structure might be determined. 

 
 


