
 Abstract—Many  classical  algorithms  like  the  Bloom 
filter  were  envisioned  and  created  at  a  time  when 
computers were the size of rooms and multithreading was 
not  yet  even  explored  theoretically.  The  landscape  of 
modern  mainstream  computer  systems  today  is  heavily 
dominated with multi-core CPU-s but the effort to make 
full use of such systems is still ongoing.  The Bloom filter 
has proven itself useful both as a core algorithm and as a 
supportive  or  optimizing  addition  to  other  data 
classification algorithms. This work explores adaptations 
to  the  basic  Bloom  filter  algorithm  for  use  in 
multithreaded  applications  on  contemporary  SMP 
systems and the consequences of  such adaptations to its 
overall efficiency.

Index Terms—multithreading, multiprocessing, Bloom filter, 
data structure, algorithms

I.INTRODUCTION

HE Bloom filter was first described by Burton Howard 
Bloom in 1970 [1] and has since then become a standard  

and widely used algorithm for quick set membership testing 
with large sets and/or low memory conditions. Though it was 
originally  conceived  for  use  in  databases  as  a  helper 
algorithm  to  reduce  disk  access  frequency,  since  its 
introduction it has been successfully used in various network-
related tasks. Some applications of the Bloom filter include 
network  packet  inspection  and  classification,  forwarding, 
peer-to-peer  indexing and distributed  web caching [2][3][4]
[5][7][8].  Aside  from  these  acknowledged  technical 
applications  it  is  also  used  in  certain  surprisingly  diverse  
environments such as computer games [6]. The central useful 
characteristic  of  the  Bloom  filter  is  the  ability  to  test 
memberships in large sets in what is practically constant time 
and  memory  usage,  but  with  a  (preferably  low but  always 
present) probability of false positives. 

T

The Bloom filter is an ingenious construct  built around a 
central bitmap or an integer array which is updated and tested  
depending on the result  of hashing functions applied to the 
stored or tested strings of bytes. This structure is a point of 
contention  in  multithreading  applications  and  in  this  paper 
we  explore  several  types  of  modifications  to  the  basic 
algorithm  that  enable  various  degrees  of  simultaneous 
multithreaded  access  to  the  Bloom filter  and  analyse  their  
performance and efficiency.
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The paper is organized as follows. Section II describes the 
original  Bloom  filter  and  the  specific  implementation 
analysed in this work, with references to related works on the 
topic. Section III presents the analysis of the central problem 
and the theoretical expectations with regards to efficiency of 
adapting  the  algorithm  to  a  multithreaded  environment.  
Section  IV  presents  our  test  implementations,  their 
performance  and  efficiency  characteristics.  Finally,  we 
present conclusions of this work in section V.

II.THE BLOOM FILTER

The traditional Bloom filter is described (for example in [8]) 
as an m-bit array used with k hash functions which compress 
the input string into  k numbers addressing single bits in the 
array. To add a string to the set, the string is processed with  
the hash functions and  k bits in the array are set to one. To 
check if the string is in the set,  k bits whose addresses are 
obtained by processing the string are checked to be all set to 
one. False positive tests of set membership can occur because 
of  the  hash  functions  themselves  or  because  of  hash  array 
“saturation” by bits set to one from adding multiple elements 
to  the  set.  False  negatives,  on  the  other  hand,  can  never  
appear. Figure 1 shows a simple example of the bit array.

It is visible from the description of the central algorithm that  
the  quality  of  the  filter  depends  on  many  factors:  on  the 
number of hash functions  k, the size  m of the bit array, the 
number of elements already added to the set n and the quality 
of the hash functions. 

The probability p of a complete k-bit collision in an m-bit 
filter  with  good (unbiased)  hash  functions  is  approximated 
[7] by (1), from which the major trends can easily be seen:  
optimizing for low collision rate requires a large bit array or 
a small  number of entries stored in the set, but the optimal  
number of hash functions requires a more complex solution 
whose outcome is given in (2).

p=1−e
−kn

m k (1)

k=
m
n
⋅ln 2 (2)

In practice,  slightly suboptimal values for  k and m might be 
selected  to take advantage  of external  environment  factors, 
for example choosing appropriate powers of 2 for k and m to 
optimize calculations and/or memory usage.
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Fig 1. An example of a Bloom filter bit array with m=16 and k=3 with 
one element added to the set. Grey squares represent bits set to one.



A  useful  variation  of  the  original  construct  is  the 
“Counting  Bloom  filter”  [9],  in  which  the  bit  array  is 
replaced with an array of integers. In this variation, additions 
to  the  set  are  performed  by  incrementing  the  k integers, 
which leads to the ability to remove elements from the set by 
decrementing them.

As others have implicitly noticed (e.g. [6], [8]), the array 
(in any form) of the Bloom filter becomes itself a sort of a 
digest (or hash) of the entire set, which can at the same time  
directly be used to support common set operations such as set 
union (by “adding” array elements), set intersection  and set 
complement  (by  comparing  and  “decrementing”  array 
elements in various ways), of course while still being subject 
to the probabilities of false positives.

A.Modern uses

The Bloom filter  was a somewhat  obscure data structure 
since its conception but has found very successful application 
in modern data-intensive network-related problems. A search 
on the IEEE Xplore digital library reveals only a single paper 
containing  the phrase “bloom filter”  in its  title  before  year 
2000,  and  101  papers  with  titles  containing  the  phrase 
published  between  years  2002  and  2009  (inclusive),  with 
nearly 50% of those in years 2008 and 2009. Of course, the 
structure  has  found  its  use  in  the  problem  originally 
described  by  Howard  Bloom  and  has  presumably  been 
quietly used ever since in spell check dictionaries and some 
databases  but  it  has  never  been  so extensively  studied  and 
experimented upon until recent times.

What makes the Bloom filter so successful now is both the 
promise  of  O(1)  performance  with  respect  to  time  and 
memory  accesses  in its  common operations with large  sets 
and the ability to use the resulting Bloom array as a digest for  
large  sets.  The  keyword  here  is  “large”  -  both  of  these  
applications are centred around the remarkable compression 
with which the Bloom filter  can  represent  volumes of data 
while  still  having  useful  internal  structure  (as  opposed  to 
simple hash functions).

We observe that  these two distinct  advantages have been 
explored mostly in unrelated areas of application and study.  
The  fast  and cheap  set  lookup and update  operations  have 
mostly  been  explored  in  the  context  of  data  classification 
such as in active network equipment (e.g. [4][5]), while the 
digest aspect of the filter has proven itself a powerful tool in 
maintaining data set coverage and accessibility in distributed 
and peer-to-peer systems [8][10]. A typical example of use in 
data classification would be in routers or firewalls, where it is 
convenient  to  test  every  packet  for  membership  to  a 
particular  flow or  a  network  connection  before  proceeding 
with  more  complex  analysis,  and  the  relatively  small 
memory  requirements  of  the  Bloom  filter  make  it  easy  to 
implement in both high-performance and highly constrained 
hardware [11].

 In its role as a set digest, an implementation of the Bloom 
filter has become a part of an Internet standard protocol, the 
Internet  Cache  Protocol (ICP)  used  by  web  proxies  to 
discover  which  sets  of  documents  are  cached  by  their 
neighbours [8].

B.Working around false positives

While  the  Bloom  filter  can  be  used  by  itself,  the  always-
present probability of false positives makes it inconvenient to 
use in most purposes. Specifically, the random nature of hash 
functions make such collisions unpredictable in the same way 
as in hash tables.

As depicted in Fig. 2, the danger of suddenly saturating the 
filter with set elements to the point where the probability of 
false  positives  cannot  be  ignored  is  very  real  in  practice.  
When the number of elements in the array is kept the same,  
using  more  hash  functions  (which  translates  to  a  more 
sophisticated set digest) simply increases the filter saturation. 
Optimal  Bloom filter  parameters  can  be found for  specific  
applications by solving (1) or (2) for k, m, or n, depending on 
practical considerations.

If the number of filter entries is fixed, the optimum number 
of filter array entries  k depends on the predicted number of 
elements in the set, as shown in Fig. 2.

To work around the unavoidable false positives, the main 
structure  of  the  Bloom  filter  is  commonly  backed  by  a 
regular  hash  table  or  a  similar,  deterministic  structure.  In 

Fig  2.  Probability  of  false  positives  as  dependant  on  the  number  of  hash 
functions k and the number of elements in the set n. Because of the essentially 
exponential  characteristic,  the  filter  can  very  quickly  become  unusable  if 
more than the optimum number of elements are added to the set.

Fig 3. The optimum number of hash functions as dependant on the number of 
elements added to the set (n) when the filter array size (m) is fixed to 65536.



some cases [5] the Bloom filter  structure  is integrated with 
other structures to take better advantage of its strong sides.

C.Our test implementation

To perform experiments with the Bloom filter algorithm we 
have created a test  implementation  which is flexible  in the 
parameters important for this study.
The  test  implementation  used  in  this  work  is  in  essence  a 
canonical  Counting  Bloom  filter  having  the  following 
properties:

• the number of filter array entries m=65536
• the number of hash functions k=4
• each array element is a 16-bit integer.

The  rationale  for  these  choices  is  as  follows.  Though  we 
could  have  chosen  any  data  set  for  our  experiments,  
including  one  synthetically  created  out  of  random  byte 
strings,  we  have  tried  to  mimic  a  realistic  application  by 
using lines from Odyssey by Homer1,  of which our variant 
has  15439  lines,  a  value  which  can  be  stored  in  a  16-bit 
counter  in  the  (extremely  unlikely)  case  all  lines  produce 
collisions in one or more of the same filter  array elements. 
From results presented in Fig. 1 and 2 we have selected to 
use  k=3 hash functions.  We have chosen MD4 [12] for the 
basis  of  our  hash  functions2 because  it  is  conveniently 
available  in our environment  and undoubtedly  a good hash 
function for this purpose. The MD4 function produces a 128-
bit  result,  which  is  too  long  by  itself  but  which  can  be 
divided into 16-bit values each of which can address one of 
the  m elements  in  the filter  array.  We therefore  define our 
three hash functions fi(s), where i=1..3 as the i-th consecutive 
16-bit slice of the result of the function MD4(s).

Our  implementation  is  created  in  the  C  programming 
language  and  a  POSIX-compliant  environment,  using  the 
POSIX  Threads  library  for  multithreading  and  locking 
operations, and OpenSSL's implementation of the MD4 hash. 
Our primary test hardware platform is Intel Xeon 5405 with 
two 4-core processors (i.e.  8 logical  CPUs in total) running 
the  64-bit  edition  of FreeBSD 8.0.  This  is  the platform on 
which all our published results are obtained.  Our secondary 
platform,  used  for  verification  of  our  methods  is  AMD 
Opteron 2216HE with two 2-core processors running 32-bit 
Linux 2.6.28. 

D.Previous work

A very high performance application of the Bloom filter is in 
network  packet  classification  and  from  this  field  comes  a 
strong  interest  in  its  implementations  in  multi-core  ASIC 
hardware  [15],  [16],  [17]  concentrated  around  designing 
hardware matchers that would search a stream of packets. 

Our approach differs from the referenced ones in exploring 
the software side of the implementation – adapting software  

1Obtained  from  Project  Gutenberg,  translation  by  William  Cowper, 
available at http://www.gutenberg.org/ebooks/24269

2The  MD4  hash  function  has  been  considered  unsafe  for  use  in 
cryptography-related purposes for some time now[13] but we are using it not  
as a security or cryptography primitive but as a good general purpose hash 
function better than more simple alternatives [14]. We selected it over MD5 
because we  observed that on our test hardware MD4 can be up to 60% faster  
than MD5.

to run on widely deployed general-purpose architectures as-
is,  within  constraints  of  existing  hardware.  Our  previous 
work  in  this  area  includes  designing  concurrent  data 
structures  for  high-performance  memory  databases  and 
software cache middleware [20].

III.THE BLOOM FILTER IN MULTITHREADED APPLICATIONS

In the ideal case, the Bloom filter is a very scalable structure  
in multiprocessing if the number of hash functions  k is low 
enough with regards to the number  of possible  elements  m 
(which it  always is for any sensible application) and if the  
number of threads working in parallel on the Bloom filter is  
also  low  enough  (which  it  currently  always  is,  because 
technical considerations limit the number of CPU-s in today's 
computers).  An interesting situation arises when the filter is 
to be updated as a regular part of the application's operation.  
In this case the problem is completely the same whether the 
filter is implemented as an array of bits (the original Bloom 
filter)  or  an  array  of  integers  (the  Counting  Bloom  filter) 
since  general-purpose CPU-s operate  on word-size memory 
units (i.e. there is no way to atomically update a single bit of 
memory,  but  there  are  ways  to  atomically  update  words, 
possibly  of  various  sizes).  This  leads  to  the  classical  race 
condition  problem  of  read-modify-update  by  multiple 
threads.  In the  case  of  the  Counting Bloom filter  the  error 
may manifest in erroneous counters, subsequently leading to 
errors if elements are removed, while in the original Bloom 
filters some bits may not be set, leading more directly to the 
extremely  unwanted  property  of  the  filter  having  false  
negatives. 

To  ensure  consistency  and  data  access  ordering,  all  k 
values  need  to  be updated  atomically.  This  is  not  possible 
with atomic CPU operations (the case of which we include in  
a later section), but requires stronger primitives.

 We have selected to use POSIX read/write locks (rwlocks, 
also known as shared/exclusive  locks)  with the property  of 
allowing lock acquisition in either  “read” (or shared) mode 
by multiple threads at the same time or “write” (or exclusive)  
mode by only a single thread. 

A.On scalability

In  the  worst  case  of  hash  function  collisions,  all  active  
threads  try  to  exclusively  lock  the  same  write  locks  for  k 
elements  out  of  m.  Since  the  ratio  k/m is  very  small, 
Amdahl's law (3) predicts that the problem as stated is almost 
embarrassingly parallel (for  k=3 and m=65536, the k/m ratio 
is  ≈ .000046).

P=
k
m

, s=
1

1−P 
P
N

(3)

Of course, there is still the presence of “hidden variables” in 
external  factors  such  as  the  hardware  implementation,  but 
these  are  outside  our  influence  for  the  experiments  in  this 
work.



IV.EFFICIENCY OF ADAPTATIONS OF THE BLOOM FILTER TO 
MULTITHREADED APPLICATIONS

Because  of  its  simple  structure,  the  Bloom  filter  is  very 
suited  for  read-only  access  –  tests  for  set  memberships 
require  only simple  memory accesses to the filter  array.  In 
our implementation  the  filter  array  size  is  128 KiB,  which 
very easily  fits  in  modern  CPUs' L2 caches,  and a quarter  
[18] or  half  [19]  of  it  can  even  fit  in  the  L1 caches.  This 
makes it suitably efficient without special effort. 

We have found that our test platform's implementation of 
POSIX  rwlocks  associates  a  40-byte  structure  with  each 
rwlock  present  in  the  application,  which  can  in  the  literal  
interpretation lead  to the uncomfortable  situation of having 
40-byte locks locking 2-byte values. To explore the impact of 
this size  ratio  and the possibility  of working around it,  we 
have  added  the  option  to  lock  regular  regions  of  array 
elements  instead  of  individual  elements  to  our  test 
implementation,  reducing  the  required  number  of  rwlocks 
from m by an almost arbitrary factor.

To  perform  a  set  addition,  all  needed  locks  are  first 
acquired in write mode, then the counters are updated and the 
locks released. To avoid deadlocks, if any of the locks cannot 
be  acquired,  all  previously  acquired  locks  are  rolled  back 
(released), the CPU is relinquished (yielded) for the locking 
thread and the process repeats until  all  locks can  be taken.  
Locking for set membership tests (i.e. read-only) proceeds in 
exactly the same way,  but using read locks3.  In addition to 
the  described  locking  discipline,  one  of  our  concerns  that  
prompted this work was that some of the benefits that come 
from the simple and compact structure can be detrimental to 
performance  in  complex  multiprocessor  environments.  We 
were concerned if the low-level hardware structures such as 
L1/L2 caches had a visible effects on the application level.

A.Locking the Bloom filter with read/write locks

Our test implementation is parametrized in a way that allows 
us to vary the data set, the number of threads working on the 
filter and the number of filter array elements protected by a 
single  rwlock.  Our  experiments  resulted  in  two  indicators: 
the  number  of  performed  operations  per  second  and  the 
number  of  contentions  during  the  lock  acquisition  phase 
which caused locks to be rolled back. Figure 4 shows these 
results as influenced  by varying the number  of threads and 
the number of entries protected by single rwlocks.

The results of this experiment are quite interesting in their 
uniformity. Our estimation that low-level hardware structure 
such as the size of CPU cache lines will  have some global  
effect on the performance curves was proven wrong, at least 
for  the  circumstances  in  question.  Though the  k/m ratio  is 
miniscule,  the sheer number of operations performed results 
in  a  surprisingly  large  number  of  contentions  between 
threads,  resulting in retries in locking filter  array  elements. 
Up to 106 contentions per second could be observed in the 
worst  case  (which  was when the  number  of  active  threads 
equalled the number of CPUs available).

3The problem of “writer starvation” caused by many read acquisitions on a 
lock  preventing  a  write  acquisition  is  in  our  case  solved  by  the  operating 
system's implementation of the POSIX rwlocks.

A very  positive  result  of  the  test  was  that  moving  from a 
single  lock  per  filter  array  entry  to  nearly  three  order  of 
magnitude less  locks still  results in adequate  performance.  
The  performance  difference  when  using  eight  threads 
between  the  case  of  having  each  element  protected  by  its 
own lock and one lock protecting 128 elements is less than 
8%, while protecting 1024 elements by a single lock results 
in nearly 50% less performed operations per second.

A closer look at  a slice of the results in Fig.  5 shows that, 
though  roughly  following  the  expected  linear  increase  of 
performance as the number of threads increases to be equal  
to the number of available CPUs, the speedup is not directly 
proportional.  Specifically,  speedup  achieved  when  the 
number  of  threads  increases  from  one  to  two  is 
approximately  70%,  it  is  ≈210%  for  three  threads  and 
≈360%  for  eight  threads.  This  is  far  away  from 
embarrassingly  parallel  performance  expected.  Fitting  the 
speedups  achieved  between  one  and  eight  threads  to  (3) 
results in an approximate P factor (the “unserializable” part  
of the operations) for this application of around 0.8.

Fig 4. Operations per second performing a random mixture of 95% test and 
5% add operations on a Bloom filter, with read/write locking per region of  
multiple  entries  and  with  the  rising  number  of  threads.  The bottom plane 
contains a “hot spot map” of retries made to acquire all k locks in 10 seconds.

Fig  5.  A  slice  of  Fig.  4  for  8  items  per  rwlock,  showing  increase  in 
performance depending on the number of active threads.



B.Accessing the Bloom filter with atomic operations

Complex locks such as read/write locks are on the low level 
created by using primitives available directly from the CPU's 
instruction set.

These instructions are of course unportable across system 
architectures  and  the  modifications  we  made  to  the  test 
implementations  to  use  them  thus  make  this  aspect  of  the 
implementation unportable.

Specifically, we have taken advantage of the i386 (and by 
extension  the  AMD64)  architecture  on  which  LOCKed 
operations  on  integer  are  synchronized  in  hardware  across 
other  logical  CPU-s in the system.  Though the architecture  
supports several instructions in this way, we have used only 
LOCK ADD on a memory  operand.  Because  of its  legacy, 
the architecture  natively  supports such instructions even on 
data sizes that are not its native (or maximum) word size; in 
our case we applied it on 16-bit integers.

Other  CPU  architectures  may  or  may  not  support  such 
low-level constructs.

This  modification  of  the  test  application  cannot  support 
data  ordering  involving  multiple  accesses,  meaning  that 
operations on all  the  k elements  of the filter  array  may be 
interleaved with operations from other threads / CPU-s (there  
is no consistent “snapshot” state for all k elements at a single 
point in time). This will manifest itself only in slightly larger  
probabilities of false positives in the long run, though false 
negatives still cannot happen.

Results  in  Fig.  6  reveal  significantly  higher  absolute 
performance than those presented in Fig. 4, but surprisingly 
the efficiency in scaling is nearly the same – approximately  
380% from one to eight threads.

These  experiments  were  repeated  on  our  secondary 
hardware  platform  which,  while  having  different  absolute 
results,  exhibited  similarily  low efficiency,  ≈230% for the 
case using rwlocks between one and four threads and only 
≈210%  better  results  in  the  test  using  atomic  integer 
operations  between  one  and  four  threads,  a  significant 
difference to the primary platform.

The  reasons  for  this  deviation  from  the  expected 
scalability need to be searched for in factors external to the  
abstract algorithm – in the hardware on which it runs. While  
the exact details require further detail study, they are likely 
to be located in the areas where multiple CPUs access shared  
resources, like the system and the memory buses.

V.CONCLUSION

We  have  studied  the  Bloom  filter  data  structures,  and 
specifically some modifications to the basic structure and its  
algorithms to make  it  usable  in  multithreaded  applications. 
To  make  this  study  possible,  we  have  created  a  test 
implementation that allows us to investigate how do many of 
the recognized parameters influence  the performance of the 
Bloom filter when used in a multithreaded environment.

We have  compared  two major  variations  of  the  original 
Counting Bloom filter structure, one using POSIX read/write 
locks  to  ensure  consistent  access  to  the  filter  array  for  all  
hash functions and one using platform-specific atomic CPU 
instructions  without  guarantees  of  consistency  during  all  
modifications  of  the  filter  array  (though  individual 
modifications  of  the  array  are  of  course  consistent).  Our 
implementation  was  tested  on  two  common  hardware 
platforms (AMD64 and i386 server-class hardware from Intel 
and AMD).

We have shown that when consistent access to the Bloom 
filter array is required, using read/write locks to protect array 
elements,  it is enough to use up to two orders of magnitute  
less lock  objects  than  the  number  of protected  elements  to 
achieve good enough performance on our test platforms.

Our analisys of the efficiency of the implementation shows 
that  though  the  algorithm  theoretically  has  a  low  ratio  of 
sequential to parallel operations, external factors have a large  
influence  on  the  scalability  of  a  straightforward 
implementation.
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