
 Abstract—Many classical algorithms like the Bloom
filter were envisioned and created at a time when
computers were the size of rooms and multithreading was
not yet even explored theoretically. The landscape of
modern mainstream computer systems today is heavily
dominated with multi-core CPU-s but the effort to make
full use of such systems is still ongoing. The Bloom filter
has proven itself useful both as a core algorithm and as a
supportive or optimizing addition to other data
classification algorithms. This work explores adaptations
to the basic Bloom filter algorithm for use in
multithreaded applications on contemporary SMP
systems and the consequences of such adaptations to its
overall efficiency.

Index Terms—multithreading, multiprocessing, Bloom filter,
data structure, algorithms

I.INTRODUCTION

HE Bloom filter was first described by Burton Howard
Bloom in 1970 [1] and has since then become a standard

and widely used algorithm for quick set membership testing
with large sets and/or low memory conditions. Though it was
originally conceived for use in databases as a helper
algorithm to reduce disk access frequency, since its
introduction it has been successfully used in various network-
related tasks. Some applications of the Bloom filter include
network packet inspection and classification, forwarding,
peer-to-peer indexing and distributed web caching [2][3][4]
[5][7][8]. Aside from these acknowledged technical
applications it is also used in certain surprisingly diverse
environments such as computer games [6]. The central useful
characteristic of the Bloom filter is the ability to test
memberships in large sets in what is practically constant time
and memory usage, but with a (preferably low but always
present) probability of false positives.

T

The Bloom filter is an ingenious construct built around a
central bitmap or an integer array which is updated and tested
depending on the result of hashing functions applied to the
stored or tested strings of bytes. This structure is a point of
contention in multithreading applications and in this paper
we explore several types of modifications to the basic
algorithm that enable various degrees of simultaneous
multithreaded access to the Bloom filter and analyse their
performance and efficiency.

* Ivan Voras and Mario Žagar are with University of Zagreb Faculty of
electrical engineering and computing, Unska 3, Zagreb, Croatia (e-mail:
{ivan.voras, mario.zagar}@fer.hr)

This work is supported in part by the Croatian Ministry of Science,
Education and Sports, under the research project “Software Engineering in
Ubiquitous Computing”.

The paper is organized as follows. Section II describes the
original Bloom filter and the specific implementation
analysed in this work, with references to related works on the
topic. Section III presents the analysis of the central problem
and the theoretical expectations with regards to efficiency of
adapting the algorithm to a multithreaded environment.
Section IV presents our test implementations, their
performance and efficiency characteristics. Finally, we
present conclusions of this work in section V.

II.THE BLOOM FILTER

The traditional Bloom filter is described (for example in [8])
as an m-bit array used with k hash functions which compress
the input string into k numbers addressing single bits in the
array. To add a string to the set, the string is processed with
the hash functions and k bits in the array are set to one. To
check if the string is in the set, k bits whose addresses are
obtained by processing the string are checked to be all set to
one. False positive tests of set membership can occur because
of the hash functions themselves or because of hash array
“saturation” by bits set to one from adding multiple elements
to the set. False negatives, on the other hand, can never
appear. Figure 1 shows a simple example of the bit array.

It is visible from the description of the central algorithm that
the quality of the filter depends on many factors: on the
number of hash functions k, the size m of the bit array, the
number of elements already added to the set n and the quality
of the hash functions.

The probability p of a complete k-bit collision in an m-bit
filter with good (unbiased) hash functions is approximated
[7] by (1), from which the major trends can easily be seen:
optimizing for low collision rate requires a large bit array or
a small number of entries stored in the set, but the optimal
number of hash functions requires a more complex solution
whose outcome is given in (2).

p=1−e
−kn

m k (1)

k=
m
n
⋅ln 2 (2)

In practice, slightly suboptimal values for k and m might be
selected to take advantage of external environment factors,
for example choosing appropriate powers of 2 for k and m to
optimize calculations and/or memory usage.

Adapting the Bloom Filter to
Multithreaded Environments

Ivan Voras and Mario Žagar *

Fig 1. An example of a Bloom filter bit array with m=16 and k=3 with
one element added to the set. Grey squares represent bits set to one.

A useful variation of the original construct is the
“Counting Bloom filter” [9], in which the bit array is
replaced with an array of integers. In this variation, additions
to the set are performed by incrementing the k integers,
which leads to the ability to remove elements from the set by
decrementing them.

As others have implicitly noticed (e.g. [6], [8]), the array
(in any form) of the Bloom filter becomes itself a sort of a
digest (or hash) of the entire set, which can at the same time
directly be used to support common set operations such as set
union (by “adding” array elements), set intersection and set
complement (by comparing and “decrementing” array
elements in various ways), of course while still being subject
to the probabilities of false positives.

A.Modern uses

The Bloom filter was a somewhat obscure data structure
since its conception but has found very successful application
in modern data-intensive network-related problems. A search
on the IEEE Xplore digital library reveals only a single paper
containing the phrase “bloom filter” in its title before year
2000, and 101 papers with titles containing the phrase
published between years 2002 and 2009 (inclusive), with
nearly 50% of those in years 2008 and 2009. Of course, the
structure has found its use in the problem originally
described by Howard Bloom and has presumably been
quietly used ever since in spell check dictionaries and some
databases but it has never been so extensively studied and
experimented upon until recent times.

What makes the Bloom filter so successful now is both the
promise of O(1) performance with respect to time and
memory accesses in its common operations with large sets
and the ability to use the resulting Bloom array as a digest for
large sets. The keyword here is “large” - both of these
applications are centred around the remarkable compression
with which the Bloom filter can represent volumes of data
while still having useful internal structure (as opposed to
simple hash functions).

We observe that these two distinct advantages have been
explored mostly in unrelated areas of application and study.
The fast and cheap set lookup and update operations have
mostly been explored in the context of data classification
such as in active network equipment (e.g. [4][5]), while the
digest aspect of the filter has proven itself a powerful tool in
maintaining data set coverage and accessibility in distributed
and peer-to-peer systems [8][10]. A typical example of use in
data classification would be in routers or firewalls, where it is
convenient to test every packet for membership to a
particular flow or a network connection before proceeding
with more complex analysis, and the relatively small
memory requirements of the Bloom filter make it easy to
implement in both high-performance and highly constrained
hardware [11].

 In its role as a set digest, an implementation of the Bloom
filter has become a part of an Internet standard protocol, the
Internet Cache Protocol (ICP) used by web proxies to
discover which sets of documents are cached by their
neighbours [8].

B.Working around false positives

While the Bloom filter can be used by itself, the always-
present probability of false positives makes it inconvenient to
use in most purposes. Specifically, the random nature of hash
functions make such collisions unpredictable in the same way
as in hash tables.

As depicted in Fig. 2, the danger of suddenly saturating the
filter with set elements to the point where the probability of
false positives cannot be ignored is very real in practice.
When the number of elements in the array is kept the same,
using more hash functions (which translates to a more
sophisticated set digest) simply increases the filter saturation.
Optimal Bloom filter parameters can be found for specific
applications by solving (1) or (2) for k, m, or n, depending on
practical considerations.

If the number of filter entries is fixed, the optimum number
of filter array entries k depends on the predicted number of
elements in the set, as shown in Fig. 2.

To work around the unavoidable false positives, the main
structure of the Bloom filter is commonly backed by a
regular hash table or a similar, deterministic structure. In

Fig 2. Probability of false positives as dependant on the number of hash
functions k and the number of elements in the set n. Because of the essentially
exponential characteristic, the filter can very quickly become unusable if
more than the optimum number of elements are added to the set.

Fig 3. The optimum number of hash functions as dependant on the number of
elements added to the set (n) when the filter array size (m) is fixed to 65536.

some cases [5] the Bloom filter structure is integrated with
other structures to take better advantage of its strong sides.

C.Our test implementation

To perform experiments with the Bloom filter algorithm we
have created a test implementation which is flexible in the
parameters important for this study.
The test implementation used in this work is in essence a
canonical Counting Bloom filter having the following
properties:

• the number of filter array entries m=65536
• the number of hash functions k=4
• each array element is a 16-bit integer.

The rationale for these choices is as follows. Though we
could have chosen any data set for our experiments,
including one synthetically created out of random byte
strings, we have tried to mimic a realistic application by
using lines from Odyssey by Homer1, of which our variant
has 15439 lines, a value which can be stored in a 16-bit
counter in the (extremely unlikely) case all lines produce
collisions in one or more of the same filter array elements.
From results presented in Fig. 1 and 2 we have selected to
use k=3 hash functions. We have chosen MD4 [12] for the
basis of our hash functions2 because it is conveniently
available in our environment and undoubtedly a good hash
function for this purpose. The MD4 function produces a 128-
bit result, which is too long by itself but which can be
divided into 16-bit values each of which can address one of
the m elements in the filter array. We therefore define our
three hash functions fi(s), where i=1..3 as the i-th consecutive
16-bit slice of the result of the function MD4(s).

Our implementation is created in the C programming
language and a POSIX-compliant environment, using the
POSIX Threads library for multithreading and locking
operations, and OpenSSL's implementation of the MD4 hash.
Our primary test hardware platform is Intel Xeon 5405 with
two 4-core processors (i.e. 8 logical CPUs in total) running
the 64-bit edition of FreeBSD 8.0. This is the platform on
which all our published results are obtained. Our secondary
platform, used for verification of our methods is AMD
Opteron 2216HE with two 2-core processors running 32-bit
Linux 2.6.28.

D.Previous work

A very high performance application of the Bloom filter is in
network packet classification and from this field comes a
strong interest in its implementations in multi-core ASIC
hardware [15], [16], [17] concentrated around designing
hardware matchers that would search a stream of packets.

Our approach differs from the referenced ones in exploring
the software side of the implementation – adapting software

1Obtained from Project Gutenberg, translation by William Cowper,
available at http://www.gutenberg.org/ebooks/24269

2The MD4 hash function has been considered unsafe for use in
cryptography-related purposes for some time now[13] but we are using it not
as a security or cryptography primitive but as a good general purpose hash
function better than more simple alternatives [14]. We selected it over MD5
because we observed that on our test hardware MD4 can be up to 60% faster
than MD5.

to run on widely deployed general-purpose architectures as-
is, within constraints of existing hardware. Our previous
work in this area includes designing concurrent data
structures for high-performance memory databases and
software cache middleware [20].

III.THE BLOOM FILTER IN MULTITHREADED APPLICATIONS

In the ideal case, the Bloom filter is a very scalable structure
in multiprocessing if the number of hash functions k is low
enough with regards to the number of possible elements m
(which it always is for any sensible application) and if the
number of threads working in parallel on the Bloom filter is
also low enough (which it currently always is, because
technical considerations limit the number of CPU-s in today's
computers). An interesting situation arises when the filter is
to be updated as a regular part of the application's operation.
In this case the problem is completely the same whether the
filter is implemented as an array of bits (the original Bloom
filter) or an array of integers (the Counting Bloom filter)
since general-purpose CPU-s operate on word-size memory
units (i.e. there is no way to atomically update a single bit of
memory, but there are ways to atomically update words,
possibly of various sizes). This leads to the classical race
condition problem of read-modify-update by multiple
threads. In the case of the Counting Bloom filter the error
may manifest in erroneous counters, subsequently leading to
errors if elements are removed, while in the original Bloom
filters some bits may not be set, leading more directly to the
extremely unwanted property of the filter having false
negatives.

To ensure consistency and data access ordering, all k
values need to be updated atomically. This is not possible
with atomic CPU operations (the case of which we include in
a later section), but requires stronger primitives.

 We have selected to use POSIX read/write locks (rwlocks,
also known as shared/exclusive locks) with the property of
allowing lock acquisition in either “read” (or shared) mode
by multiple threads at the same time or “write” (or exclusive)
mode by only a single thread.

A.On scalability

In the worst case of hash function collisions, all active
threads try to exclusively lock the same write locks for k
elements out of m. Since the ratio k/m is very small,
Amdahl's law (3) predicts that the problem as stated is almost
embarrassingly parallel (for k=3 and m=65536, the k/m ratio
is ≈ .000046).

P=
k
m

, s=
1

1−P 
P
N

(3)

Of course, there is still the presence of “hidden variables” in
external factors such as the hardware implementation, but
these are outside our influence for the experiments in this
work.

IV.EFFICIENCY OF ADAPTATIONS OF THE BLOOM FILTER TO
MULTITHREADED APPLICATIONS

Because of its simple structure, the Bloom filter is very
suited for read-only access – tests for set memberships
require only simple memory accesses to the filter array. In
our implementation the filter array size is 128 KiB, which
very easily fits in modern CPUs' L2 caches, and a quarter
[18] or half [19] of it can even fit in the L1 caches. This
makes it suitably efficient without special effort.

We have found that our test platform's implementation of
POSIX rwlocks associates a 40-byte structure with each
rwlock present in the application, which can in the literal
interpretation lead to the uncomfortable situation of having
40-byte locks locking 2-byte values. To explore the impact of
this size ratio and the possibility of working around it, we
have added the option to lock regular regions of array
elements instead of individual elements to our test
implementation, reducing the required number of rwlocks
from m by an almost arbitrary factor.

To perform a set addition, all needed locks are first
acquired in write mode, then the counters are updated and the
locks released. To avoid deadlocks, if any of the locks cannot
be acquired, all previously acquired locks are rolled back
(released), the CPU is relinquished (yielded) for the locking
thread and the process repeats until all locks can be taken.
Locking for set membership tests (i.e. read-only) proceeds in
exactly the same way, but using read locks3. In addition to
the described locking discipline, one of our concerns that
prompted this work was that some of the benefits that come
from the simple and compact structure can be detrimental to
performance in complex multiprocessor environments. We
were concerned if the low-level hardware structures such as
L1/L2 caches had a visible effects on the application level.

A.Locking the Bloom filter with read/write locks

Our test implementation is parametrized in a way that allows
us to vary the data set, the number of threads working on the
filter and the number of filter array elements protected by a
single rwlock. Our experiments resulted in two indicators:
the number of performed operations per second and the
number of contentions during the lock acquisition phase
which caused locks to be rolled back. Figure 4 shows these
results as influenced by varying the number of threads and
the number of entries protected by single rwlocks.

The results of this experiment are quite interesting in their
uniformity. Our estimation that low-level hardware structure
such as the size of CPU cache lines will have some global
effect on the performance curves was proven wrong, at least
for the circumstances in question. Though the k/m ratio is
miniscule, the sheer number of operations performed results
in a surprisingly large number of contentions between
threads, resulting in retries in locking filter array elements.
Up to 106 contentions per second could be observed in the
worst case (which was when the number of active threads
equalled the number of CPUs available).

3The problem of “writer starvation” caused by many read acquisitions on a
lock preventing a write acquisition is in our case solved by the operating
system's implementation of the POSIX rwlocks.

A very positive result of the test was that moving from a
single lock per filter array entry to nearly three order of
magnitude less locks still results in adequate performance.
The performance difference when using eight threads
between the case of having each element protected by its
own lock and one lock protecting 128 elements is less than
8%, while protecting 1024 elements by a single lock results
in nearly 50% less performed operations per second.

A closer look at a slice of the results in Fig. 5 shows that,
though roughly following the expected linear increase of
performance as the number of threads increases to be equal
to the number of available CPUs, the speedup is not directly
proportional. Specifically, speedup achieved when the
number of threads increases from one to two is
approximately 70%, it is ≈210% for three threads and
≈360% for eight threads. This is far away from
embarrassingly parallel performance expected. Fitting the
speedups achieved between one and eight threads to (3)
results in an approximate P factor (the “unserializable” part
of the operations) for this application of around 0.8.

Fig 4. Operations per second performing a random mixture of 95% test and
5% add operations on a Bloom filter, with read/write locking per region of
multiple entries and with the rising number of threads. The bottom plane
contains a “hot spot map” of retries made to acquire all k locks in 10 seconds.

Fig 5. A slice of Fig. 4 for 8 items per rwlock, showing increase in
performance depending on the number of active threads.

B.Accessing the Bloom filter with atomic operations

Complex locks such as read/write locks are on the low level
created by using primitives available directly from the CPU's
instruction set.

These instructions are of course unportable across system
architectures and the modifications we made to the test
implementations to use them thus make this aspect of the
implementation unportable.

Specifically, we have taken advantage of the i386 (and by
extension the AMD64) architecture on which LOCKed
operations on integer are synchronized in hardware across
other logical CPU-s in the system. Though the architecture
supports several instructions in this way, we have used only
LOCK ADD on a memory operand. Because of its legacy,
the architecture natively supports such instructions even on
data sizes that are not its native (or maximum) word size; in
our case we applied it on 16-bit integers.

Other CPU architectures may or may not support such
low-level constructs.

This modification of the test application cannot support
data ordering involving multiple accesses, meaning that
operations on all the k elements of the filter array may be
interleaved with operations from other threads / CPU-s (there
is no consistent “snapshot” state for all k elements at a single
point in time). This will manifest itself only in slightly larger
probabilities of false positives in the long run, though false
negatives still cannot happen.

Results in Fig. 6 reveal significantly higher absolute
performance than those presented in Fig. 4, but surprisingly
the efficiency in scaling is nearly the same – approximately
380% from one to eight threads.

These experiments were repeated on our secondary
hardware platform which, while having different absolute
results, exhibited similarily low efficiency, ≈230% for the
case using rwlocks between one and four threads and only
≈210% better results in the test using atomic integer
operations between one and four threads, a significant
difference to the primary platform.

The reasons for this deviation from the expected
scalability need to be searched for in factors external to the
abstract algorithm – in the hardware on which it runs. While
the exact details require further detail study, they are likely
to be located in the areas where multiple CPUs access shared
resources, like the system and the memory buses.

V.CONCLUSION

We have studied the Bloom filter data structures, and
specifically some modifications to the basic structure and its
algorithms to make it usable in multithreaded applications.
To make this study possible, we have created a test
implementation that allows us to investigate how do many of
the recognized parameters influence the performance of the
Bloom filter when used in a multithreaded environment.

We have compared two major variations of the original
Counting Bloom filter structure, one using POSIX read/write
locks to ensure consistent access to the filter array for all
hash functions and one using platform-specific atomic CPU
instructions without guarantees of consistency during all
modifications of the filter array (though individual
modifications of the array are of course consistent). Our
implementation was tested on two common hardware
platforms (AMD64 and i386 server-class hardware from Intel
and AMD).

We have shown that when consistent access to the Bloom
filter array is required, using read/write locks to protect array
elements, it is enough to use up to two orders of magnitute
less lock objects than the number of protected elements to
achieve good enough performance on our test platforms.

Our analisys of the efficiency of the implementation shows
that though the algorithm theoretically has a low ratio of
sequential to parallel operations, external factors have a large
influence on the scalability of a straightforward
implementation.

REFERENCES

[1] B. H. Bloom. “Space /Time Trade-offs in Hash Coding with Allowable
Errors”. Communication of the ACM, vol. 13, pp. 422–426, July 1970.

[2] A. Broder and M. Mitzenmacher. “Network Applications of Bloom
Filters: A Survey”. In Proc. 14’th Annual Allerton Conf. on
Communication, Control, and Computing, pages 636–646, October
2002.

[3] F. Chang, F. Wu-chang, and L. Kang. “Approximate Caches for Packet
Classification”. In 23’th Annual Conf. of the IEEE, INFOCOM, pages
2196–2207, March 2004.

[4] S. Dharmapurikar, H. Song, J. Turner, and J. Lockwood. “Fast Packet
Classification Using Bloom Filters”. Technical Report 27, Department
of Computer Science And Engineering, Washington University in St.
Louis, May 2006.

[5] H. Song, J. Turner, S. Dharmapurikar, and J. Lockwood. “Fast Hash
Table Lookup Using Extended Bloom Filter: An Aid to Network
Processing”. In Proc. of Conf. on Applications, Technologies,
Architectures, and Protocols for Computer Communications, pp. 181–
192, August 2005.

[6] M. Fischer, “Coding Bloom Filters” [Online] Available:
http://www.flipcode.com/archives/Coding_Bloom_Filters.shtml,
[Retrieved Nov 1st, 2009].

[7] A. Broder, M. Mitzenmacher. “Network applications of bloom filters: A
survey”, Internet Mathematics, vol. 1, 2004, pp. 485-509.

[8] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. “Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol”, IEEE/ACM
Transactions on Networking vol. 8, pp. 281-293, 2000.

[9] M. Mitzenmacher. “Compressed Bloom Filters”. IEEE/ACM
Transactions on Networking vol. 10, pp- 604-612, 2002.

Fig 6. Operations per second with a Bloom filter using atomic memory
operations, with increasing number of threads and varying percentage of test
operations and add operations.

[10] P. Hebden, A.R. Pearce, "Bloom filters for data aggregation and
discovery: a hierarchical clustering approach", Proceedings of the 2005
International Conference on Intelligent Sensors, Sensor Networks and
Information Processing, pp. 175-180, 2005.

[11] M. J. Lyons and D. Brooks, “The design of a bloom filter hardware
accelerator for ultra low power systems”. Proceedings of the 14th
ACM/IEEE international Symposium on Low Power Electronics and
Design , pp. 371-376, 2009.

[12] R. Rivest, “RFC 1320: The MD4 Message-Digest algorithm”, IETF
Network Working Group Request for Comments Document. [Online]
Available: http://tools.ietf.org/html/rfc1320 [Retrieved Nov 11th 2009]

[13] B. d. Boer, A. Bosselaers, “An Attack on the Last Two Rounds of
MD4”. Proceedings of the 11th Annual international Cryptology
Conference on Advances in Cryptology, 1991.

[14] J. Stone, C. Partridge, “When the CRC and TCP checksum disagree”.
SIGCOMM Comput. Commun. Rev. 30, 4, pp. 309-319, 2000.

[15] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, J. Lockwood, "Deep
packet inspection using parallel Bloom filters," Proceedings of the 11th
Symposium on High Performance Interconnects, pp. 44-51, Aug. 2003.

[16] Haoyu Song, Fang Hao, M. Kodialam, T.V. Lakshman, "IPv6 Lookups
using Distributed and Load Balanced Bloom Filters for 100Gbps Core
Router Line Cards". Proceedings of IEEE INFOCOM 2009, pp. 2518-
2526, April 2009

[17] K. Nikas, M. Horsnell, J. Garside, "An adaptive bloom filter cache
partitioning scheme for multicore architectures". Proceedings of the
International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation 2008, pp. 25-32, July 2008.

[18] Intel Corp. “Intel Xeon ® Processor 50'00 Sequence”, Intel Technical
Documents [Online] Available:
http://www.intel.com/p/en_US/products/server/processor/xeon5000/tech
nical-documents [Retrieved Nov 12th 2009]

[19] Advanced Micro Devices Corp. “AMD Opteron ™ Processor Product
Data Sheet”, AMD White Papers, [Online] Available:
http://www.amd.com/us-
en/assets/content_type/white_papers_and_tech_docs/23932.pdf
[Retrieved Nov 12th 2009]

[20] I. Voras, D. Basch, M. Zagar, "A high performance memory database for
web application caches", Proceedings of the 14th IEEE MELECON
Conference, pp.163-168., May 2008.

VI.BIOGRAPHIES

I. Voras (M'06), was born in Slavonski Brod, Croatia. He received Dipl.ing.
in Computer Engineering (2006) from the Faculty of Electrical Engineering
and Computing (FER) at the University of Zagreb, Croatia. Since 2006 he has
been employed by the Faculty as an Internet Services Architect and is a
graduate student (PhD) at the same Faculty, where he has participated in
research projects at the Department of Control and Computer Engineering.
His current research interests are in the fields of distributed systems and
network communications, with a special interest in performance
optimizations. He is an active member of several Open source projects and is
a regular contributor to the FreeBSD operating system. Contact e-mail
address: ivan.voras@fer.hr.

M. Žagar (M'93-SM'04), professor of computing at the University of Zagreb,
Croatia, received Dipl.ing., M.Sc.CS and Ph.D.CS degrees, all from the
University of Zagreb, Faculty of Electrical Engineering and Computing (FER)
in 1975, 1978, 1985 respectively. In 1977 M. Žagar joined FER and since
then has been involved in different scientific projects and educational
activities.

He received British Council fellowship (UMIST - Manchester, 1983) and
Fulbright fellowship (UCSB - Santa Barbara, 1983/84). His current
professional interests include: computer architectures, design automation,
real-time microcomputers, distributed measurements/control, ubiquitous/
pervasive computing, open computing (JavaWorld, XML,..).

M. Žagar is author/co-author of 5 books and about 100 scientific/
professional journal and conference papers. He is senior member in Croatian
Academy of Engineering. In 2006 he received “Best educator” award from
the IEEE/CS Croatia Section.. Contact e-mail address: mario.zagar@fer.hr.

