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Abstract—The problem of patient disorder classification and 

prediction from biological signals is addressed. We approach the 

problem from the perspective of nonlinear dynamical systems. 

Explored signals are ECG and EEG. We propose a combination 

of linear and nonlinear features for classification of four 

different types of heart rhythms through heart rate variability 

analysis. Classification accuracy is evaluated by three well-

known machine learning algorithms: C4.5, support vector 

machines and random forest. The algorithms’ success rates are 

compared. The method of combining linear and nonlinear 

measures shows promising results in heart rate variability 

modeling. Random forest method has exhibited 99.6% 

classification accuracy. 

I. INTRODUCTION 

Biological systems belong to a group of complex systems. 

As opposed to complicated systems which can be divided into 

parts, analyzed piece by piece and reconstructed back together 

based on the principle of superposition, the complex ones are 

more than the sum of their parts. They are nonlinear to a 

degree and can never be fully understood [1]. The best effort 

to understand complex systems is to describe them with a 

complicated model.  

Physiological functions assessment of a particular 

biological system is based on a variety of clinical tests and 

measurements. Brain, heart, lungs, nervous and muscular 

systems are some of the most important physiological systems 

in human body that are analyzed in hospital environments 

daily. Noninvasive measurements are preferred in most cases, 

and invasive ones only when needed. Biological systems emit 

electrical currents that are the result of electrolytic activity in 

tissue cells. These currents are measured by positioning 

electrodes either on the skin of a patient or inserting them 

deeply into tissue.  

The purpose of this work is to present a brief overview of 

nonlinear properties of electrocardiogram (ECG), more 

specifically, heart rate variability (HRV) signal. We also 

briefly mention the application of nonlinear methods in 

electroencephalogram (EEG) analysis. The concept of 

nonlinear deterministic system and the extraction of nonlinear 

features are elaborated. As an example of application of 

nonlinear analysis, a classification of several types of cardiac 

rhythms based on heart rate variability information was 

performed. The classification is based on a combination of 

linear and nonlinear features. Several well-known classifiers 

were used: C4.5, support vector machines and random forest. 

The paper is organized as follows. In section II, some of the 

properties of nonlinear deterministic systems are presented. 

Also, the application of nonlinear dynamics to the study of 

ECG and EEG is elaborated. In section III, the methodology 

of heart rate variability analysis of cardiac rhythms is given. 

In section IV, we present the results. Section V is reserved for 

discussion, and in section VI we give a conclusion. 

II. BACKGROUND 

A. Nonlinear dynamics 

Nonlinear analysis of complex biological signals does not 

have a long history. It can be verified that the early attempts to 

describe the nonlinear properties of ECG and EEG started as 

soon as it was realized that the signals themselves measure 

nonlinear biological processes. The development of Wolf 

algorithm for Lyapunov exponents, Grassberger-Procaccia 

method for correlation dimension and Takens embedding 

theorem in the 1980s led to a growing interest in nonlinear 

methods [2]. 

A nonlinear dynamical system is a system possessing 

memory of its previous states. Also, at least some of the 

equations that describe it are nonlinear. Any real biological 

system has nonlinear qualities. It is also dissipative, which 

means that it exchanges energy with its surroundings. Because 

of the fact that biological rhythms are generally not 

describable by a system of linear equations, they are 

considered to be nonlinear. Physiological systems have proven 

fractal complexity [3].  

First attempt to assess the degree of nonlinearity, one can 

also say the level of deterministic chaos, in a signal is to draw 

its state space. Herein, an attraction to a position is usually 

observed. The object consisting of the system trajectory that 

converges to certain points is called an attractor. Depending 

on the underlying dynamics, one can obtain several kinds of 

attractors in state space, as shown in Fig. 1 [2]. 

When analyzing biological signals, it is however more 

probable that the type of attractor will be masked by noise and 

artifacts. Thus, it will not be clear to which general type of 

system does the signal belong, e.g. Fig. 2. This fact implicates 

that it may not be prudent to rely on nonlinear features only, 

because the linear ones might provide us with more 

information. Hence, a combined approach is usually preferred.  

Two parameters are typically specified and modified when 

extracting nonlinear features: embedding (reconstruction) 



 

 
Fig. 1. State space for four basic types of attractors (units of X and Y axis are arbitrary): (top-left) Point attractor is the attractor of a linear dissipative system. 
Such a system converges to a single steady state; (top-right) Limit cycle is the attractor of a periodic system. Periodic dynamics creates a closed loop in state 

space; (bottom-left) Torus attractor is a more complex attractor that corresponds to quasi periodic dynamics of a system. It is a supperposition of different 

periodic dynamics with incommensurable frequencies; (bottom-right) Chaotic or strange attractor is a highly complex object with fractal geometry. Its dynamics 

is deterministic chaos. 

dimension (E or m) and interval (lag) (T or l). Embedding 

dimension is the dimension of the state space, i.e. the number 

of states that are monitored at a particular moment in time. 

Interval is the time span between each of these states. In a 

process where only significant events are recorded (point 

process), e.g. HRV, interval is the number of events between 

two observed events. A point in state space of dimension E, 

interval T, and at time point t is given by:  
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Fig. 2. State space of an ECG arrhythmia record with noise 

There are several types of numerical nonlinear features that 

can be extracted from the state space of a system. The most 

common ones are: Lyapunov exponents [4], correlation 

dimension D2 [5] and various kinds of entropy measures: 

approximate entropy [6], sample entropy [7], spectral entropy 

[8], multiscale entropy [7], and fuzzy entropy [9]. 

Additionally, a number of density measures exist that describe 

the morphology of the attractor, e.g. spatial filling index [10], 

central tendency measure [11]. Some of the aforementioned 

features are described more thoroughly in section III. More 

information on nonlinear dynamics can be found in [4]. 

B. Electrocardiogram and electroencephalogram analysis 

A pioneer work of author [1] introduced the concept of 

non-linear dynamics into the field of cardiology. It is the non-

linearity of the heart rhythm that is a good descriptor of a 

patient’s overall health. ECG analysis has been perfected in 

recent years by increasingly sophisticated instruments and 

powerful computer tools. However, there is still an open 

question whether there is some additional important 

information contained within the signal, which has not yet 

been revealed. It is the goal of ECG analysis to successfully 

classify patient conditions based on the available signal 

features. If the condition can be successfully classified, there 

is a chance that its predictor model can also be constructed.  

Although entire ECG signal can be studied using many 

known and explored methods e.g. time domain analysis, 

frequency analysis, and PCA, it is the nonlinear nature of the 

signal that poses a challenge for further research. It can be 

argued that HRV is more appropriate for nonlinear analysis 

then the whole signal itself, due to its high resistance to noise. 



The work done by [12] clearly demonstrated the existence of 

non-linear components in HRV. Author [12] also pointed out 

that linear analysis using time and frequency is inadequate for 

obtaining complete information about HRV. The observation 

of the decrease in HRV in patients is often a predictor of 

coronary problems. The variability decrease has been 

associated with aging and is the result of progressive 

autonomic system dysfunction.  

HRV analysis presents gratifying method for patient health 

assessment, because of the relative simplicity of obtaining the 

information and also because of its predictive potential [13]. 

Although the question of the prediction capabilities of using 

only HRV analysis of the heart rhythm has been addressed by 

many authors, there are very few studies that use real clinical 

data [14]. There is also a general sense of liberty as to the 

choice of the employed HRV measures. Hence, no conclusion 

was reached about the best choice of HRV features. 

Today, most of the research done in the field of ECG 

analysis, particularly classification problems, includes the 

HRV analysis with at least some nonlinear features. It is the 

purpose of this work to demonstrate the efficacy of a 

combined linear and nonlinear approach, as further elaborated 

in section III. 

The first observation of nonlinear properties of a sleep EEG 

in humans was reported by Babloyantz et al. in 1985 [2]. 

Afterwards, several research topics that included nonlinear 

features were investigated. Some of the research topics 

include: normal resting state (alpha rhythm), sleep, coma and 

anesthesia, epilepsy, psychopharmacology, perceptual and 

emotional states, depression and schizophrenia. 

One of the most explored topics in nonlinear EEG analysis 

is epilepsy. It has been shown that nonlinear analysis 

techniques allow for an improved characterization of epileptic 

brain states and help to gain deeper insights into the spatial 

and temporal dynamics of the epileptic process. Univariate 

nonlinear techniques achieve a successful localization (in 

retrospective) of epileptogenic zone in roughly 90% of cases. 

Multivariate nonlinear techniques are used in evaluating 

interdependencies between brain regions, allowing the 

assessment of the range of seizure interactions. Current state-

of-the-art is an unequivocal identification of precursors to 

seizures. Thus, nonlinear analysis is of great value in the 

development of seizure warnings and preventive measures 

[15]. 

III. METHODS 

A. System description 

First part of the analysis was to obtain relevant ECG HRV 

records. For this purpose, we used several databases from the 

PhysioBank collection of databases [16]. A total of 100 

patient annotation records were prepared as an input to the 

extraction process. Annotation records contain the times and 

types of heart beat. Four types of heart conditions were 

inspected: normal rhythm, any arrhythmia, supraventricular 

arrhythmia, and congestive heart failure. Each heart condition 

was represented by 25 annotation records of five minutes 

duration.  

A combination of 11 linear and nonlinear features was 

extracted from patient data. HRV guidelines [13] recommend 

the use of four standard linear HRV features: three statistical 

measures and one geometric measure. This recommendation 

was respected and pursued in this work. In addition, seven 

nonlinear features were also extracted from cardiac rhythms. 

HRV linear features extracted are as follows: SDNN, RMSSD, 

pNN20, and HRV triangular index (HTI). HRV nonlinear 

features include: spatial filling index (SFI), central tendency 

measure (CTM), correlation dimension D2, and four features 

for approximate entropy (ApEn1–ApEn4). 

B. Features 

1)  SDNN: standard deviation of the NN (or beat-to-beat) 

interval is one of the simplest HRV linear features to calculate. 

It reflects all the cyclic components responsible for variability 

in the period of recording. It can be calculated for long-term 

or short-term recordings [13]. In our case, the feature was 

extracted from short-term, five minutes recording of NN 

intervals. 

2)  RMSSD: RMSSD is the square root of the mean squared 

differences of N successive NN intervals. It can be calculated 

using the expression [13]: 
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where xi denotes the length of an NN interval with index i. 

3)  pNN20: pNN20 is the ratio of the number of interval 

differences of successive NN intervals that are greater than 20 

ms and the total number of NN intervals. pNN20 is advocated 

as a measure better suited than the standard pNN50 [13], [17]. 

4)  HRV triangular index: HRV triangular index (HTI) is a 

geometric measure of HRV. It measures the integral of the 

density distribution. In discrete scale it is approximated as a 

total number of all NN intervals divided with the number of 

NN intervals in the modal bin. HTI is dependent on the length 

of the bin, i.e. sampling frequency of the ECG record. 

Because the examined records had different sampling 

frequencies, smallest time difference between two observed 

NN intervals was used as the length of the bin. 

5)  Spatial filling index: Spatial filling index is a 

quantitative description of the density of points of an attractor. 

It is defined by the expression: 

2
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where n
2
 is the total number of squares used in state space 

division, and s is the sum of the point distribution in state 
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ijc is the number of points falling into a specific square (i,j) in 

state space. The order of magnitude for η is 10
-3

 and it rises 

with greater concentration of points to a certain region in an 

attractor [10]. 

6)  Central tendency measure: Central tendency measure 

(CTM) is a quantitative measure of variability for second-

order difference plot [11]. Its idea is similar to SFI, because it 

is also a nonlinear measure that shows the concentration of 

points in a diagram. However, it is used on the second-order 

difference diagram, i.e. [ ] [ ])()1(/)1()2( txtxtxtx −++−+   

diagram. A point in the second-order difference plot in E 

dimensions is given by 

]))1(()(,,)()([)( TEtxETtxtxTtxtX −+−+−+=
→

K

       (6). 

Usually only two dimensions are examined in literature. CTM 

can be generalized into E dimensions as: 
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N is the number of analyzed NN intervals, T is the number 

between two measured NN intervals and r is the central area 

radius, dependent on data. 

7)  Correlation dimension: Definition of the correlation 

dimension D2 of an attractor is given as: 
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number of points in i-th cell of length l), is a good estimate of 

the attractor. D2 is practically determined by calculating the 

correlation integral C(N, l), which shows the mean probability 

that the points in the phase space at two different times points 

are close to each other [5]: 
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Once the correlation integral has been determined, correlation 

dimension is calculated according to the slope in the diagram 

l

lNC

2
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log

),(log
. Correlation dimension enables the estimation of 

the smallest possible embedding dimension of an attractor, 

thus revealing the degree of determinism in the system. 

8) Approximate entropy: Approximate entropy (ApEn) is a 

measure used to quantify the regularities in data without a 

priori knowledge of the problem. In essence, it shows the 

probability that similar observational patterns do not repeat. If 

a time series demonstrates complex, irregular behavior, it will 

have a high ApEn measure. The algorithm for determining 

ApEn is given in [6]. Final expression for ApEn is:  
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Parameters m and r are determined based on the specific 

problem.  
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In this work, we took m = 1 and four values for r. Thus 

ApEn1 is calculated for r = 0.1σ, ApEn2 for r = 0.15σ, ApEn3 

for r = 0.2σ, and ApEn4 for r = 0.25σ, where σ is the time 

series’ standard deviation. 

C. Classification algorithms 

In order to evaluate the efficiency of the proposed 

combination of features, a classification of patient records was 

performed using three well-known classifiers in Weka system: 

C4.5, support vector machines and random forest. Here we 

give a brief explanation of the employed classifiers. More 

information can be found in [18], [19]. 

1) C4.5: C4.5 is the landmark decision tree algorithm 

developed by Quinlan. C4.5 was used with a minimum 

amount of six instances per leaf. Six instances per leaf were 

used instead of the standard two in order to ensure that only 

relevant leaves are taken into consideration. We used C4.5 

method for pruning trees with subtree raising option enabled. 

2) Support vector machines: Support vector machines 

(SVM) belong to a general field of kernel-based machine 

learning methods and are used to efficiently classify both 

linearly separable and linearly inseparable data. Support 

vector machines have been successfully used in HRV analysis 

[20]. Weka platform implements a standard algorithm for the 

resolution of quadratic programming optimization problem 



that arises when determining the maximum margin hyperplane 

of the support vector machine classifier. This algorithm is 

called Sequential Minimal Optimization algorithm (SMO). In 

our work, we used both linear SVM and squared polynomial 

SVM, varying parameters until an optimal setting was found 

(c=4.0, exponent=1.0 or exponent=2.0, no data normalization).  

3) Random forest: Random forest (RF) is the state-of-the-

art classifier developed by [19]. The forest contains a number 

of decision trees that choose their splitting attributes from a 

random subset of k attributes at each internal node and vote 

for the majority class. The trees are built without pruning, as 

opposed to C4.5. Because of the combination of bootstrap 

sampling procedure and random attribute subset, RF ensures 

at the same time the smallest obtainable bias and very low 

data variance. In this work, a forest consisting of seven trees 

was adequate for the classification task. 

IV. RESULTS 

Three types of analyses were performed. First, we used 

classification algorithms on all four patient record types. The 

number of feature vectors per record type is 125 because five 

feature vectors per record were used. These five feature 

vectors contain features for representative intervals T = {1, 2, 

5, 10, 20}. 

Second, we evaluated the features in two-class 

classification case. Herein, one class of patients has a normal 

heart rhythm and the other class contains records with a heart 

disorder. Analysis was performed on the following 

combinations: normal-arrhythmia, normal-supraventricular 

arrhythmia, normal-congestive heart failure.  

Third, the extracted features themselves were evaluated. 

Statistical measures used in the analyses were: total 

classification accuracy for four patient classes and total 

classification accuracy (positive prediction), sensitivity and 

specificity for two patient classes’ case. A 10*10-fold cross-

validation technique was used in order to randomize the input 

samples and obtain representative classification accuracy. 

A. Classification of four patient classes 

Classification results for four patient classes are presented 

in Table I. The classification performed shows some 

interesting results. The best classification accuracy was 

achieved by RF and squared SVM algorithms. There were no 

significant differences observed between the results of these 

two methods. C4.5 also gave high results (above 90%), but 

lower compared to the other two algorithms. Linear SVM 

gave the least satisfactory results. 

TABLE I  

CLASSIFICATION RESULTS FOR FOUR PATIENT CLASSES 

Classifier Total classification accuracy, % 

C4.5 92.2 

SVM (linear) 73.5 

SVM (squared) 98.4 

RF 99.6 

 

 

B. Classification of two patient classes 

Classification results for two patient classes are given in 

Table II. It can be observed that two classes’ case shows an 

increase in classification accuracy compared to the four 

classes’ case, as was expected. Best results are obtained when 

discerning normal heart rhythm from any arrhythmia. 

Nevertheless, the results for the other two pairs follow close 

behind.  

RF demonstrated very high classification accuracy; squared 

SVM gave second best results and C4.5 third. Again, the 

results from linear SVM were the worst. 

C.  Feature evaluation 

It is important to determine which of the extracted 11 

features contribute in the greatest extent to the quality of the 

obtained results. Because of the difficulty in establishing 

objective contribution of a particular feature to the 

classification accuracy, we opted for a rather simple, but 

justified approach. As a test bench, we use feature vectors 

obtained from four classes of patients, the same as in the 

classification process presented in subsection A. We classified 

patient records using only one feature at the time. For this 

purpose, we employ a simple 1-Rule algorithm [18] with the 

bucket size of 15 vectors. The classification results are 

presented in Fig. 3. 

 

 
Fig. 3. Classification results for four patient classes using a single feature 

HRV triangular index (HTI) was shown to be the most 

prominent feature, followed by pNN20, ApEn3, ApEn4, 

SDNN and RMSSD. The least satisfactory classification 

results were obtained for D2 and CTM features. It can be 

observed that both linear and nonlinear features contribute 

significantly to the model, although the influence of linear 

measures is somewhat greater. 

V. DISCUSSION 

The application of nonlinear measures assumes the 

existence of deterministic chaos. However, the records 

themselves have not been analyzed in order to reject other 

options, such as nonlinear randomness or linear determinism. 

Thus, the HRV of patients used in this study does not 

necessarily behave in a nonlinear deterministic way, but the 

methods themselves were nevertheless applied for their  



TABLE II  

CLASSIFICATION RESULTS FOR TWO PATIENT CLASSES 

Two classes  C4.5 SVM (linear) SVM (squared) RF 

Total classification accuracy, % 99.6 96.4 100.0 100.0 

Sensitivity, % 99.2 96.0 100.0 100.0 

Normal and 

Arrhythmia 

Specificity, % 100.0 96.8 100.0 100.0 

Total classification accuracy, % 93.2 74 97.6 99.5 

Sensitivity, % 94.4 73.6 97.6 99.8 

Normal and 

Supraventricular 

Arrhythmia Specificity, % 92.0 74.4 97.6 99.2 

Total classification accuracy, % 98.8 81.5 99.2 99.7 

Sensitivity, % 99.2 77.2 100.0 99.9 

Normal and 

Congestive heart 

failure Specificity, % 98.4 87.4 98.4 99.5 

 

analysis. In any hospital system, the prerequisite of nonlinear 

determinism would have to be established prior to the analysis. 

Nevertheless, it was our goal to show that any record, 

regardless of its linear or nonlinear behaviour can be classified 

efficiently using the combined 11 features. 

The calculation of correlation dimension and other 

nonlinear features was performed in two-dimensional 

embedding space. Because of the low-dimensionality, it is 

possible that the influence of nonlinear features was 

underrated. Because of the very nature of HRV, it is possible 

that true potential of nonlinear methods lays hidden in higher 

dimensions, which should be examined in more detail in 

further work. 

We also have to mention that there is a larger number of 

different arrhythmia types existing in the records from the 

MIT-BIH Arrhythmia Database, which was used for obtaining 

records of type any arrhythmia. We recommend assessing 

different arrhythmia categories as seperate heart disorders 

using the features employed in this work as a topic of further 

research. However, one should bear in mind that some 

disorders are not covered with a significant number of patient 

records to allow reliable estimation of classification results. 

VI. CONCLUSION 

We have reviewed the widespread use of features from 

nonlinear dynamics. The apparent complexity of biological 

signals suggests the use of a combined linear and nonlinear 

approach for obtaining high quality model of the underlying 

phenomena. Classification of several cardiac rhythms shows 

promising results. Linear and nonlinear features both seem to 

contribute to the acquired model. More thorough analyses 

need to be performed in order to establish enough evidence for 

successful implementation of the nonlinear methods in 

hospital environments. 
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