
Computer Cluster Workload Analysis

I. Grudenic, I. Bakarcic and N. Bogunovic
Department of Electronics, Microelectronics, Computer and Intelligent Systems

Faculty of electrical engineering and computing, University of Zagreb
Unska 3, Zagreb, Croatia

Phone: 01-6129-999 int. 548 Fax: 01-6129-653 E-mail: igor.grudenic@fer.hr

Abstract - Performance of computer clusters is greatly
affected by a nature of the submitted workload. Early
characterization of different workload types allows for
scheduler fine tuning as well as predictions on the system
load. Statistical analysis and visual representation of the
workload data provide valuable insight to the overall system
utilization and may reveal potential bottlenecks and points
for improvement. In this paper we describe important cluster
job features and introduce a tool for statistical analysis and
manipulation of the workload data that is a part of a cluster
simulation and runtime prediction system.

I. INTRODUCTION

High Performance Computing (HPC) is an evolving
trend in computing industry with predicted growth of 10%
annually. System sizes are also being increased with
petaflop systems becoming available. Scheduling in HPC
systems is a vital part of harvesting available processing
power. Scheduling for large computer systems is
inherently a hard problem that is made even harder in HPC
environment because of high task rates and potentially
unstable environment.

The main reasons for the constantly changing
environment are high job rates on the input of the HPC
system, unpredictability of the user behavior that translates
to the variation in workload, and potential system changes
due to hardware malfunctions, upgrades or system updates.
Computer clusters are the most dominant HPC architecture
constituting 80% of the top 500 supercomputers [1].

In computer cluster jobs are scheduled according to the
user predictions on the job runtime and the requested
resources. User runtime predictions are usually not very
accurate and they often serve as a deadline for the given
job. Detailed workload analysis and data processing can be
used to improve on user predictions and make scheduling
more efficient.

In this paper we analyze a set of cluster workloads in
order to get an insight into different workload
characteristics. This information can be used to modify and
tune up cluster schedulers in order to improve user
computing experience. We also present a tool for statistical
workload analysis and data preparation that is part of our
runtime prediction and simulation system for computer
clusters.

In section II we present architecture of our Workload
Analyzer tool as well as the role of the tool in the cluster
simulation and automated behavior prediction. Detailed
analysis of 12 workload data files with focus on the job
runtime and user runtime predictions is given in section
III. Additionally we analyzed which results of the analysis
can be used in order to improve computer cluster

predictability together with the user visible performance of
the cluster scheduling software.

II. WORKLOAD ANALYZER TOOL

Workload analyzer tool is a part of the simulation and

cluster behavior prediction system. It is designed to
perform descriptive statistical analysis of the workload
data and to preprocess and reorganize data for data mining
and cluster simulation. Fig. 1 presents both architecture
and the role of the workload analyzer tool.

Workload analyzer is a starter application in the
exploration of a cluster behavior and is composed of Log
file parser, Data processor, Chart builder and GUI.

Exploration is triggered by the user instructing Data
processor to load and parse log file (1). Data processor
activates Log file parser (2) to load workload data (3).
Parsed data are forwarded to the Data processor (4) to
perform data filtering and other transformations defined by
the user. Chart Builder uses processed data (5) and user
defined chart characteristics (7) to create different data
views (6).

Processed data can later be saved to the new log file
(2,8) to be used for simulation (10) or data mining (9,11).
Log file parser is used for loading workload data in the
Workload Analyzer and the Cluster Simulator.

Workload analyzer is designed as a multithreaded

Workload AnalyzerCluster
Simulator

1

GUI

Data
Processor

Chart
Builder

Log files

Log file
parser

Data
mining
tools

Simulator
Engine

Data mining
API

2

3

4

5

6

7

9

10

11

8

Fig. 1. Workload Analyzer architecture

application because data parsing and processing are CPU
intensive due to the size of the log files. In order to
improve user experience GUI component runs in one
thread, while Log File Parser and Data Processor start a
separate thread for each parsing/processing job. Multiple
parsing and processing jobs running in parallel are allowed
and supported by the user interface.

Results of the Workload Analyzer tool are used as an
input parameter for the set of the Data mining tools that
are used to predict behavior of the cluster system given the
cluster usage history.

Outputs of the workload analyzer are also used as an
input to the Cluster Simulator [2] that generates job
sequences according to the existing preprocessed workload
traces and evaluates different scheduling strategies. Cluster
simulator uses Data mining in order to predict future
cluster behavior, and then uses obtained predictions in the
simulation of the scheduling process.

III. WORKLOAD DATA ANALYSIS

Workload data analyzed in this paper originate from the

parallel workload archive [3]. Data is collected from 12
computer clusters over the last 10 years period and are
presented in Fig.2. Logs cover different time frames
starting from few months up to three years.

Number of attributes [4] is covered for each job in the
log. Attributes can be divided into two groups – user
provided attributes and system assigned attributes. User

provided attributes include submit time, job size, user
runtime prediction, application name, system queue and
partition while system assigned attributes involve wait
time, total runtime, job status and number of allocated
resources. Most of the system assigned attributes are
scheduler dependent meaning that changing a scheduler
policy would produce a different log file.

Some of the attributes like identification of applications
used and user runtime predictions are missing in some of
the log files. These log files cannot be efficiently used for
automated runtime prediction, and are excluded from some
of the analysis in this paper.

A. Job Runtimes

Runtime is a most important property needed for

efficient cluster scheduling.
Different distributions such as hyper-exponential [5],

hyper-erlang [6], log-uniform [7] and hyper-gamma are
used to describe workload sets. Ranges of job sizes are
grouped together and modeled separately in [6], while
others provide universal model for the entire job set. It is
concluded [8] that load generators based on the mentioned
distributions are more stable than real workloads because
generated job sequences reach steady average runtime
earlier than the corresponding real workloads.

Average runtime of the job has no correlation to cluster
size, computing power or the number of users. It largely
depends on the variability of applications of the given
cluster which typically results in large standard errors for
runtime distributions.

Although the average runtime gives no information on
the typical cluster usage, it can be shown that a small
number of distinct applications utilize rather large portions
of available cluster time for all the analyzed clusters
(Fig.3.). In majority of analyzed computer clusters 70% of
total runtime is used by only 4% of applications, while
90% of the runtime is utilized by no more than 20% of
applications.

Since most of the time consuming applications are used
by a small amount of users with average number of
applications per user ranging [1, 1.29], it is obvious that
very limited group of users exploit most of the cpu time
(Fig.3). It is noted that 70% of the total runtime is used by
7.5% of the users on the average, while 90% of the
runtime is utilized by average 19.2% of the users.

Fig. 2. Cluster workload timeline

Fig. 3. Distribution of runtime over applications and users

This information is usually used by cluster schedulers in
order to provide fair sharing of computer cluster, meaning
that users that account for unfairly high amount of clusters
cpu time are left to wait longer for their applications to
execute. Some sort of anti-starvation mechanism is usually
implemented in cluster schedulers in order to force such
postponed applications to execute within the reasonable
period of time thus preventing starvation.

When most time consuming applications are analyzed in
detail, their average runtime is found to be higher than the
system’s runtime average. Average runtime for the
applications consuming 70% of the total system runtime is
2.11 times higher than the overall system runtime average
and this ratio drops to 1.67 for applications consuming up
to 90% of the total runtime over all the analyzed computer
cluster logs.

It may be intuitive that top time consuming applications
on the computer cluster are highly parallel in nature but
this seems not to be the case in any of the analyzed
workloads. In some of the clusters like
LLNL-Atlas-2006-1, average CPU allocation by the top
70% runtime consuming applications is 40% less than the
global CPU allocation average. In all the other analyzed
cluster logs top applications use up to 30% more than the
average number of processors.

Increasing parallelism of applications does not
inherently increase efficiency of the entire cluster system
because parallelization of the application usually
introduces overhead within the application, and
additionally causes fragmentation of the CPU-time space
that is hard to reduce by the cluster schedulers.

B. User Runtime Predictions

When users submit a job to the computer cluster they
are often required to provide hard runtime estimate of the
job duration. Jobs that exceed this estimate are usually
automatically terminated. This forces users to overestimate
job duration and causes cluster schedulers to
underperform. Most of the users are not even aware of
potential benefits of the tighter runtime estimations [9].

Fraction of the users doesn’t even care to provide a
runtime estimate and just uses the system defined default
value. The chart on Fig.4. depicts a random sample from
the SDSC-SP2-1998-3 log file showing differences
between user estimates and actual runtimes. It can be noted
that there is no job with observable runtime exceeding user

runtime estimate due to scheduler automatic job
termination. It can also be observed that the majority of
jobs have short runtimes. Discrete time intervals for user
runtime estimates are also noticeable as columns of values
in the chart.

Every job that enters the cluster system is tagged with
the status value that denotes the reason for the job
termination. Status value can indicate failed jobs,
successfully completed jobs, user canceled jobs and
system canceled jobs. Failed jobs terminate because of the
internal program error which can be caused by the bug in
the software or intentional erroneous exit.

The analysis of job statuses in the standard workload
archive is presented in Fig.5. where each of the potential
job status is represented by the fraction of the entire
system runtime. It is obvious that the majority of runtime
is used by jobs that complete successfully. Four systems
have very high runtime ratios of more than 24% of the
total runtime spent on failed jobs, and the most probable
reason for this is an exhaustion of the system resources
since software errors are usually detected very early in the
job execution. Exception to this is the software performing
large multi stage calculations and failing in some of the
late stages. Multistage calculations should be executed
separately if possible in order to improve efficiency of the
entire system.

User canceled jobs take minority of the total runtime
with maximum of 8.7% for LPC-EGEE-2004-1. This is
because most of the user canceled jobs are stopped due to
improper parameter configuration. This often happens
when users start an application that they haven’t been
using for a while.

The most interesting part of the status analysis is the
runtime wasted on the system canceled jobs. These jobs
are terminated because their runtime exceeded the
provided user estimation. Two cluster systems that employ
such a termination are SDSC-SP2-1998-3 and SDSC-
BLUE-2000-3, which spent more than 20% of the entire
available time on the jobs terminated early by the
scheduler. The results of early terminated jobs are often
unusable.

In order to investigate the reason for two of the
mentioned clusters that exhibit such a high job termination
rate, a quality of user predictions are analyzed. Fig. 6.
shows the difference in the quality of predictions for the
SDSC-SP2-1998-3 system with high job termination rates

Fig. 4. Requested and observed job runtimes

Fig. 5. Job statuses over runtime

and the LLNL-Atlas-2006 which has a negligible runtime
losses caused by runtime prediction.

Since overall quality of user predictions cannot be fully
measured, because jobs that overrun estimated time are
terminated and their real runtime is not known, only jobs
that run shorter then requested runtime are analyzed. These
jobs are then grouped based on fraction of the observed
runtime in the user requested time.

It can be noted that LLNL-Atlas-2006 users have more
conservative predictions than SDSC-SP2-1998-3 users.
There are 61.3% of jobs at LLNL-Atlas-2006 where
observed runtime is less than 10% of the user predicted
runtime. When this is compared to 38.5% of jobs at
SDSC-SP2-1998-3 with same prediction results it is
obvious that users of LLNL-Atlas-2006 are more likely to
ask for more time then is really needed.

This also makes SDSC-SP2-1998-3 users more accurate
in their runtime predictions since 5% of their estimates are
no more than 10% off the observed runtime, which more
than doubles the fraction of predictions given by the
LLNL-Atlas-2006 users.

Although SDSC-SP2-1998-3 users give more precise
runtime estimates, the system hardly benefits from such a
behavior due to the high number of job terminations
caused by the inaccurate predictions. In this comparison
conservative users do get a better service, but this is not
easily expressible by the standard cluster quality metrics.

C. Potential benefits

In order to improve user experience with the computer

clusters some of the simple metrics such as average wait
time, application slowdown and predictability of the start
time for applications must be improved. Some system
properties like utilization are not directly visible by the
user and should not be over optimized while disregarding
system properties more visible to the users.

Running shorter jobs as early as possible and their
compact packing in the CPU-time plane can improve both
utilization of the system as well as shorten wait times. In
order to improve packing of the jobs precise runtime must
be known in advance or at least some degree of certainty
must be employed. Since it is determined that majority of
runtime is consumed by only several applications, these
specific applications should be a primary target for
automated target prediction.

Since some clusters experience virtual performance
decrease because of the user runtime underestimations,
special care should be taken to predict such a behavior and
warn the users of the probable forced termination.

IV. CONCLUSION

In this paper we have analyzed data from 12 computer

clusters in order to pinpoint some of the common
properties that can later be used to tune up cluster
schedulers. We have found that majority of computer
clusters are being used by several users and applications.

Since user runtime prediction is an important parameter
in cluster scheduler performance we analyzed the amount
of resources that are wasted due to imperfect prediction.

Additionally, we presented architecture of the workload
analyzer tool that is used to produce presented data
analysis and is part of the runtime prediction and cluster
simulation system which is under developement.

In the future we plan to simulate common scheduling
techniques while trying to predict job runtimes as well as
job arrivals in the system. We also plan to develop new
scheduling techniques that will benefit from more precise
runtime predictions and will be able to pack jobs more
efficiently across the computer cluster.

IV. REFERENCES

 [1] Top500 Supercomputer Sites, http://www.top500.org/
 [2] I. Grudenic and N. Bogunovic, “Computer Cluster and

Grid Simulator”, Proceedings of the Joint Conferences
Computers in Technical systems and Intelligent systems, p.
49, 2009.

 [3] Parallel Workloads Archive,
http://www.cs.huji.ac.il/labs/parallel/workload/

 [4] S. J. Chapin, W. Cirne, D. G. Feitelson, J. P. Jones, S. T.
Leutenegger, U. Schwiegelshohn, W. Smith, and D. Talby,
“Benchmarks and Standards for the Evaluation of Parallel
Job Schedulers”, Lecture Notes in Compuer. Science, vol.
1659, p. 66, 1999.

 [5] D. G. Feitelson, “Packing Schemes for Gang Scheduling”,
Lecture Notes in Computer Science, vol. 1162, p. 89, 1996.

 [6] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira and J.
Riordan, “Modeling of workload in MPPs”, Lecture Notes
in Computer Science, vol. 1291, p. 95, 1997.

 [7] A.B. Downey, “A parallel workload model and its
implications”, Proceedings of the 6th IEEE International
Symposium on High Performance Distributed Computing,
p. 112, 1997.

 [8] D. G. Feitelson, “Metrics for parallel job scheduling and
their convergence”, Lecture Notes in Computer Science,
vol. 2221, p. 188, 2001.

 [9] C.B. Lee, Y. Schwartzman, J. Hardy and A. Snavely, "Are
user runtime estimates inherently inaccurate?", Lecture
Notes in Computer Science, vol. 3277, p. 253, 2005.

Fig. 6. Comparison of user runtime overestimation

