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Abstract - Performance of computer clusters is greatly 
affected by a nature of the submitted workload. Early 
characterization of different workload types allows for 
scheduler fine tuning as well as predictions on the system 
load. Statistical analysis and visual representation of the 
workload data provide valuable insight to the overall system 
utilization and may reveal potential bottlenecks and points 
for improvement. In this paper we describe important cluster 
job features and introduce a tool for statistical analysis and 
manipulation of the workload data that is a part of a cluster 
simulation and runtime prediction system. 

 
 

I. INTRODUCTION 
 

High Performance Computing (HPC) is an evolving 
trend in computing industry with predicted growth of 10% 
annually. System sizes are also being increased with 
petaflop systems becoming available. Scheduling in HPC 
systems is a vital part of harvesting available processing 
power. Scheduling for large computer systems is 
inherently a hard problem that is made even harder in HPC 
environment because of high task rates and potentially 
unstable environment. 

The main reasons for the constantly changing 
environment are high job rates on the input of the HPC 
system, unpredictability of the user behavior that translates 
to the variation in workload, and potential system changes 
due to hardware malfunctions, upgrades or system updates. 
Computer clusters are the most dominant HPC architecture 
constituting 80% of the top 500 supercomputers [1]. 

In computer cluster jobs are scheduled according to the 
user predictions on the job runtime and the requested 
resources. User runtime predictions are usually not very 
accurate and they often serve as a deadline for the given 
job. Detailed workload analysis and data processing can be 
used to improve on user predictions and make scheduling 
more efficient. 

In this paper we analyze a set of cluster workloads in 
order to get an insight into different workload 
characteristics. This information can be used to modify and 
tune up cluster schedulers in order to improve user 
computing experience. We also present a tool for statistical 
workload analysis and data preparation that is part of our 
runtime prediction and simulation system for computer 
clusters. 

In section II we present architecture of our Workload  
Analyzer tool as well as the role of the tool in the cluster 
simulation and automated behavior prediction. Detailed 
analysis of 12 workload data files with focus on the job 
runtime and user runtime predictions is given in section 
III. Additionally we analyzed which results of the analysis 
can be used in order to improve computer cluster 

predictability together with the user visible performance of 
the cluster scheduling software. 

 
 

II. WORKLOAD ANALYZER TOOL  
 
Workload analyzer tool is a part of the simulation and 

cluster behavior prediction system. It is designed to 
perform descriptive statistical analysis of the workload 
data and to preprocess and reorganize data for data mining 
and cluster simulation. Fig. 1 presents both architecture 
and the role of the workload analyzer tool.  

Workload analyzer is a starter application in the 
exploration of a cluster behavior and is composed of Log 
file parser, Data processor, Chart builder and GUI. 

Exploration is triggered by the user instructing Data 
processor to load and parse log file (1). Data processor 
activates Log file parser (2) to load workload data (3). 
Parsed data are forwarded to the Data processor (4) to 
perform data filtering and other transformations defined by 
the user. Chart Builder uses processed data (5) and user 
defined chart characteristics (7) to create different data 
views (6). 

Processed data can later be saved to the new log file 
(2,8) to be used for simulation (10) or data mining (9,11). 
Log file parser is used for loading workload data in the 
Workload Analyzer and the Cluster Simulator. 

Workload analyzer is designed as a multithreaded 
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Fig. 1. Workload Analyzer architecture 



application because data parsing and processing are CPU 
intensive due to the size of the log files. In order to 
improve user experience GUI component runs in one 
thread, while Log File Parser and Data Processor start a 
separate thread for each parsing/processing job. Multiple 
parsing and processing jobs running in parallel are allowed 
and supported by the user interface. 

Results of the Workload Analyzer tool are used as an 
input parameter for the set of the Data mining tools that 
are used to predict behavior of the cluster system given the 
cluster usage history. 

Outputs of the workload analyzer are also used as an 
input to the Cluster Simulator [2] that generates job 
sequences according to the existing preprocessed workload 
traces and evaluates different scheduling strategies. Cluster 
simulator uses Data mining in order to predict future 
cluster behavior, and then uses obtained predictions in the 
simulation of the scheduling process. 

 
 

III. WORKLOAD DATA ANALYSIS 
 
Workload data analyzed in this paper originate from the 

parallel workload archive [3]. Data is collected from 12 
computer clusters over the last 10 years period and are 
presented in Fig.2. Logs cover different time frames 
starting from few months up to three years. 

Number of attributes [4] is covered for each job in the 
log. Attributes can be divided into two groups – user 
provided attributes and system assigned attributes. User 

provided attributes include submit time, job size, user 
runtime prediction, application name, system queue and 
partition while system assigned attributes involve wait 
time, total runtime, job status and number of allocated 
resources. Most of the system assigned attributes are 
scheduler dependent meaning that changing a scheduler 
policy would produce a different log file. 

Some of the attributes like identification of applications 
used and user runtime predictions are missing in some of 
the log files. These log files cannot be efficiently used for 
automated runtime prediction, and are excluded from some 
of the analysis in this paper. 

 
A. Job Runtimes 

 
Runtime is a most important property needed for 

efficient cluster scheduling.  
Different distributions such as hyper-exponential [5], 

hyper-erlang [6], log-uniform [7] and hyper-gamma are 
used to describe workload sets. Ranges of job sizes are 
grouped together and modeled separately in [6], while 
others provide universal model for the entire job set. It is 
concluded [8] that load generators based on the mentioned 
distributions are more stable than real workloads because 
generated job sequences reach steady average runtime 
earlier than the corresponding real workloads. 

Average runtime of the job has no correlation to cluster 
size, computing power or the number of users. It largely 
depends on the variability of applications of the given 
cluster which typically results in large standard errors for 
runtime distributions. 

Although the average runtime gives no information on 
the typical cluster usage, it can be shown that a small 
number of distinct applications utilize rather large portions 
of available cluster time for all the analyzed clusters 
(Fig.3.). In majority of analyzed computer clusters 70% of 
total runtime is used by only 4% of applications, while 
90% of the runtime is utilized by no more than 20% of 
applications. 

Since most of the time consuming applications are used 
by a small amount of users with average number of 
applications per user ranging [1, 1.29], it is obvious that 
very limited group of users exploit most of the cpu time 
(Fig.3). It is noted that 70% of the total runtime is used by 
7.5% of the users on the average, while 90% of the 
runtime is utilized by average 19.2% of the users. 

Fig. 2. Cluster workload timeline 

Fig. 3. Distribution of runtime over applications and users



This information is usually used by cluster schedulers in 
order to provide fair sharing of computer cluster, meaning 
that users that account for unfairly high amount of clusters 
cpu time are left to wait longer for their applications to 
execute. Some sort of anti-starvation mechanism is usually 
implemented in cluster schedulers in order to force such 
postponed applications to execute within the reasonable 
period of time thus preventing starvation. 

When most time consuming applications are analyzed in 
detail, their average runtime is found to be higher than the 
system’s runtime average. Average runtime for the 
applications consuming 70% of the total system runtime is 
2.11 times higher than the overall system runtime average 
and this ratio drops to 1.67 for applications consuming up 
to 90% of the total runtime over all the analyzed computer 
cluster logs. 

It may be intuitive that top time consuming applications 
on the computer cluster are highly parallel in nature but 
this seems not to be the case in any of the analyzed 
workloads. In some of the clusters like 
LLNL-Atlas-2006-1, average CPU allocation by the top 
70% runtime consuming applications is 40% less than the 
global CPU allocation average. In all the other analyzed 
cluster logs top applications use up to 30% more than the 
average number of processors. 

Increasing parallelism of applications does not 
inherently increase efficiency of the entire cluster system 
because parallelization of the application usually 
introduces overhead within the application, and 
additionally causes fragmentation of the CPU-time space 
that is hard to reduce by the cluster schedulers. 

 
B. User Runtime Predictions 
 

When users submit a job to the computer cluster they 
are often required to provide hard runtime estimate of the 
job duration. Jobs that exceed this estimate are usually 
automatically terminated. This forces users to overestimate 
job duration and causes cluster schedulers to 
underperform. Most of the users are not even aware of 
potential benefits of the tighter runtime estimations [9]. 

Fraction of the users doesn’t even care to provide a 
runtime estimate and just uses the system defined default 
value. The chart on Fig.4. depicts a random sample from 
the SDSC-SP2-1998-3 log file showing differences 
between user estimates and actual runtimes. It can be noted 
that there is no job with observable runtime exceeding user 

runtime estimate due to scheduler automatic job 
termination. It can also be observed that the majority of 
jobs have short runtimes. Discrete time intervals for user 
runtime estimates are also noticeable as columns of values 
in the chart. 

Every job that enters the cluster system is tagged with 
the status value that denotes the reason for the job 
termination. Status value can indicate failed jobs, 
successfully completed jobs, user canceled jobs and 
system canceled jobs. Failed jobs terminate because of the 
internal program error which can be caused by the bug in 
the software or intentional erroneous exit. 

The analysis of job statuses in the standard workload 
archive is presented in Fig.5. where each of the potential 
job status is represented by the fraction of the entire 
system runtime. It is obvious that the majority of runtime 
is used by jobs that complete successfully. Four systems 
have very high runtime ratios of more than 24% of the 
total runtime spent on failed jobs, and the most probable 
reason for this is an exhaustion of the system resources 
since software errors are usually detected very early in the 
job execution. Exception to this is the software performing 
large multi stage calculations and failing in some of the 
late stages. Multistage calculations should be executed 
separately if possible in order to improve efficiency of the 
entire system. 

User canceled jobs take minority of the total runtime 
with maximum of 8.7% for LPC-EGEE-2004-1.  This is 
because most of the user canceled jobs are stopped due to 
improper parameter configuration. This often happens 
when users start an application that they haven’t been 
using for a while. 

The most interesting part of the status analysis is the 
runtime wasted on the system canceled jobs. These jobs 
are terminated because their runtime exceeded the 
provided user estimation. Two cluster systems that employ 
such a termination are SDSC-SP2-1998-3 and SDSC-
BLUE-2000-3, which spent more than 20% of the entire 
available time on the jobs terminated early by the 
scheduler. The results of early terminated jobs are often 
unusable. 

In order to investigate the reason for two of the 
mentioned clusters that exhibit such a high job termination 
rate, a quality of user predictions are analyzed. Fig. 6. 
shows the difference in the quality of predictions for the 
SDSC-SP2-1998-3 system with high job termination rates 

Fig. 4. Requested and observed job runtimes 

Fig. 5. Job statuses over runtime 



and the LLNL-Atlas-2006 which has a negligible runtime 
losses caused by runtime prediction. 

Since overall quality of user predictions cannot be fully 
measured, because jobs that overrun estimated time are 
terminated and their real runtime is not known, only jobs 
that run shorter then requested runtime are analyzed. These 
jobs are then grouped based on fraction of the observed 
runtime in the user requested time. 

It can be noted that LLNL-Atlas-2006 users have more 
conservative predictions than SDSC-SP2-1998-3 users. 
There are 61.3% of jobs at LLNL-Atlas-2006 where 
observed runtime is less than 10% of the user predicted 
runtime. When this is compared to 38.5% of jobs at 
SDSC-SP2-1998-3 with same prediction results it is 
obvious that users of LLNL-Atlas-2006 are more likely to 
ask for more time then is really needed. 

This also makes SDSC-SP2-1998-3 users more accurate 
in their runtime predictions since 5% of their estimates are 
no more than 10% off the observed runtime, which more 
than doubles the fraction of predictions given by the 
LLNL-Atlas-2006 users. 

Although SDSC-SP2-1998-3 users give more precise 
runtime estimates, the system hardly benefits from such a 
behavior due to the high number of job terminations 
caused by the inaccurate predictions. In this comparison 
conservative users do get a better service, but this is not 
easily expressible by the standard cluster quality metrics. 

 
C. Potential benefits 

 
In order to improve user experience with the computer 

clusters some of the simple metrics such as average wait 
time, application slowdown and predictability of the start 
time for applications must be improved. Some system 
properties like utilization are not directly visible by the 
user and should not be over optimized while disregarding 
system properties more visible to the users. 

Running shorter jobs as early as possible and their 
compact packing in the CPU-time plane can improve both 
utilization of the system as well as shorten wait times. In 
order to improve packing of the jobs precise runtime must 
be known in advance or at least some degree of certainty 
must be employed. Since it is determined that majority of 
runtime is consumed by only several applications, these 
specific applications should be a primary target for 
automated target prediction. 

Since some clusters experience virtual performance 
decrease because of the user runtime underestimations, 
special care should be taken to predict such a behavior and 
warn the users of the probable forced termination. 

 
 

IV. CONCLUSION 
 
In this paper we have analyzed data from 12 computer 

clusters in order to pinpoint some of the common 
properties that can later be used to tune up cluster 
schedulers. We have found that majority of computer 
clusters are being used by several users and applications. 

Since user runtime prediction is an important parameter 
in cluster scheduler performance we analyzed the amount 
of resources that are wasted due to imperfect prediction. 

Additionally, we presented architecture of the workload 
analyzer tool that is used to produce presented data 
analysis and is part of the runtime prediction and cluster 
simulation system which is under developement. 

In the future we plan to simulate common scheduling 
techniques while trying to predict job runtimes as well as 
job arrivals in the system. We also plan to develop new 
scheduling techniques that will benefit from more precise 
runtime predictions and will be able to pack jobs more 
efficiently across the computer cluster. 
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