

Web shop user error detection based on rule based expert system

M.Špundak
Vipnet usluge d.o.o.

Vrtni put 1, 10000 Zagreb, Croatia
Phone: (385) 01-4692023 Fax: (385) 01-4691259 E-mail: m.spundak@vipnet.hr

N.Bogunović and K.Fertalj

University of Zagreb, Faculty of Electrical Engineering and Computing
Unska 3, 10000 Zagreb, Croatia

E-mail: nikola.bogunovic@fer.hr, kresimir.fertalj@fer.hr

Abstract - Rule based systems (RBS) have been recognized as
probably the best solution for knowledge based expert
systems. This article tries to provide the overview of the
architecture and basic characteristics of the RBS, focusing on
both their weaknesses and strengths. Based on a theory, rule
based expert system for web shop error detection has been
proposed. The RBS builds on the available application
knowledge base and focuses on a problem of detecting the
possible error in the shortest possible timeframe. The
formalization of the whole process has a potential to
significantly reduce the time required to detect the possible
error.

I. INTRODUCTION

Rule based systems (RBS) that describe world by
conditions and consequences have become popular during
1980’s. Since then, they have imposed themselves as the
best solution for the problem of reliable and sustainable
engineering paradigm [1]. Such systems are based on set of
rules which describe what should be done or concluded in
given situations (called IF-THEN rules), set of facts and
control part of the application that interprets facts and
executes rules based on these facts [2].

IF-THEN form of rules is comprised of two parts: the
factual left side and action right side. If the left side
conditions are fulfilled or facts are true, the rule can be
executed. By firing the rule, the right side of the rule adds
new facts or executes certain actions.

Furthermore, RBS can be extended with fuzzy logic.
Very often, expert systems are built based on the rules,

representing a system that comprise expert knowledge for
specific knowledge area and is used for solving complex
problems [3].

II. RULE BASED SYSTEMS

There are two types of RBS, forward and backward

chaining systems. The main differences are starting point
and the final goal of the system. Forward chaining system
starts from the initial facts and based on them fires the
rules and adds new facts or executes actions. Backward
chaining system starts from the hypothesis that needs to be
proven and tries to find rules that will lead to proving the
hypothesis [2].

Furthermore, forward chaining system is used in the
situations when there are more facts than consequences

(left side is prevailing) or when there is substantial amount
of known facts [1].

It could be said that forward chaining system is led by
facts while backward chaining system is led by goal [2].

RBS are very flexible technique for developing expert
systems, which allows basic control as well as decision
making. Adding new rules to the system or changing
existing ones is mostly simple. It is also generally accepted
thinking that RBS are easy to understand and to
implement, until they are of reasonable size [4].

A. Rule based system architecture

As mentioned earlier, typical RBS will comprehend

three parts [2, 3]: inference engine or interpreter (control
part of the application), rule base or knowledge base and
working memory (set of facts). Interpreter is comprised of
pattern matcher that defines which rules can be fired,
agenda that determines the order of rules and execution
engine that fires the rules.

The expert system is typically extended with rule base
editor (enables development and modification of rules),
explanation editor (enables explanations for some actions)
and user interface [3].

B. Backward chaining systems

The backward chaining systems are mainly used for

proving the known hypothesis. When trying to prove the
hypothesis, the right side of the rule represents a state or
conclusion and not the action. Also, the rules do not add
new facts to the fact base, as all the facts are known in this
case.

The system tries to find a conclusion on the right side
that match the final hypothesis. When such rule has been
found, all the facts on the left side become new hypotheses
to be proven. The procedure is repeated until starting facts
appear as hypotheses, by which the starting hypothesis has
been proved.

The potential problem that may appear is the situation
when several rules can be used for proving specific fact. If
a programming language with search function is not used,
then one solution could be to use the agenda. In that case,
every part of the agenda can be used as potential path in
solution finding, in a way that every part is searched until
the solution is found. Schedule of the agenda determines
solution finding [2].

C. Forward chaining systems

With the forward chaining systems, the facts are in the

working memory and not on the stack as it is the case with
backward chaining systems. The rules represent possible
actions which will be executed if the conditions for
executing them have been satisfied. As already stated,
actions can be related to executing actions or to adding or
deleting facts from the working memory.

Interpreter, as a control part of the system, checks rule
base in the working memory in cycles and separates rules
with satisfied left side, which can be fired. The next step is,
based on predefined principles, to select one and to fire it
what will add new facts to the working memory and the
cycle will start from the beginning. Cycle is repeated until
there are no rules to be fired or until wanted end state is
reached.

The order of firing the rules is very important because it
can significantly change the flow of the conclusions and
consequently the end result. That was the reason for
developing many different conflict resolution strategies [1,
2]:

• The same rule can not be fired more than once on the
same fact base.

• Rules should be fired on newer facts in working
memory rather than on older ones which ensures
conclusion flow.

• Rules that relate to more focused facts should be fired
before the ones that relate to more general facts.

• First available rule: the first available rules should be
fired, according to the given agenda.

• Randomness: rules are fired in a random order, which
is an advantage only in applications where uncertainty
is welcomed (e.g. games).

• The most determined rule: rule with the most
conditions is fired.

• The least used rule: by this strategy usage of all rules
is maximized.

• “The best rule”: every rule has a weighting factor.

D. Rule based system development and maintenance

But, together with mentioned strategies, it is very

important how the rules are set up. It should be carefully
defined, with clear determination, when they can be fired
what helps to control and to understand the RBS and its
possible future extension and maintenance.

The help is provided from the parts of the system which
are specifically in charge of controlling firing the rules,
together with additional grouping of the rules or grouping
the system by states [2].

In general, RBS can be applied successfully to problems
that represent well known principles, which are suitable for
modelling through a set of rules, such as orders,
instructions and similar. It is necessary to have in mind that
fact especially in cases when it is tried to model knowledge
that is hard to express through rules [5].

There are typically 4 steps for iterative development of a
RBS in specific knowledge area, where the first three steps
represent system modelling while the last step represent its
execution, starting from the higher levels to dissemination
on lower levels [5]:

1. Create and edit a task model. Task model defines
application structure and dynamic and this step
includes task description, information flow between
tasks and control flow. Tasks are disseminated on

simpler tasks until they could be solved with simple
rule set, and each task on the lowest level is
comprised of action part (left side) which activates
procedure for task execution (right side).

2. Add control knowledge. Logical parts of the task
which express conditions for their start and finish.

3. Add object-knowledge connection. Describes
conditions and relations within application domain so
tasks within knowledge area are connected.

4. Execute a task model.
By using previously described procedure, it is possible

to develop a RBS, but it is also possible to use a more
practical approach [3]:

1. Knowledge collection. It is necessary to collect
knowledge for rule set development from experts,
through questionnaires, interviews, books, etc.

2. Data structuring. The correct data needs to be selected
and displayed in a structured way.

3. Writing rules.
4. Interface creation. Data can be obtained from

databases or by input through user interface or
through interface with other systems.

5. Testing. By testing, it is possible to check results of
the specific part or the whole system and it should be
automatic.

As already stated, RBS are very sensitive to changes.
Even a different order of executing the rules could lead to
different results.

It is known fact that majority of existing expert system
are results of research conducted on academic institutions,
so there was no need to think about future maintenance and
changes because all changes were done by authors.

Nevertheless, increase in usage of expert systems,
especially usage in complex problems, stressed the
importance of the maintenance. To successfully maintain
such system, it is necessary to understand two basic parts
of the expert system, its design and knowledge base used
for system creation.

One of the possible solutions is to group rules
(knowledge base) and definitions and to formally specify
data flow between those groups. Rules are grouped by their
mutual influence.

Such methodology defines several steps in development
of RBS, which are recommended for usage in the early
phase of system development [6]:

1. Extract control variables
2. Divide rules in groups
3. Identify local facts (all rules that change the fact are

within the same group) and non-local facts (the facts
that are shared between groups)

4. Describe non-local facts
5. If possible, separate control rules
6. Other issues
System syntax should be adjusted in order to apply this

methodology.
If the system is already in use, algorithm to divide rules

in groups should be used, according to definition of a
measure of distance between the rules (their relation).
Algorithm is based on an assumption that facts between
two rules could be connected in three distinct ways and
defines weight for each way:

• Left side – right side (input- output) (1.0).
• Shared right side (outputs) (0.75).
• Shared left side (inputs) (0.5).
The measure of relation between the rules is the sum of

relations between the shared facts among these rules. To

avoid grouping around single rules, measure for relation
when two rules do not share a fact is introduced with
weight 0.25.

Downside of this algorithm is that it never checks if
there are better solutions, while the positive side is that by
adding additional rule it is possible to favour smaller
groups [6].

E. Disadvantages of rule based systems

The main disadvantage of the RBS that is often stated is

that majority of developed systems failed to prove its value
in production [7]. It is connected with the fact that many
programmers have problems with programming RBS [7].

From the software engineering perspective, the main
disadvantages of the RBS are [7]:

1. Impossibility to maintain. It is often stated that non
existing border line between development and
maintenance of RBS is actually its advantage, but it is
not realized in practical applications. Reality is that
different persons are responsible for development and
for maintenance and if clear border line does not
exist, it is a problem. Furthermore, RBS do not
provide enough control in complex applications.

2. Impossibility to test. Usually, testing tries to conclude
which data is correct based on input data and
application control flow what is extremely difficult
for RBS.

3. Unreliability. If it is not possible to test application, it
is not possible to determine existence or non-
existence of errors what significantly reduce system
reliability. So, in the best case, RBS can be used only
for consultancy, but than it is questioned when such
consultancy is really needed.

But, all these disadvantages of the RBS could be stated
as disadvantages of software engineering in general.

Very frequent problem with the large production
systems is the large amount of the working memory, which
can scale significantly by keeping information about the
facts and control information [10].

Development of such systems required move to
secondary memory environment, where databases became
natural solution to the problem. Therefore, search and rule
execution control algorithms applied on working memory
have to be adjusted and optimized for application in new
situations and accent is mostly on control algorithms [10].

If the problem is approached in a structured way, basic
disadvantages could be mostly controlled, so RBS
represents one of the simplest and widely used techniques
for development of expert systems [1, 4, 5].

F. Rete algorithm

Rete networks [8] are used only for forward chaining

RBS and their advantage is in reducing complexity of the
RBS from exponential to linear, so significantly speeding
up entire system, but using greater amount of memory. So
it is question which is more important, speed or memory
usage.

Rete algorithm can be also applied for error correction
in RBS, for which the time stamp is added because it is
important to know when certain rule has been fired [8].

Rete networks are comprised out of three types of
memory nodes [8]:

1. Alpha node – for every condition on a left side, one
instance for facts.

2. Beta node – instance for 2 or more consistently
satisfied conditions.

3. Production node – instance satisfied for all
conditions.

Two alpha nodes which represent rules conditions are
connected into beta node which is connected with another
alpha node into new beta node and so on for all conditions
on the left side of the rule. At the end, everything is
connected into production node.

Basic rules that should be applied for effectively usage
of Rete algorithm are [9]:

1. The most specified samples in the rule should be
placed at the beginning of the rule, but control
variables should precede.

2. Samples with fewer facts should be placed at the
beginning to reduce number of partial matches.

3. Samples that often vary (they are often placed and
removed from the working memory) should be placed
at the end of the sample list.

III. WEB SHOP APPLICATION

By using previously described rules and methods, it is

possible to start collecting and structuring needed
knowledge in order to write the rules with the defined
conflict resolution strategies.

We will use CLIPS, a tool for expert system creation, as
a help for rule creation and as a syntax reference. CLIPS
fully implements RBS architecture and has a modified
syntax based on Lisp [9]. Even though CLIPS implements
advanced functionalities [9], only basic functionalities will
be used for creating rules and facts. Final results are also
tested through simulation in CLIPS.

A. Knowledge collection and structuring

The purpose of the web application is to enable web

shopping. The shopping process has been defined with
sequential diagram of the user process through all the
systems of the web application. During the user
interaction, errors may appear, on specific points in the
user process. When error appears, user will receive specific
information with description and instructions what to do.

The main problem is when the user wants to contact
application provider with question or complaint. In that
case, it is needed to determine the reason why error
actually appeared in order to successfully solve the
problem.

Someone could notice that it is possible to try to solve
the problem sequentially considering the limited number of
possible causes, but the question is is it possible to
optimize the order of the questions to reduce the time from
the initial question until the problem solution to a
minimum. Such requirement is the consequence of the
limited resources available for solving the user questions
and complaints.

The start of creation of the system for finding the
possible cause of the problem is the collection of the
information that is displayed to the user. That information
will be the ones the user will provide through the question,
and are provided in the Table 1.

Table 1 Set of facts available to user

Fact Description

unavailable-address Browser displays error that web
application address is unavailable

http-gateway-timeout Browser displays error which is
generated on the provider side.

page-is-not-available The page tried to be displayed is
unavailable.

general-error General error of the web application
password-incorrect Message for the incorrect password
username-unknown Message for the incorrect username
mobile-number-
incorrect

Message for the incorrect telephone
number

payment-invalid-data Message for the incorrect payment
details

payment-missing-data Message for the incomplete payment
details

payment-verification-
failed

Message for the unsuccessful
payment verification

quantity-error Message for the unavailable
quantities of the products in the
shopping basket

order-creation-error Message for the unsuccessful order
creation

Information can be obtained from the user with the set

of YES/NO questions that will add correct facts to the set
of facts. In that way, errors in data entry can be avoided.

Also, it could be mentioned that at the points where
errors could appear, it is possible to have several reasons.
Possile reasons are listed in the Table 2.

Table 2 Possible error reasons

Reason
User browser
Web application server is not available
Proxy server is not available
User has entered incorrect login information
Unsuccessful payment verification
User has entered incorrect payment information
Payment server is not available
User has insufficient amount for payment
Order creation system is not available
Network problem in web application
Requested amount is not available

B. Rule base

Rules have been structured in 2 groups. First group in

Table 3 represent rules based on user interaction, i.e. rules
based on which could be concluded what happened to the
user. Information from the Table 1 is coded into variables
based on user’s answers.

Table 3 Rules for user interaction

;;**********************
;;* questions *
;;**********************

(defrule initial-question ""
 ?for-remove <- (initial-fact)
 (not (shopping-state ?))
 =>
 (if (yes-or-no-p "Did you finish the shopping successfully
(yes/no)? ")
 then
 (assert (shopping-state ok))
 (retract ?for-remove)
 else (assert (shopping-state notok))))

(defrule error-1-a
 (shopping-state notok)
 (process login-not-ok)
 =>
 (if (yes-or-no-p "Did the browser message appear (yes/no)? ")
 then
 (assert (error unavailable-address))))

(defrule error-1-b
 ?for-remove <- (initial-fact)
 (process ?)
 (shopping-state notok)
 =>
 (if (yes-or-no-p "Did message '504 HTTP GATEWAY
TIMEOUT' appear (yes/no)? ")
 then
 (assert (error http-gateway-timeout))
 (retract ?for-remove)))

(defrule error-1-c
 ?for-remove <- (initial-fact)
 (process ?)
 (shopping-state notok)
 =>
 (if (yes-or-no-p "Did message application not available appear
(yes/no)? ")
 then
 (assert (error page-not-available))
 (retract ?for-remove)))

(defrule error-1-d
 ?for-remove <- (initial-fact)
 (process ?)
 (shopping-state notok)
 =>
 (if (yes-or-no-p "Did 'General error'
appear (yes/no)? ")
 then
 (assert (error general-error))
 (retract ?for-remove)))

(defrule error-2-a
 (process login-not-ok)
 (shopping-state notok)
 =>
 (if (yes-or-no-p "Did message 'Password not correct' appear
(yes/no)? ")
 then

 (assert (error password-incorrect))))

(defrule error-2-b
 (process login-not-ok)
 (shopping-state notok)
 =>
 (if (yes-or-no-p "Did message 'Username not recognized'
appear (yes/no)? ")
 then
 (assert (error username-unknown))))

(defrule error-2-c
 ?for-remove <- (initial-fact)
 (process ?)
 (shopping-state notok)
 =>
 (if (yes-or-no-p "Did message 'Telephone number not vaild'
appear (yes/no)? ")
 then
 (assert (error mobile-number-incorrect))
 (retract ?for-remove)))

(defrule error-4-a
 (process login-ok)
 (process payment-not-ok)
 (shopping-state notok)
 =>
 (if (yes-or-no-p "Did message about wrong payment data
appear (yes/no)? ")
 then
 (assert (error payment-invalid-data))))

(defrule error-4-b
 (process login-ok)
 (process payment-not-ok)
 (shopping-state notok)
 =>
 (if (yes-or-no-p "Did message about missing payment data
appear (yes/no)? ")
 then
 (assert (error payment-missing-data))))

(defrule error-5
 (not (solution ok))
 (process payment-ok|payment-not-ok)
 (process login-ok)
 (shopping-state notok)
 =>
 (if (yes-or-no-p "Did message about insuficient quantity appear
(yes/no)? ")
 then
 (assert (error quantity-error))))

(defrule error-6
 (process login-ok)
 (process payment-not-ok)
 (shopping-state notok)
 =>
 (if (yes-or-no-p "Did message about unsucceful payment appear
(yes/no)? ")
 then
 (assert (error payment-verification-failed))))

(defrule error-7
 (not (solution ok))

 (process payment-ok|payment-not-ok)
 (process login-ok)
 (shopping-state notok)
 =>
 (if (yes-or-no-p "Did order creation error appear (yes/no)? ")
 then
 (assert (error order-creation-error))))

(defrule error-login
 ?for-remove <- (initial-fact)
 (shopping-state notok)
 =>
 (retract ?for-remove)
 (if (yes-or-no-p "Did you manage to succesfully login (yes/no)?
")
 then
 (assert (process login-ok))
 else
 (assert (process login-not-ok))))

(defrule error-payment
 (process login-ok)
 (shopping-state notok)
 =>
 (if (yes-or-no-p "Did you manage to complete payment
(yes/no)? ")
 then
 (assert (process payment-ok))
 else
 (assert (process payment-not-ok))))

The second part of the rules shown in Table 4 is
comprised of possible solutions, according to Table 2.
Solutions could also be an integral part of the rules in the
first part, together with the questions, but for easier
maintenace possible solutions were separated from the
questions. This opens possibility for changing procedure in
case of specific error, which is often the case in the process
lifecycle.

Table 4 Rules for asserting solution

;;**********************
;;* solutions *
;;**********************

(defrule solution-1
 (error unavailable-address)
 =>
 (assert (solution ok))
 (printout t "User browser is not set up" crlf))

(defrule solution-2
 (error http-gateway-timeout|general-error|page-not-available)
 =>
 (assert (solution ok))
 (printout t "Web application server in not available (internal
error)" crlf))

(defrule solution-3
 (error http-gateway-timeout)
 =>
 (assert (solution ok))
 (printout t "Proxy server is not available" crlf))

(defrule solution-4
 (process login-not-ok)
 (error password-incorrect|username-unknown|mobile-number-
incorrect)
 =>
 (printout t "Wrong user information at login" crlf))

(defrule solution-5
 (error http-gateway-timeout)
 =>
 (printout t "Unsuccesful payment verification " crlf))

(defrule solution-6
 (error payment-invalid-data|payment-missing-data)
 =>
 (printout t "User entered wrong payment information" crlf))

(defrule solution-7
 (process payment-not-ok)
 (error payment-verification-failed)
 (error general-error)
 =>
 (printout t "Payment server is not available" crlf))

(defrule solution-8
 (process payment-not-ok)
 (error payment-verification-failed)
 =>
 (printout t "User does not have enough amount for payment"
crlf))

(defrule solution-9
 (error error order-creation-error)
 =>
 (printout t "Order creation system is not available" crlf))

(defrule solution-10
 (error general-error)
 =>
 (assert (solution ok))
 (printout t "Web application network error" crlf))

(defrule solution-11
 (error quantity-error)
 =>
 (printout t "Requested amount is not available" crlf))

IV. CONCLUSION

The usage of the rule based expert system in error
detection within the web shop application has been thought
as a natural choice. The form of asking questions and
concluding based on the answers is the usual form of
expert communication with the end user, especially in a
remote form of the communication.

Formalizing this process in a rule based expert system
has a potential to ease this communication in several ways.
It significantly reduces the time needed to detect error by
focusing on a predefined order of questions. It also reduces
the need for experts by gathering expert knowledge in a
system.

To fully exploit the advantages of this application,
further work could focus on implementation of rule based
expert system as an end user application which could
provide guidance to the end user without human
interaction at the application provider side.

REFERENCES

[1] AI Depot. [Online]. Available: http://ai-depot.com/
[2] A. Cawsey, “Rule-Based Systems”. [Online]. Available:

http://www.zemris.fer.hr/predmeti/krep/Rules.pdf
[3] E. Friedman-Hill, Jess in Action: Java Rule-Based

Systems. Greenwich, CT, USA: Manning Publications
Co., 2003

[4] The Rule-Based System, AIGameDev.com. [Online].
Available: http://aigamedev.com/

[5] M. Vestli, I. Nordbo, A. Solvberg, “Modelling control in
rule-based systems”, IEEE Software, vol. 11, pp. 77-81,
Mar 1994

[6] R.J.K. Jacob, J.N. Froscher, “A Software Methodology
for Rule-Based Systems”, IEEE Transactions on
Knowledge and Data Engineering, vol. 2, pp. 173-189,
Jun 1990

[7] Xiaofeng Li, “What's so bad about rule-based
programming?”, IEEE Software, vol. 8, pp. 103-105, Sep
1991

[8] S.M.Tuttle, C.F. Eick, “Historical Rete Networks for
Debugging Rule Based Systems,” in Proceedings of the
1991 IEEE International Conference on Tools for AI,
IEEE, 1991, pp. 450-457

[9] J.C. Giarratano, Clips User's Guide, Version 6.10, 1998
[10] J. Tan, J. Srisvastava, “Efficient Rule Matching in Large

Scale Rule Based Systems,” in Proceedings of the
Twenty-Fifth Hawaii International Conference on
System Sciences, IEEE, 1992, pp. 391-402

