
DISTRIBUTER – The Distributed System for Efficient Execution of
Parallel Programs

Domagoj Matijević, Petar Taler

Department of Mathematics, J. J. Strossmayer University of Osijek
Trg Lj. Gaja 6, HR-31000 Osijek, Croatia

Phone: ++385 31 224 800 Fax: ++385 31 224 801 E-mails: domagoj@mathos.hr, petar@mathos.hr

Goran Martinović
Faculty of Electrical Engineering, J. J. Strossmayer University of Osijek

Kneza Trpimira 2B, HR-31000 Osijek, Croatia
Phone: ++385 31 224 600 Fax: ++385 31 224 605 E-mail: goran.martinovic@etfos.hr

Abstract – We developed the distributed system called
“Distributer” in order to make use of millions of unused CPU
cycles inside the LAN. The system is based on server-client
architecture and the interaction with the system is
implemented via web interface on the server side. Clients
connect to server and periodically update their status based
on which server distributes and sends jobs and at the end
collects results.

Our system is easy-to-use and easy-to-install and has the
simple centralized management of applications needed on
client side for jobs execution. We keep all applications on one
central repository that is shared to all clients inside LAN with
the help of network file system protocol (NFS).

I. INTRODUCTION

A typical distributed system consists of multiple
autonomous computers that communicate through a
computer network [1]. The idea that emerged in mid-
1990s, known as public-resource computing, was to make
use of a distributed system in order to enhance the number
of FLOPS needed for large-scale computational projects.

One of the probably most famous public large-scale
project was SETI@home [2], launched in 1999, which has
attracted millions of participants worldwide. SETI@home
now runs on about 1 million computers, providing a
sustained processing rate of over 70 TeraFLOPS, and using
the BOINC distributed platform ([3], [4]). BOINC stands
for Berkeley Open Infrastructure for Network Computing
and is probably the most famous open-source platform for
public-resource distributed computing. It is being
developed at U.C. Berkeley Spaces Sciences Laboratory by
the group that developed and continues to operate
SETI@home.

As the contrast to public-resource computing,
companies like Google Inc. has developed their own
patented programming model MapReduce [5] for
processing and generating large data sets in a distributed
fashion but within their corporate firewalls. The
framework is inspired by map and reduce functions
commonly used in functional programming although their
purpose in the MapReduce framework is not the same as
their original forms. MapReduce allows for a particular,
stylized way of programming that makes it easy to split
work among many machines. The basic idea is to divide
the job into two parts: a Map, and a Reduce. Map takes the
problem, splits it into sub-parts, and sends the sub-parts to

different machines such that all the pieces run at the same
time. Reduce takes the results from the sub-parts and
combines them back together to get a single answer.
However, as it seems that MapReduce perfectly fits to
specialized needs of the company like Google, others may
find their computations more difficult to implement in a
MapReduce framework.

As the need for large processing power emerged
rapidly from the small research groups at our Department,
we developed our own system for distributed computing,
called the Distributer. As a result, the system itself is
mainly targeting small scale research projects and is
expected to run inside the LAN. The running research
project that currently extensively uses the Distributer is
concerned with the dampers' and viscosity optimization in
mechanical systems (see [6], [7]). Their efficient algorithm
optimizes simultaneously the dampers' positions and their
viscosities and is highly parallelizable. For example with
the help of the Distributer we managed to compute in real-
time the optimal positions of dampers for several real-
world examples that normally would take months of
computation time and only with the help of normal desktop
computers.

The current implementation of the Distributer
accommodates several different applications and it
provides flexible and scalable mechanism for distributing
data. The clients are expected to frequently turn off or
disconnect from the network. Existing applications in
common languages (C, C++, FORTRAN, Python) or some
commercial products, such as Wolfram’s Mathematica and
MathWorks’ Matlab, can run as Distributer applications,
all shared to clients from a single central place, i.e.
Application Central Repository (ACR). The current
implementation supports jobs as submitted in a form of a
single input file (e.g. input file for some of supported
applications or a coordinating script).

The system is easy-to-install from both server and
client side and only asks for more expertise in case of
setting up the license agreements in case of commercial
software such as Matlab or Mathematica. Once the
Distributer is installed, users even with a very limited
computer expertise can easily submit jobs via the central
web-interface that directly communicate with the server
side of the system.

The Distributer is originally meant for solving
problems that can be fragmented into independent parts.
The current architecture of the Distributer expects no real

communication between clients. Due to the inability of
clients’ intercommunication it is necessary that jobs are
mutually independent, i.e. each job has to be self-
contained. In that way, each client can independently
process assigned job, regardless of the state of other jobs.

It is worth mentioning that the Distributer could be
easily integrated with any existing software solution that
supports multi-user interaction (such as most of the web-
based applications). In that way users could distribute
millions of user-jobs away from the centralized machine
that can continue to operate smoothly running the interface
application to the users.

II. THE DISTRIBUTER

The system can be described through the three main
components that put together make the system as one:

• Web Interface and the Server component;
• Client component;
• Application Central Repository (ACR).

As shown in Fig.1, the web-interface is to provide the
anywhere and anytime user-friendly access to the system.
Users can easily submit their jobs via web-interface as a
simple upload of the input files for some of supported
applications or the upload of the coordinating script inside
which the user defines the different input parameters for
functions that can run in parallel.

Fig. 1. Components of Distributer

For each job that is being submitted user must specify
hard margin for the time they expect the job to finish (time-
to-live TTL), as well as the expected memory requirement.
The idea behind TTL is to protect our clients from getting
stuck due to badly written jobs (never ending jobs, infinite
loops etc.). User has an ability to update the TTL value, in
case he realizes that job will not finish within the expected
given time limit. During the running time of the job user
can always terminate the execution explicitly by a simple
mouse click.

Once the jobs are submitted there are classified into
three different categories; i.e. jobs that are in the state of
execution, finished or jobs that are still waiting to be
executed and they all will appear in a single queue marked
with the appropriate flag identifying clearly the category

they momentarily belong to (see Fig.2.). The queue of jobs
is shown to the user and user has full control over it, such
as aborting the execution of the job at any time, removing
the job completely from the queue, or resubmitting the job
to the queue.

Fig. 2. Part of the web interface showing the job queue.

The efficient scheduling policy on the server side takes
care that all jobs find their ways to the most suitable
clients. Note that the quality of the scheduling is closely
related with the monitoring process. The task of the
monitoring is to collect and keep updated the data about
the client computers that are at disposal for job execution.

Every client that connects to the server for the first
time will execute benchmark program that produces its
FLOPS (Floating point Operations per Second) value.
Once the client made itself available to the system, its
current status of available resources is being periodically
sent and maintained on the server side, based on which
server chooses the most appropriate client for the new job.

Once the job is assigned to the client, the adequate
application is loaded from the ACR and the computation
starts. During the time of the computation, user can see
which client is doing the computation and monitor the
remaining TTL.

When the execution of the job successfully finishes,
results of the computation are returned to the server that
pass the result back to the web-interface. The results can be
seen by user directly in the browser or downloaded to local
disk as a file. When user reviews or downloads the results,
he can delete the job and all its associated data from the
server.

In the following sections we present the
implementation details of our system in more depth.

A. Server

Server is the key part of the Distributer system. It is
logically divided into two components: monitoring and
scheduling. Monitoring holds the list of currently
connected clients and detailed data about them at any time.
On the other hand, the scheduling component of the server
maintains the list of user jobs that is waiting for the
execution, currently being executed, or whose execution is
completed. The main role of the scheduling component is
to decide which client gets which job, to send the job to the
client along with the instructions for its execution, and to

receive job results and present it back to the user. Hence,
server’s tasks altogether can be grouped as:

- Maintaining list of currently connected clients and
their resources,

- Checking job queue, choosing the best client,
sending the job and instructions for its execution,

- Acquiring and processing user commands from the
web interface,

- Processing the newly arrived jobs,
- Collecting the results of finished jobs from the

clients, and
- Controlling of job execution (aborting jobs,

changing time-to-live)

DATA STRUCTURES

Key data structures of the server are job queues and the
list of connected clients.

Three job queues are maintained, one for waiting,
active and finished jobs. Every submitted job passes
through these three queues and stays in the last one until
user deletes it. Using these queues server keeps track of all
relevant data for every submitted job.

List of connected clients contains data regarding every
client currently registered on the server (state of resources,
description of client’s capabilities etc.).

Since the server application and web interface run as a
two different independent processes, server’s variables
can’t be seen from the web interface and vice versa.
Therefore, list of connected clients and job queues are
simultaneously being written into database on a hard drive,
so user can see them and access them from the web
interface. There are three tables in the database:
current_clients, which is the copy of server’s list of
connected clients, job_queue, which combines three job
queues and known_clients. Server holds information about
every client that ever registered. Since that data needs to be
stored even if server quits (due to computer shutdown,
power loss, etc.), it is written in the known_clients database
table.

SERVER THREADS

In order to keep server run things in parallel,
multithreaded architecture is used in its design. Server
simultaneously runs several program threads that share
access to the common data structures. Fig.3. shows threads
of server having n clients registered.

PipeListener, Scheduler and ResultCollector threads
are continuously active.

New instance of Monitoring thread is created
whenever a new client registers. Main purpose of this
thread is to periodically receive client’s status reports
(CPU utilization and amount of free memory). Based on
these reports, client’s data in the list of connected clients,
as well as the associated database table, is kept updated. If
the connection between server and client breaks,
Monitoring thread triggers deregistration procedure for that
client and its Monitoring thread is destroyed.

Scenario shown on Fig.3. implies server with n
registered clients, of which Client_n is chosen for the job
execution. Server’s Scheduler thread sends the job to the
client, while the ResultCollector thread retrieves the result.

Monitoring(Client_1)

Monitoring(Client_2)

...

Monitoring(Client_n)

PipeListener

Scheduler

ResultCollector

Client_1

Client_2

Client_n

Web Interface

Server Threads:

Fig. 3. Server’s threads

PipeListener thread serves for the communication

between web interface (i.e. user) and server. This
communication is implemented via the pipe file on server’s
hard drive. Pipe file, sometimes called anonymous pipe, is
a simplex FIFO communication channel that may be used
for one-way interprocess communication. An
implementation is often integrated into the operating
system's file IO subsystem.

Whenever user submits a new job, changes the TTL of a
running job, terminates it, or deletes a finished job from
the queue, appropriate command is written to the pipe file.
PipeListener thread constantly monitors that file and takes
adequate action – triggers corresponding function
(JobAccepter(), UpdateTTL(), JobKiller() or JobDeleter()).

Scheduler thread is the thread implementing the
scheduling policy, i.e. it is in charge of choosing the best
client for execution of a job that is waiting. It periodically
checks the queue of waiting jobs and, if it finds one or
more jobs there, chooses the one with the highest priority.
In the current implementation, priority is equivalent to the
time of job submission such that the job that is waiting
longer has higher priority. When choosing the most
appropriate client, scheduler is guided by clients’ FLOPS
value. Using this value server maintains the sorted list of
connected clients. The most powerful client is chosen and
checked if it meets the conditions required (e.g. enough
free RAM or unused CPU cycles). If those conditions are
met, that client is chosen. Otherwise, next client is tested.
That procedure gets repeated until the suitable client is
found. If there is not such client currently, job stays in the
queue of waiting jobs until some of the existing clients
with the suitable needs gets free, or the new adequate client
registers to the system. After the scheduler sends a job to
client, it moves it from the queue of waiting jobs to the
queue of active jobs.

ResultCollector thread keeps all the time the TCP
connection waiting for the connections from the clients
that finished their computations and would like to send job
results back to the user. Client which has initiated such
connection sends the identifier of the finished job and its
results. Server creates a file on the disk and writes received
job results into it. Finally, respective job gets transferred to
the queue of finished jobs.

Fig.4. shows architecture of the server with marked
communication with client and web interface.

Fig. 4. Architecture of the server

B. Client

Computers connect to the Distributer system using the
client application. Its primary purpose is receiving user
jobs, running it and sending the results back to the server.
It is important to mention here that all applications needed
for the job execution are located on the ACR (Application
Central Repository), which is shared to all clients. Clients
execute those applications via network file system, and as
a result there is no need to have custom applications
installed on the clients.

Tasks of the client application are:
- Registering to the server and periodically reporting

current state of client's resources,
- Acquiring and processing server's commands,
- Receiving new jobs from the server,
- Executing jobs and sending the results to the server,
- Aborting job execution upon expiration of time-to-

live,
- Changing time-to-live period in case of user's

command.

DATA STRUCTURES

Design of the client application allows each client to
simultaneously execute several jobs (depending on a
number of its CPU cores). Therefore, client needs to
maintain the list of active jobs. Every job currently being
executed on the client has a record in that list. When the
job execution is completed (successfully, due to time-to-
live expiration, or due to user’s termination) job’s record
gets deleted.

CLIENT THREADS

As well as the server, the client is designed as
multithreaded application. Fig.5. shows client's threads and
their communication with the server.

Fig. 5. Client's threads

Reporter and CommandListener threads are active all

the time, while one instance of JobProcessor and

JobWaiter threads exists per each job client is currently
executing. Fig.5. illustrates a client executing two jobs.

Reporter thread creates the new connection to the
server and registers on it. Later on, Reporter thread will
periodically gather state of client’s resources (CPU
utilization and amount of free memory) and report it to the
server.

CommandListener thread has a purpose of receiving
commands from the server and taking adequate actions.
Using this mechanism server may send a new job to the
client, order the client to change the TTL value for a
running job, or terminate its execution.

Execution of each job is separated into a distinct
JobProcessor thread. This thread takes care of running a
job until it is finished (successfully, because of TTL
expiration, or by user termination). Finally, JobProcessor
contacts server’s ResultCollector thread and sends the
results to it.

Upon starting each job, a new JobWaiter thread is
started. This thread has a task to decrement TTL value for
that job every second, as long it is active. If job's TTL
descends to zero and its execution is still not finished,
JobWaiter terminates that job.

Architecture of the client application as well as
communication with the server is shown on Fig.6.

Fig. 6. Architecture of the client

C. Implementation

Client, as well as server application is programmed in
Python 2.6 high level programming language. In current
implementation, server runs under Linux operating system,
but it is possible to port the application to Windows OS
with minimum effort, if needed. Client can be started under
Linux and Windows operating systems. Clients running
Linux access Application Central Repository using
Network File System, therefore NFS share should be
configured at each client. Windows clients use SMB/CIFS
protocol for that purpose, which is enabled by default in
operating system.

Web interface is created using PHP5 script language,
with extensive usage of JavaScript’s jQuery library and
AJAX. These techniques allowed us to build a dynamic
web application.

Both server and web interface needs to access the
database. We have chosen MySQL database engine for that
purpose, because of its reliability and good integration with
PHP, as well as Python.

III. CONCLUSION

We demonstrated the easy-to-use and easy-to-install
implementation of the distributed system for efficient
execution of parallel programs.

In near future, we plan to integrate the Distributer into
the existing web-based e-learning system Scriptrunner [8].
Scriptrunner is a web application that enables editing and
running programs written in various programming
languages, as well as collaborative editing of various types
of documents. In the current implementation every
program that users of Scriptrunner run executes on the
single machine running the Scriptrunner itself. By
integrating Scriptrunner and Distributer systems together,
we would be able to distribute execution of Scriptunner’s
programs over large number of connected clients. In that
way work load generated by execution of user programs
would move away from the machine running Scriptrunner,
making it able to efficiently handle more users.

For that purposes, we will develop additional
mechanisms to make Distributer more reliable and secure
system.

REFERENCES

[1] H. Attiya, J. Welch, Distributed Computing: Fundamentals,

Simulations, and Advanced Topics, 2nd Edn., Wiley, 2004.
[2] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and

D.Werthimer. ”SETI@home: An experiment in public-
resource computing”. Communications of the ACM, Vol.
45 No. 11, pp. 56-61, November 2002.

[3] D. P. Anderson, BOINC: A System for Public-Resource
Computing and Storage, Proceedings of the Fifth
IEEE/ACM International Workshop on Grid Computing
(GRID'04), pp. 4-10, November 8, 2004.

[4] D. P. Anderson, J. McLeod, Local Scheduling for Volunteer
Computing, Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International, pp. 1-
8, March 26-30, 2007.

[5] J. Dean, S. Ghemawat, MapReduce: Simplified Data
Processing on Large Clusters, OSDI'04: Sixth Symposium
on Operating System Design and Implementation, San
Francisco, CA, December 2004.

[6] N. Truhar, Z. Tomljanović, Estimation of the optimal
damping for mechanical vibrating systems, Int. J. of Appl.
Math. and Mech. 5(5): pp. 14-26, 2009.

[7] N. Truhar, K. Veselić, An efficient method for estimating
the optimal dampers' viscosity for linear vibrating systems
using Lyapunov equation, SIAM Journal on Matrix
Analysis and Applications. 31 (2009), 1; pp. 18-39

[8] B. Mauser, M. Essert, Scriptrunner3, Proceedings of the
26th International Conference on Information Technology
Interfaces, Cavtat / Dubrovnik, Croatia, June 7-10, 2004.

