DISTRIBUTER — The Distributed System for Efficient Execution of
Parallel Programs

Domagoj Matijevé, Petar Taler
Department of Mathematics, J. J. Strossmayer Usityeof Osijek
Trg Lj. Gaja 6, HR-31000 Osijek, Croatia
Phone: ++385 31 224 800 Fax: ++385 31 224 801 Esndomagoj@mathos.hr, petar@mathos.hr
Goran Martinow
Faculty of Electrical Engineering, J. J. Strossmayeiversity of Osijek
Kneza Trpimira 2B, HR-31000 Osijek, Croatia
Phone: ++385 31 224 600 Fax: ++385 31 224 605 E-gmian.martinovic@etfos.hr

Abstract — We developed the distributed system called
“Distributer” in order to make use of millions of unused CPU
cycles inside the LAN. The system is based on serwdient
architecture and the interaction with the system is
implemented via web interface on the server side. l@nts
connect to server and periodically update their staus based
on which server distributes and sends jobs and athé end
collects results.

Our system is easy-to-use and easy-to-install ané$ the
simple centralized management of applications needeon
client side for jobs execution. We keep all appli¢deons on one
central repository that is shared to all clients iside LAN with
the help of network file system protocol (NFS).

|. INTRODUCTION

A typical distributed system consists of multiple

autonomous computers that communicate through

computer network [1]. The idea that emerged in mid

1990s, known as public-resource computing, was da&em
use of a distributed system in order to enhancentimeber
of FLOPS needed for large-scale computational ptsje

One of the probably most famous public large-scal

project was SETI@home [2], launched in 1999, whiak
attracted millions of participants worldwide. SETh@ne

now runs on about 1 million computers, providing a

sustained processing rate of over 70 TeraFLOPSusing
the BOINC distributed platform ([3], [4]). BOINC astds
for Berkeley Open Infrastructure for Network Conipgt
and is probably the most famous open-source platfor
public-resource distributed computing. It
developed at U.C. Berkeley Spaces Sciences Lalgriayo

the group that developed and continues to opera

SETI@home.
As the contrast

patented programming model MapReduce [5]
processing and generating large data sets in ebditstd
fashion but within their corporate firewalls. The
framework is inspired bymap and reduce functions
commonly used in functional programming althougéirth
purpose in the MapReduce framework is not the sase
their original forms. MapReduce allows for a parkig,
stylized way of programming that makes it easy fbt s
work among many machines. The basic idea is taddivi
the job into two parts: a Map, and a Reduce. Mépsdhe
problem, splits it into sub-parts, and sends theparts to

(]

is being

to public-resource computing,
companies like Google Inc. has developed their own

for

different machines such that all the pieces ruthatsame
time. Reduce takes the results from the sub-pamts a
combines them back together to get a single answer.
However, as it seems that MapReduce perfectly téits
specialized needs of the company like Google, sthaay
find their computations more difficult to implemeimt a
MapReduce framework.

As the need for large processing power emerged
rapidly from the small research groups at our Diepant,
we developed our own system for distributed conmmyjti
called the Distributer. As a result, the systenelitss
mainly targeting small scale research projects @nd
expected to run inside the LAN. The running researc
project that currently extensively uses the Distid is
concerned with the dampers' and viscosity optironain
mechanical systems (see [6], [7]). Their efficialgorithm
gptimizes simultaneously the dampers' positions taed

Jiscosities and is highly parallelizable. For exdnwith

the help of the Distributer we managed to computeal-
time the optimal positions of dampers for seveedl+
world examples that normally would take months
computation time and only with the help of normeskktop

of

computers.

The current implementation of the Distributer
accommodates several different applications and
provides flexible and scalable mechanism for disiing
data. The clients are expected to frequently tuifnoo
disconnect from the network. Existing applicatioims
common languages (C, C++, FORTRAN, Python) or some
commercial products, such as Wolfram’s Mathemadiod
MathWorks’ Matlab, can run as Distributer applicat,

it

taII shared to clients from a single central place,

Epplication Central Repository (ACR). The current
implementation supports jobs as submitted in a fofra
single input file (e.g. input file for some of supped
applications or a coordinating script).

The system is easy-to-install from both server and
client side and only asks for more expertise inecab
setting up the license agreements in case of cooiaher
software such as Matlab or Mathematica. Once the
Distributer is installed, users even with a versited
computer expertise can easily submit jobs via thetral
web-interface that directly communicate with thevee
side of the system.

The Distributer is originally meant for solving
problems that can be fragmented into independeris.pa
The current architecture of the Distributer expeusreal

communication between clients. Due to the inabibty
clients’ intercommunication it is necessary thabgoare
mutually independent,
contained.
process assigned job, regardless of the statéhef fibs.

It is worth mentioning that the Distributer coula b

easily integrated with any existing software salntithat
supports multi-user interaction (such as most efleb-
based applications). In that way users could diste
millions of user-jobs away from the centralized hiae
that can continue to operate smoothly running miterface
application to the users.

II. THE DISTRIBUTER

The system can be described through the three main

components that put together make the system as one

¢ Web Interface and the Server component;
e Client component;
« Application Central Repository (ACR).

As shown in Fig.1, the web-interface is to provite
anywhere and anytime user-friendly access to tis¢éesy.
Users can easily submit their jobs via web-intexfas a
simple upload of the input files for some of suppdr
applications or the upload of the coordinating fgcimside
which the user defines the different input paramsefer
functions that can run in parallel.

Client 1

User Web Infterface

Client 2

Q

Client 4

Fig. 1. Components of Distributer

/' Repository |

NFS
NFS

C

Server

they momentarily belong to (see Fig.2.). The queyebs
is shown to the user and user has full control d@yesuch

i.e. each job has to be selfas aborting the execution of the job at any tireeaving
In that way, each client can indepergentthe job completely from the queue, or resubmittimg job

to the queue.

Distributer

rocessing.., kil TTL:
45

b
a
Cuened...
o

10 tmespp

Fig. 2. Part of the web interface showing the jabug.

The efficientscheduling policy on the server side takes
care that all jobs find their ways to the most ahii¢
clients. Note that the quality of the schedulingcigsely
related with the monitoring process. The task o th
monitoring is to collect and keep updated the ddtaut
the client computers that are at disposal for padxation.

Every client that connects to the server for thet fi
time will execute benchmark program that produdss i
FLOPS (Floating point Operations per Second) value.
Once the client made itself available to the systém
current status of available resources is beingoparally
sent and maintained on the server side, based dchwh
server chooses the most appropriate client fonéwe job.

Once the job is assigned to the client, the adequat
application is loaded from the ACR and the compaitat
starts. During the time of the computation, usem sae
which client is doing the computation and monitbe t
remaining TTL.

When the execution of the job successfully finishes
results of the computation are returned to the esetlvat
pass the result back to the web-interface. Thdteesan be
seen by user directly in the browser or downloadedcal
disk as a file. When user reviews or downloadsréseilts,
he can delete the job and all its associated data the
server.

In the sections we the

following present

For each job that is being submitted user mustispec implementation details of our system in more depth.

hard margin for the time they expect the job tdésfintime-

to-live TTL), as well as the expected memory requirementa. Server

The idea behind TTL is to protect our clients frgetting

stuck due to badly written jobs (never ending jabfinite

loops etc.). User has an ability to update the Value, in
case he realizes that job will not finish withire txpected
given time limit. During the running time of thebjaiser
can always terminate the execution explicitly bgimple

mouse click.

Server is the key part of the Distributer systemisl
logically divided into two components: monitoringnch
scheduling. Monitoring holds the list of currently
connected clients and detailed data about themyatime.
On the other hand, the scheduling component of¢neer
maintains the list of user jobs that is waiting fitre

Once the jobs are submitted there are classifienl in execution, currently being executed, or whose di@tis

three different categories; i.e. jobs that arehia $tate of
execution, finished or jobs that are still waiting be
executed and they all will appear in a single quaaeked
with the appropriate flag identifying clearly thategory

completed. The main role of the scheduling compbigen
to decide which client gets which job, to sendjtteto the
client along with the instructions for its executiaand to

receive job results and present it back to the.udence, Server Threads:

server’s tasks altogether can be grouped as: [Monitorina(Glient 1]
. @—, onitoring(Client_1)
- Maintaining list of currently connected clients and
their resources, Client_1 g&—» Monitoring(Client_2)
- Checking job queue, choosing the best client, Client_2

sending the job and instructions for its execution, Monitoring(Client_n)
- Acquiring and processing user commands from the

) Client_n PipeListener
web interface, P
- Processing the newly arrived jobs, Scheduler %
- Collecting the results of finished jobs from the ResultCollector Web Interface

clients, and
- Controlling of job execution (aborting jobs,
changingtime-to-live)

Fig. 3. Server’s threads

PipeListener thread serves for the communication
between web interface (i.e. user) and server. This
Key data structures of the server are job queudghan communication |s_|mplemen_ted via thipe file on Servers

hard drive. Pipe file, sometimes calladonymous pipe, is

list of connected clients. a simplex FIFO communication channel that may kedus
Three job queues are maintained, one for waiting, P . Al may
for one-way interprocess communication. An

active and finished jobs. Every submitted job passe : : X . _
through these three queues and stays in the lastotil |mplem|en'§at|on is often integrated into the opexg
user deletes it. Using these queues server kesgls af all system’s file 10 subsystgm. .

relevant data for every submitted job. Whenever user submits a new job, changes the TEL of

List of connected clientscontains data regarding every {;‘ngﬂg ujgbid terr?'rr]?;; ch’m%sne(jl(ai;eivrz?ttgglicr)]?geﬂﬁﬁ?
client currently registered on the server (stateesburces, 4 » approp '

description of client's capabilities etc.). PipeListener thread constantly monitors that file and takes

: o . dequate action - triggers corresponding function
Since the server application and web interfaceasim & :
two different indepeﬁgent processes, server's b (JobAccepter (), UpdateTTL(), JobKiller() or JobDeleter()).

can't be seen from the web interface and vice versa Sche_duler t_hrea_d i.S _th_e thread implem_enting the
Therefore, list of connected clients and job queass scheduling policy, i.e. it is in charge of choosihg best

. ; ; : . client for execution of a job that is waiting. kenodically
simultaneously being written into database on d ldaive, lBecks the queue of waiting jobs and, if it findse cor

so user can see them and access them from the w@ ; . o
interface. There are three tables in the databas??ore Jobs there, chooses the one with the highesip.

; PRI o i n the current implementation, priority is equivati¢o the
current_clients, which is the copy of server's list of ! . . o
connected clientsjob_queue, which combines three job i[g‘;]\eecr)f #]c;t; Sﬁ.br;]éer'o?of.l:Ch wﬁter:hiriggst'zat It?]tém@most
queues an#tnown_clients. Server holds information about a gro fiate cl':egnt he% IIerI Yé ided b cl'elnt%’ ELOPS
every client that ever registered. Since that datls to be ppropri lentscheduler 1S gul y ¢l

stored even if server quits (due to computer shutdo value. Using this value server maintains the solittdof
power loss, etc.), it is written in th@own_clients database connected clients. The most powerful client is efoand
table. checked if it meets the conditions required (empugh

free RAM or unused CPU cycles). If those conditians
met, that client is chosen. Otherwise, next clisrested.
That procedure gets repeated until the suitablentlis

In order to keep server run things in parallel,found. If there is not such client currently, jdays in the
multithreaded architecture is used in its desigarvey duéue of waiting jobs until some of the existingemls
simultaneously runs several program threads thatesh With the suitable needs gets free, or the new aateclient

access to the common data structures. Fig.3. stioeads registers to the System. After theheduler s:e_nds. a job to
of server having clients registered. client, it moves it from the queue of waiting jotus the

PipeListener, Scheduler and ResultCollector threads du€ue of active jobs. _
are continuously active. ResultCollector thread keeps all the time the TCP
New instance of Monitoring thread is created connection waiting for the connections from theemwts

whenever a new client registers. Main purpose @ th that finished their computations and would likesénd job

thread is to periodically receive client's statieparts 'esults back to the user. Client which has inidateich
(CPU utilization and amount of free memory). Based connection sends the identifier of the finished gotd its
these reports, client's data in the list of conedotlients, '€Sults. Server creates a file on the disk ancewrieceived
as well as the associated database table, is pejpted. If job results mtq |.t. Flnally, respective job getrsferred to
the connection between server and client breakdn® queue ?}f f|n|shedhj_obs. ‘i " ced
Monitoring thread triggers deregistration procedure for that 19-4- Shows architecture of the server with marke
client and itsMonitoring thread is destroyed. communication with client and web interface.

Scenario shown on Fig.3. implies server with
registered clients, of whicBlient_n is chosen for the job
execution. Server'&cheduler thread sends the job to the
client, while theResultCollector thread retrieves the result.

DATA STRUCTURES

SERVER THREADS

Client JobWaiter threads exists per each job client is currently

executing. Fig.5. illustrates a client executing fabs.
Reporter thread creates the new connection to the
curren lients Interface
1 pipe N Q

Server
Monitoring

Web
PipeListener
JobAccepter()
UpdateTTL()
JobKiller()
JobDeleter()

server and registers on it. Later drgporter thread will
Y ¥ periodically gather state of client's resources WCP
utilization and amount of free memory) and repbtoithe
server.

CommandListener thread has a purpose of receiving
commands from the server and taking adequate action
Using this mechanism server may send a new jolheo t
client, order the client to change the TTL value #
running job, or terminate its execution.

Execution of each job is separated into a distinct

Computers connect to the Distributer system usieg t JObProcessorthread. This thread takes care of running a

client application. Its primary purpose is receinser 0P until it is finished (successfully, because BTL
jobs, running it and sending the results back eosrver. €xpiration, or by user termination). FinaldobProcessor

It is important to mention here that all applicaneeded contacts server'sResultCollector thread and sends the
for the job execution are located on the ACR (Aggtion ~ resultstoit. _ _ _
Central Repository), which is shared to all cliei@$ients Upon starting each job, a nedobWaiter thread is
execute those applications via network file systany as started. This thread has a task to decrement TTuevViar

a result there is no need to have custom applitatio that job every second, as long it is active. If'golTL
installed on the clients. descends to zero and its execution is still noisHied,
Tasks of the client application are: JobWaiter terminates that job. o
- Registering to the server and periodically repgrtin ~ Architecture of the client application as well as
current state of client's resources, communication with the server is shown on Fig.6.

- Acquiring and processing server's commands,

- Receiving new jobs from the server,

- Executing jobs and sending the results to the serve

jobQueue

ResultCollector Files

Fig. 4. Architecture of the server

B. Client

. s Client
- Aborting job execution upon expiration tifne-to- Reporter
li Ve, CommandListener
- Changing time-to-live period in case of user's 1| Appliction
command. UpdateTTL) acveiobs Remmanory
: JobProcessor =i %
Result File N
i I
DATA STRUCTURES JobWaiter

Design of the client application allows each cli¢mt Fig. 6. Architecture of the client

simultaneously execute several jobs (depending on a
number of its CPU cores). Therefore, client needls t
maintain thelist of active jobs Every job currently being
executed on the client has a record in that lisheWthe
job execution is completed (successfully, duetinae-to-
live expiration, or due to user’'s termination) job’s gt
gets deleted.

C. Implementation

Client, as well as server application is programnmed
Python 2.6 high level programming language. In eutr
implementation, server runs under Linux operatiygfesm,
but it is possible to port the application to WimdoOS
with minimum effort, if needed. Client can be starunder
Linux and Windows operating systems. Clients rugnin

As well as the server, the client is designed adinux access Application Central Repository using

multithreaded application. Fig.5. shows clientiegds and Network File System, therefore NFS share should be
their communication with the server. configured at each client. Windows clients use S®IBS

protocol for that purpose, which is enabled by difan
operating system.
Web interface is created using PHP5 script language

CLIENT THREADS

e .
Server Client Threads] with extensive usage of JavaScript's jQuery librand
o » Reporter AJAX. These techniques allowed us to build a dymami
o CommandListener web application.
NS - b%°b1 , b\éobZ Both server and web interface needs to access the
ObPFProcessor obPFrocessor .
JobWaiter JobWaiter database. We have c_hoser_w M_ySQL databas_e e_ng|th_afor
purpose, because of its reliability and good iraéign with

Reporter and CommandListener threads are active all

N
Fig. 5. Client's threads

the time, while one

instance ofobProcessor

and

PHP, as well as Python.

I1l. CONCLUSION

We demonstrated the easy-to-use and easy-to-install
implementation of the distributed system for eéfidi
execution of parallel programs. (2]

In near future, we plan to integrate the Distrilbtitgo
the existing web-based e-learning system Scripgufi.
Scriptrunner is a web application that enablesiregliand 3]
running programs written in various programming
languages, as well as collaborative editing ofauasitypes
of documents. In the current implementation every
program that users of Scriptrunner run executeshen [4]
single machine running the Scriptrunner itself. By
integrating Scriptrunner and Distributer systemgetber,
we would be able to distribute execution of Scnipter's
programs over large number of connected clientghét
way work load generated by execution of user pnogra
would move away from the machine running Scriptemn
making it able to efficiently handle more users. [6]

For that purposes, we will develop additional
mechanisms to make Distributer more reliable armiree
system. (71

(5]

(8]

REFERENCES

H. Attiya, J. Welch, Distributed Computing: Flamentals,
Simulations, and Advanced Topic§fj Edn., Wiley, 2004.

D. P. Anderson, J. Cobb, E. Korpela, M. Lebgfsknd
D.Werthimer. "SETI@home: An experiment in public-
resource computing”. Communications of the ACM, Vol.
45 No. 11, pp. 56-61, November 2002.

D. P. Anderson, BOINC: A System for Public-Resmur
Computing and Storage, Proceedings of the Fifth
IEEE/ACM International Workshop on Grid Computing
(GRID'04), pp. 4-10, November 8, 2004.

D. P. Anderson, J. McLeod, Local Scheduling ¥lunteer
Computing, Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International, Ipp
8, March 26-30, 2007.

J. Dean, S. Ghemawat, MapReduce: Simplified aDat
Processing on Large Clusters, OSDI'04: Sixth Synymosi
on Operating System Design and Implementation, San
Francisco, CA, December 2004.

N. Truhar, Z. Tomljanow, Estimation of the optimal
damping for mechanical vibrating systems, Int. fJAppl.
Math. and Mech. 5(5): pp. 14-26, 2009.

N. Truhar, K. Veseli, An efficient method for estimating
the optimal dampers' viscosity for linear vibratisgstems
using Lyapunov equation, SIAM Journal on Matrix
Analysis and Applications. 31 (2009), 1; pp. 18-39

B. Mauser, M. Essert, Scriptrunner3, Proceesling the
26th International Conference on Information Techgyl
Interfaces, Cavtat / Dubrovnik, Croatia, June 72004.

