
Experimental comparison of AdaBoost algorithms
applied on Leg Detection with Different Range

Sensor Setups
Srećko Jurić-Kavelj and Ivan Petrović

Department of Control and Computer Engineering
University of Zagreb, Faculty of Electrical Engineering and Computing

Zagreb, Croatia
{srecko.juric-kavelj, ivan.petrovic}@fer.hr

Abstract—When tracking people or other moving objects with
a mobile robot, detection is the first and most critical step. At
first most researchers focused on the tracking algorithms, but
recently AdaBoost (supervised machine learning technique) was
used for people legs detection in 2D range data. The results are
promising, but it is unclear if the obtained classifier could be
used on the data from another sensor. As it would be a huge
inconvenience having to train a classifier for every sensor (setup),
we set out to find if, and when is a classifier trained on one
sensor setup transferable to another sensor setup. We tested two
sensors in five different setups. In total, we acquired 2455 range
scans. Experiments showed that the classifier trained on noisier
sensor data performed better at classification of data coming from
other sensor setups. Classifiers trained on less noisy data were
shown to be overconfident, and performed poorly on noisy data.
Furthermore, experiments showed that classifiers learned on ten
times smaller datasets performed as good as classifiers trained
on larger datasets. Since AdaBoost is a supervised learning
technique, obtaining same classifier efficiency with significantly
smaller dataset means less hand labeling of the data for the same
results.

Index Terms—AdaBoost, 2D range, legs, SICK, Hokuyo

I. INTRODUCTION

Application of mobile robots as supporting or autonomous
agents in working environments alongside people is becoming
increasingly popular. In order to perform well, in addition to be
able to localize themselves, robots must have the capacity to
detect and track other moving objects. Given their precision
and high density of raw useful data, laser range scanners
quickly became sensors of choice for such problems among
researchers. Due to that popularity today we have a fair
choice of different laser scanners. As it would be a huge
inconvenience having to train a classifier to detect legs for
every sensor (setup), we set out to find if, and when is a
classifier trained on one sensor setup transferable to another
sensor setup.

This paper is organised as follows. In section II we discuss
related work. Boosting and measured scan segment features
are described in section III. Experimental setup and results are
presented in section IV. Final thoughts and considerations of
future work are given in section V.

II. RELATED WORK

Previously, in context of tracking people, or other moving
objects, in range sensor data the focus was on the tracking
algorithms. Little attention was given to the problem of ex-
tracting useful observations from range scan data. Most often,
geometric or motion features with simple rules of thumb were
used to detect segments corresponding to moving objects.
Same is true for our previous work [1].

Arras et al. [2] discuss previous approaches in grater detail
and they propose construction of a strong scan segment classi-
fier using AdaBoost on simple features. They used AdaBoost
variant similar to RealAdaBoost from [3] and simple decision
stumps1 as weak classifiers. They gave number of iterations as
a rule of thumb, based on few experiments they conducted with
different number of iterations. They compared their classifiers
on data acquired in different environments.

In this paper we experimentally compare three AdaBoost
algorithms paired with three different weak learners on five
different laser scanning configurations. Firstly, we proposed a
criterion function in order to chose the best variant and number
of iterations used to train a classifier. Further, the selected
variant was used to analyze if it is possible to use a classifier
learned on data from one sensor setup and apply it to classify
data from other sensor setup. The obtained results are discussed
and some recommendations are given regarding the segment
features used for weak learner training and sensor data used
for classifier boosting.

III. BOOSTING WEAK CLASSIFIERS

Boosting is a method for obtaining highly accurate classifier
by combining many weak classifiers. Each weak classifier is
required only to be moderately accurate, i.e. better than random
guessing.

In this work we will use variants of the AdaBoost algorithm
that was first introduced in [4] and implemented in [3]. Gen-
eralized version of AdaBoost algorithm is given in Algorithm
1. More about AdaBoost algorithm variants used in this work
is discussed in section IV.

1same as 1-node decision tree

267

19th International Workshop on Robotics in Alpe-Adria-Danube Region – RAAD 2010 •June 23–25, 2010, Budapest, Hungary

978-1-4244-6884-3/10/$26.00 ©2010 IEEE

Input data for the algorithm variants used to solve binary
classification problems is set of tuples (ei, li) where ei is an
example, e.g. scan segment in our case, and li ∈ {±1} is
example label, where value of 1 indicates positive, and value
of −1 indicates a negative example. Training is done in number
of iterations t = 1, . . . , T . In each iteration algorithm selects a
weak classifier ht(e), that we expect to be better than random
guessing for the training examples weighted by distribution Dt.
At the end of each iteration distribution for the next iteration is
updated in such a way that more weight is given to incorrectly
classified examples. The final classifier is weighted majority
vote of T weak classifiers selected during training.

Algorithm 1: A generalized AdaBoost algorithm
Data: Set of tuples (e1, l1), . . . , (eN , lN) where ei ∈ E ,

li ∈ {±1}
Result: Strong classifier, cascade of weak classifiers

F (e) =
∑T
t=1 αtht(e)

D1(n)← 1
N ;

for t← 1 to T do
Train weak learner using Dt.;
Get weak hypothesis ht : E → R. ;
Chose αt ∈ R. ;
Dt+1(i)← Dt(i) exp(−αtliht(ei))

Zt
; /* where Zt

is normalization factor */

A. Scan segment features

Here we describe which set of features of laser range scan
segments that were available to weak learners. Also, we present
our segmentation method. But firstly, let us introduce mathe-
matical model of a laser range scanner. Scan data delivered by
the laser range scanner is set Z = {b1, . . . , bL} of beams. Each
beam bi is a tuple (φi, ri), where φi is the angle of the beam
relative to the laser coordinate frame, and ri is the length of the
beam. Beam is assumed to spread freely in space until it hits an
obstacle, i.e. beam length is the distance to the nearest obstacle
in the beam’s direction. Laser coordinate frame is usually set
such that the origin is in the sensor’s center, x axis points in
front of the laser range sensor and xy-plane corresponds to
scanning plane.

Scan segmentation was performed as in our previous work
[1]. Two consecutive range scan points are considered as part
of the same segment if

d(bj , bj+1) ≤
C0 + C1 min(rj , rj+1) ≈

C0 +
3

2
∆αmin(ri, ri+1) ,

(1)

where d(bj , bj+1) =
√
r2j + r2j+1 − 2rjrj+1 cos ∆α is the

distance between two consecutive scan points, ∆α = φj+1−φj
is the angular resolution and C0 is a constant that com-
pensates for noise in range scan data. Constant C1 =

√
9
2 (1− cos ∆α) ≈ 3

2∆α compensated for consecutive beams
increasing inter distance, proportionally to the beam’s length.

The output of the segmentation function is an ordered
sequence P = {S1, . . . , SM} of segments, such that ∪Si ⊂
Z2. Each segment consists of beams that correspond to it
S = {bs, . . . , be}. Indexes s and e indicate starting and
ending beams of a segment, respectively. When performing
calculations, we will use beam representation in Cartesian
coordinates x = (x, y), where x = r cos(φ) and y = r sin(φ).
In context of AdaBoost input data, segment S is a first element
of example tuple.

Feature f is defined as a function f : S → R, where S
represents a set of all possible segments. Function f takes a
segment S as an argument and returns a real value, value of
a measured feature. We use most of the features introduced in
[2], with the exception of a mean speed feature, and introduce
a simple extra feature, distance of the segment mean. For
completeness, all features are listed below:

1) Number of points: n = |Si|.
2) Standard deviation: This feature is given by

σ =

√
1

n− 1

∑
j

‖xj − x‖2 ,

where x denotes the segment mean (center of gravity).
3) Mean average deviation from median: This feature is

designed to measure the segment compactness more
robustly than the standard deviation. The median of
a distribution f(x) is the value where the cumulative
distribution function F (x) = 1

2 . Given an ordered set of
K scalar random samples xi the median x̃ is defined as

x̃ =

{
xK+1

2
if K is odd

1
2 (xK

2
+ xK

2 +1) if K is even

Opposed to the mean, median is less sensitive to outliers.
In our two dimensional case, we calculate x̃ using the
vector of medians approach, i.e. x̃ = (x̃, ỹ). The average
deviation from the median is then

ς =
1

n

∑
j

‖xj − x̃‖ .

For a more in depth discussion about median definition
in multi-dimensional case see [5].

4) Segment mean distance: The Euclidean distance between
laser range scanner and the segment mean, i.e. ‖x‖.

5) Jump distance from preceding segment: This feature
corresponds to the Euclidean distance between the first
point of Si and the last point of Si−1. For S1 this feature
is set to the length of the first beam in the segment.

6) Jump distance to succeeding segment: The Euclidean
distance between the last point of Si and the first point
of Si+1. For the last segment SM this feature is set to
the length of the last beam in the segment.

2we observed this to be strict subset in all our scans

S. Juric-Kavelj, I. Petrovic • Experimental Comparison of AdaBoost Algorithms Applied on Leg Detection…

268

7) Width: This feature measures the Euclidean distance
between the first and last point of a segment.

8) Linearity: This feature measures the straightness of the
segment and corresponds to the residual sum of squares
to a line fitted into the segment in the least squares
sense. Given the segment points in polar coordinates
bj = (φj , rj), fitting a line in the Hessian (α, ρ)
representation that minimizes perpendicular errors from
the points onto the line has a closed form solution. We
use the (unweighed) expressions from [6]. Once the line
parameters (α, ρ) are found, the residual sum of squares
is calculated as

sl =
∑
j

(xj cos(α) + yj sin(α)− ρ)2 ,

where xj = rj cos(φj) and yj = rj sin(φj).
9) Circularity: This feature measures the circularity of a

segment. Like for the previous feature, we sum up the
squared residuals to a fitted circle. Given a set of points
in Cartesian coordinates, an elegant and fast way to
find the best circle in the least squares sense is to
parametrize the problem by the vector of unknowns as
x = [xc yc x

2
c+y2c−rc]T where xc, yc and rc denote the

circle center and radius. With this, the over-determined
equation system Ax = b can be established,

A =


−2x1 −2y1 1
−2x2 −2y2 1

...
...

...
−2xn −2yn 1

 b =


−x21 − y21
−x22 − y22

...
−x2n − y2n


and can be solved e.g. using pseudo-inverse x =
(ATA)−1AT b. The residual sum of squares is then

sc =
∑
j

(
rc −

√
(xc − xj)2 + (yc − yj)2

)2

.

This parametrization of the least squares problem has
better geometric properties than the approach used by
Song et al. [7]. When geometry plays a role in fitting
(opposed, e.g., to regression in statistics), care has to be
taken what errors are minimized. Otherwise algebraically
correct but geometrical useless least squares fits can be
the result.

10) Radius: This feature is the radius rc of the circle fitted
to the segment. It corresponds to an alternative measure
of the size of a segment Si.

11) Boundary length: This feature measures the length

l =
∑
j

d(bj , bj+1)

of the poly-line corresponding to the segment.
12) Boundary regularity: Here we calculate the standard

deviation of the distances d(bj , bj+1) of adjacent points
in a segment.

13) Mean curvature: The average curvature k =
∑
j k̂j

over the segment Si is calculated using the following

curvature approximation. Given a succession of three
points xA, xB and xC , let A denote the area of the
triangle xAxBxC and let dA, dB , dC denote the three
distances between the points. Then, an approximation of
the discrete curvature of the boundary at xB is given by

k̂ =
4A

dAdBdC
.

This is an alternative measurement of rc as curvature
and radius are inverse proportional.

14) Mean angular difference: This feature traverses the seg-
ment boundary and calculates the average of the angles
βj between the vectors xj−1xj and xjxj+1, i.e.

βj = ∠(xj−1xj ,xjxj+1) .

Care has to be taken that the angle differences are
properly unwrapped. This feature is a measure of con-
vexity/concavity of a segment.

IV. EXPERIMENTS

Two laser range scanners were available for experiments,
SICK and Hokuyo. The experiments were designed to test
if a strong classifier trained on a dataset of one sensor, can
be transfered to another, i.e. can it be used to classify data
coming from another sensor. SICK was connected in high
speed mode, over RS422 serial connection, so we were able
to achieve SICK’s maximal data rate of 75 Hz. Since SICK
can be configured to take scans at different field of view,
different angular resolution and speed, we decided to take four
representative setups and test them all individually. Maximal
field of view of 180◦ was taken in all four setups. They are
differentiated with resolution and connection speed parameters.
We chose 1◦ and 0.5◦ angular resolutions3, 500 kbps and
38.4 kbps connection speeds and thus defined our four SICK
setups. Scans were taken in a classroom, where tables and
chairs were temporarily placed around the classroom by the
walls, in order to achieve clear line of sight to the target.
Both sensors were mounted4 on a Pioneer 3-DX mobile robot,
which was placed in a corner of the classroom. In each scan
sequence one person walked from the corner where the mobile
robot was, entering laser’s field of view on the left, to the
opposite corner of a classroom and walked out the door (and
lasers maximum range), and back. Grand total of 2455 scans
were taken over 88.375 seconds time span. Total number of
segments extracted was 65888. The segments with at least
3 points were considered for labeling. To aid the daunting
task of labeling all those segments, a GUIDE application in
Matlab R© was developed. Application GUI is shown in Fig. 1.
ScanLabeler features segment labeling with a mouse click and
global shortcut keys in order to maximally reduce labeling
time. Later, segments consisting of exactly 3 points were
discarded, for comparison of trained classifiers. The resulting
data set consisted of 50320 segments.

3SICK does not have 0.5◦ angular resolution, it is achieved by taking two
scans of 1◦ resolution with 0.5◦ offset

4Hokuyo was mounted facing backwards, so the robot was rotated before
acquiring data with Hokuyo

269

19th International Workshop on Robotics in Alpe-Adria-Danube Region – RAAD 2010 •June 23–25, 2010, Budapest, Hungary

Fig. 1. ScanLabeler GUI

GML AdaBoost toolbox features three variants of AdaBoost
algorithm and decision tree as a weak learner. The imple-
mented algorithms are described in [8]–[11].

A. Classifiers on each sensor setup

To get an idea how those algorithms perform, we applied
each on all datasets with segments that contained a minimum
of 4 points. Furthermore, we used 3 different weak learners,
i.e. decision trees with 1, 2, and 3 nodes. Hundred training
iterations were conducted with each algorithm, and at each
iteration error rate was recorded. Training data was selected
by taking every odd scan, and control data was selected by
taking every even scan. Results are shown in Figs. 2, 3 and 4.
Colors are assigned to algorithm variants. Blue depicts results
of Real, green depicts results of Gentle and red depicts results
of Modest AdaBoost. Solid line represent 1-node, dashed line
represents 2-node and dotted line represent 3-node decision
tree.

General remark for the result of this experiment is that
Modest AdaBoost variant rarely shows characteristics of a
boosting algorithm. On most datasets it gets stuck at the first
iteration, and in some the error rate grows with the number of
iterations.

Results shown in Fig. 2 are from datasets that were acquired
by SICK laser range scanner operating in high speed mode, i.e.
75 Hz for ∆α = 1◦ and 37.5 Hz for ∆α = 0.5◦. Since these
datasets contain largest amount of scans and segments, small
declining trend of error rate is observed even when number of
iterations approaches 100.

Results in Figs. 3 and 4 are from datasets acquired at
considerably lower rates, namely 9.1 Hz for SICK at ∆α = 1◦

angular resolution, 4.6 Hz for ∆α = 0.5◦ angular resolution
of the same sensor and 10 Hz for Hokuyo. Small size of
those data sets is evident in error rate increase that even one
incorrectly labeled control example contributes.

B. Applying classifier to different sensor setup

In order to select the best algorithm and weak learner from
the previous experiment we propose the following criterion

0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

SICK hi speed ∆α = 0.5
°

E
rr

o
r

ra
te

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 10

−3 SICK hi speed ∆α = 1
°

E
rr

o
r

ra
te

Iteration

Fig. 2. SICK High Speed Datasets

0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

SICK hi speed ∆α = 0.5
°

E
rr

o
r

ra
te

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 10

−3 SICK hi speed ∆α = 1
°

E
rr

o
r

ra
te

Iteration

Fig. 3. SICK Low Speed Datasets

function:

Jk,a,n =
∑
DatS

ER2
k,a,nW (Fk,a,n) , (2)

where DatS stands for datasets, ER is the error rate of the fi-
nal classifier, W (Fk,a,n) is the weight of the obtained classifier.
Indexes k, a and n stand for iteration, algorithm variant and
the number of nodes in the decision tree respectively. Classifier
weight can be defined in following way:

W (Fk,a,n) =
∑

f∈Fk,a,n

w(f) ≈ (1−Ck+kCk)(1−Cn+nCn) ,

(3)
where f represents a feature used in final classifier in any
number of occasions, and w(f) is the cost of a feature, e.g.
time needed to calculate it for an average scan segment. We
simplified the calculation of classifier weight by considering

S. Juric-Kavelj, I. Petrovic • Experimental Comparison of AdaBoost Algorithms Applied on Leg Detection…

270

TABLE I
CLASSIFIER APPLIED ON OTHER DATA SETS

Data sets

SH1 SH0.5 SL1 SL0.5 Hok
C

la
ss

ifi
er

s

SH1
6 7

0.12%

6767 29

34.79%

2 0

0.08%

841 20

35.42%

2800 0

60.698%

SH0.5
38 84

0.57%

22 66

0.90%

3 22

1.01%

3 50

2.18%

39 20

1.28%

SL1
14 32

0.22%

5213 163

27.52%

2 3

0.40%

638 44

28.05%

1845 0

39.996%

SL0.5
11 121

0.62%

30 296

1.67%

0 17

0.69%

0 36

3.01%

150 15

3.58%

Hok
1289 115

6.60%

613 295

4.65%

148 11

6.44%

74 67

5.80%

4 5

0.39%

0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8
x 10

−3 Hokuyo

Iteration

E
rr

o
r

ra
te

Fig. 4. Hokuyo Dataset

only number of iterations and number of nodes in decision tree.
We can then check at which iteration we achieve minimum of
Jk,a,n for a particular choice of algorithm variant and number
of nodes (a and n). Results of this check are depicted in Fig.
5. Alternatively, we can look for an iteration where minimum
Jk,a,n is achieved, regardless of the algorithm. In that way,
we can find optimal number of iterations, algorithm variant
and number of nodes in a weak learner with respect to (2).
The results are shown in Fig. 6. Here again blue, green and
red stand for Real, Gentle and Modest AdaBoost algorithm
respectively. Circles stand for 1-node, ‘x’ for 2-node and ‘+’
for 3-node decision tree. As can be seen, classifier boosted with
Gentle AdaBoost was generally inferior to Real AdaBoost with
respect to proposed criterion function (2) and only in the case
of 2 iterations was Modest AdaBoost with 1-node decision tree
better than any other variant.

Given the results in Fig. 6, we chose Real AdaBoost with 3
node decision trees for subsequent analysis. We will perform
only 4 iterations to obtain the strong classifier. A strong
classifier was trained for each data set. The resulting classifier
was then tested on all other data sets. Results are shown in
Table I. For each comparison three values are provided, number
of false positives (left), number of false negatives (right) and
error rate. SICK (S) data sets/classifiers were labeled according

1

2

3

1

2

3

0

2

4

6

8

10

12

Number of nodes

N
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

Real

Gentle

Modest

Fig. 5. Minimising number of iterations for a given variant

0 5 10 15
1.6

1.8

2

2.2

2.4

2.6
x 10

−3

Fig. 6. Minimising error rate at given number of iterations

to speed (L - low speed, H - high speed) and angular resolution
(0.5 - 0.5◦, 1 - 1◦). For example SL0.5 represents data
set/classifier of SICK laser scanner configured in low speed
mode (38.4 kbps) with ∆α = 0.5◦ angular resolution. As you
may notice, there are also results on the table diagonal. Those
results were obtained by splitting the dataset in question in
two parts, one of which was used for training and other for
control. Training data consisted of the odd range scans, and
control data consisted of even range scans.

271

19th International Workshop on Robotics in Alpe-Adria-Danube Region – RAAD 2010 •June 23–25, 2010, Budapest, Hungary

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

number of points

standard deviation

mean average deviation from median

distance from mean

jump distance from preceeding segment

jump distance from succeeding segment

width

linearity

circularity

radius

boundary length

boundary regularity

mean curvature

mean angular difference

Average calculation time per segment [ms]

Fig. 7. Time needed to calculate segment features

C. Discussion of the results

As can be seen in Table I, classifiers SH1 and SL1 would
be hardly recommended to classify data coming from the same
sensor with ∆α = 0.5◦ angular resolution, let alone Hokuyo.

On the other hand, it is obvious that the classifiers SH0.5
and SL0.5 can be used to classify data coming from other
sensors/configurations very accurately. Much more interesting
are the results of the classifier SL0.5 That classifier has very
acceptable error rate on all datasets. Therefore, one could label
training data only on such data set, which has very low data
rate, i.e. small number of laser ranges and segments to label
and use that classifier on data at much higher rate.

Classifier Hok has moderate error rate on other datasets, but
not as good as SL0.5 has.

We took a closer look at classifiers SH1 and SH0.5. SH1
uses following features in decision tree: 2, 3, 4, 6, 7, 8, 13,
and SH0.5 uses features: 2, 4, 5, 6, 7, 8, 10, 11, 14. Significant
difference between SH1 and SH0.5 can be seen in the choice
of feature to measure inscribed circle. While SH1 uses feature
13, SH0.5 uses feature 10. Those features should be inversely
proportional, but if we look at the data, we can quickly see
why that statement does not hold. To acheive ∆α = 0.5◦

angular resolution, SICK takes two scans with ∆α = 1◦

angular resolution, offsetted for 0.5◦. A zig-zag pattern can
be found in segments coming from moving people legs, as
can be seen in Fig. 1. The pattern can be explained with the
fact that the segment actually consists of two scans taken with
small but significant temporal offset. When fitting a circle in
such zig-zag pattern we usually get lower radius compared to
fitting a circle in less noisy data. Furthermore, feature 13 (mean
circularity) has highest average calculation time per segment,
as shown in Fig. 7. When we dismissed features 10 and 13
from training, we got error rate of 21.77% when applied SH1
classifier on SH0.5 data. This is still pretty bad result, but
we would definitely advise not to use the mean curvature
feature (numbered 13), since it takes almost four times more
processing time compared to other features.

As for Modest AdaBoost algorithm variant, we could not
explain why it fails to boost on our data sets. Small boosting
was observed on SH1 and SL1 datasets in second iteration
with 2-node decision tree. Therefore, we used such settings
to obtain classifier on SH1 dataset. Resulting classifier was

tested on SH0.5 dataset. We observed 6129 false positives and
44 false negatives which amounts to 31.94% error rate. Those
results are slightly better then four iterations of Real AdaBoost
with 3-node decision trees on same datasets, but hardly enough
to conclude that Modest variant generalizes better.

V. CONCLUSION AND FUTURE WORK

In this paper we proposed a criterion function to select
the best AdaBoost algorithm and weak learner combination,
and number of iterations in order to train a classifier for
detection of people legs in laser range scans. We recorded five
datasets, one using Hokuyo laser range scanner, and other four
with different configurations of SICK range scanner. Selected
variant was used to construct a classifier for each dataset.
Resulting classifiers were tested on a task of classification of
segments from other datasets, and the results are listed in Table
I.

It was experimentally shown that classifier trained on SICK
laser scanner data taken with angular resolution of ∆α = 0.5◦

performed best on all datasets. We concluded that the mode of
operation when ∆α = 0.5◦ introduced more noise in segment
data, especially positive examples. In turn, that made weak
classifiers chose more robust features (estimators) of certain
geometric properties, since many of the 14 features introduced
were redundant.

For future work we plan to tackle multi-class problems with
AdaBoost, e.g. learn a classifier that distinguishes leg, legs and
other mobile robots.

ACKNOWLEDGMENT

This work has been supported by the Ministry of Science,
Education and Sports of the Republic of Croatia under grant
No. 036–0363078–3018.

REFERENCES

[1] S. Jurić-Kavelj, M. Seder, and I. Petrović, “Tracking Multiple Moving
Objects Using Adaptive Sample-based Joint Probabilistic Data As-
sociation Filter,” in Proceedings of 5th International Conference on
Computational Intelligence, Robotics and Autonomous Systems (CIRAS
2008), pp. 99–104, 2008.

[2] K. Arras, O. Mozos, and W. Burgard, “Using boosted features for the
detection of people in 2d range data,” Proceedings of the 2007 IEEE
International Conference on Robotics and Automation, 2007.

[3] A. Vezhnevets, “GML AdaBoost Matlab Toolbox — Graphics and Media
Lab.”

[4] Y. Freund and R. Schapire, “A desicion-theoretic generalization of on-
line learning and an application to boosting,” Computational Learning
Theory, 1995.

[5] G. Aloupis, On computing geometric estimators of location. PhD thesis,
2001.

[6] K. Arras, Feature-based robot navigation in known and unknown envi-
ronments. PhD thesis, 2003.

[7] Z. Song, Y. Chen, L. Ma, and Y. Chung, “Some sensing and perception
techniques for an omnidirectional ground vehicle with a laser scanner,”
Proceedings of the 2002 IEEE International Symposium on Intelligent
Control, 2005.

[8] R. Schapire and Y. Singer, “Improved boosting algorithms using
confidence-rated predictions,” Machine learning, 1999.

[9] P. Viola and M. Jones, “Robust real-time object detection,” International
Journal of Computer Vision, 2002.

[10] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:
A statistical view of boosting,” Annals of statistics, 2000.

[11] A. Vezhnevets and V. Vezhnevets, “Modest AdaBoost – teaching Ad-
aBoost to generalize better,” Graphicon 2005, 2005.

S. Juric-Kavelj, I. Petrovic • Experimental Comparison of AdaBoost Algorithms Applied on Leg Detection…

272

