Automatic On-line Generation of Student’s Exercises
in Teaching Programming

Danijel Radosevié, Tihomir Orehovacki, Zlatko Stapié

Faculty of Organization and Informatics

University of Zagreb
Pavlinska 2, 42000 Varazdin, Croatia

{danijel.radosevic, tihomir.orehovacki, zlatko.stapic}@foi.hr

Abstract. Teaching programming faces some
general teaching problems, but also confronts
some specific problems such as wunderstanding
of programming concepts as well as algorithms
for solving programming tasks. Our teaching
experience with students at university beginner’s
level has shown that students often try to avoid
understanding programming concepts by some
"shortcuts", like learning program code by rote,
copying programs from colleagues etc. In this
paper we introduce automatic on-line generation
of programming exercises with code examples for
students. This enables high level personalization of
student’s programming tasks and makes avoiding of
understanding concepts more difficult. Along with
introduction of the on-line solution, some open
questions about correctness of exercises, controlling
the solutions and the whole teaching process are
also discussed.

Keywords. programming, teaching approaches,
on-line generator

1 Introduction

Computer science students are faced to a task that
is often very challenging — a task of learning pro-
gramming. The main reasons for this are usually
referred to be their lack of mathematical and in-
formatics knowledge, undeveloped skills of abstract
thinking and logical reasoning, lack of motivation
and fear of programming [5][9][20]. In addition, a
large number of students practice to learn program-
ming through reading books or listening lectures

passively. This results in learning to program by
heart, without any understanding, which is oppo-
site to a generally known theory that programming
is a skill that can only be learned with a lot of active
work.

In recent years intensive work has been done on
developing specialized educational software to help
students to understand the basic programming con-
cepts and to develop problem solving skills. Men-
tioned software is usually installed in the classroom
laboratory and used as a supplement to teaching
process, but a time spent in active learning of a pro-
gramming during the lectures or laboratory classes
is not enough for the students to adopt all nec-
essary knowledge and skills they need in order to
solve more complex tasks. Therefore, the practice
of introducing homework tasks in the form of small
programming assignments that students should ad-
dress and solve at home is becoming more usual. In
that way, teachers get feedback and can more pre-
cisely aim their remaining lectures. In addition,
for each exercise, teachers usually send feedback so
each student could get a picture of a progress and
learn from own mistakes.

The mentioned process of teaching programming
demands much more effort from both sides and
eventually becomes a challenging task for teach-
ers too. At our faculty, courses related to teach-
ing programming enroll more than 200 students a
year. Since it is such a large number of students as-
signed to a relatively small number of teachers, they
are faced to problem that they do not have enough
time available to dedicate to each student, espe-
cially not in a described individualized approach.
Finally, many other problems arise, from which the

most common are cheating and plagiarism, while
teachers cannot be sure that the submitted solu-
tions, are not copied and are genuine work by each
student. These problems are even more expressed
if all students are given unified programming prob-
lems.

Although there are specialized tools that deal
with issues of plagiarism [14] and the automatic
assessment systems (AA) [6], we tried to move for-
ward and this paper presents an idea of generative
approach in solving these problems. We introduce
the system of personalized automatic generation of
programming tasks that are created according to
specific template but unique for each student. This
approach, applied during the teaching process, dra-
matically reduces the likelihood of solutions being
copied or downloaded from the Internet, and sub-
sequently results in more active involvement from
each student in order to create unique and own so-
lution. The final result is more applicable knowl-
edge in programming.

2 Related work

Today there are many tools used in the process of
teaching programming, ranging from simple tools
used only at universities and faculties at which they
were developed to the commercial projects that are
used in a number of institutions around the world.
The above mentioned tools can be divided into
two main categories: automatic assessment systems
and online compilers. Best known representatives
of each mentioned group will be presented in this
chapter and their purpose and general functionali-
ties will be briefly explained.

2.1 Automatic assessment systems

The field of automatic evaluation is huge and there
are several different categorizations of existing sys-
tems. Carter et al. [6] divided the exercises into
five basic categories: multiple choice questions, pro-
gramming assignments, visual answers, text an-
swers and peer assessment. However, it should
be noted that the text answers are considered to
be part of wider area of automatic evaluation of
natural language, while the peer assessment is a
part of computer-aided, not automated, assess-
ment. Therefore, both categories are out of scope of

this paper and will not be discussed in more detail.

Multiple choice questions are the simplest form of
AA in which the assessment procedure is frequently
embedded into the questions themselves. The most
common form of a multiple choice question has four
or more alternatives, of which at least one is cor-
rect. However, the number of correct, semi-correct
and incorrect choices can vary, depending on the
teachers’ choice. Typically a student is rewarded
with points for the correct and semi-correct choice,
while an incorrect answer gives either zero or a
negative number of points. The assessment pro-
cedure of multiple choice questions is very easy.
It compares the student’s answer to the correct
one and according to the grading formula gives
points. The simplicity of multiple choice questions
has made them a very popular feature in learning
management systems, such as Moodle and WebCT.
However, in teaching programming, multiple choice
questions can be useful only for the adoption of ba-
sic theoretical, but not for gaining practical skills
in solving programming assignments.

The automatic assessment of programming as-
signments is the most usual example of AA in the
field of computer science. This category includes
all systems that automatically assess some or all
aspects of computer programs. The earliest assess-
ment systems, often referred as grading programs
[8][17], were based on very simple output matching
method: the output created by a teacher model
program was compared to the output of the stu-
dent program. Today, assessment systems such as
ASSYST [12] have ability to evaluate student sub-
missions in five different areas: complexity, correct-
ness, efficiency, style, and test data adequacy. A
more sophisticated method for program assessment
allows analysis of the internal structure of the stu-
dent’s submissions. The early work in this area was
focused on estimating the execution time of each
program block [21]. More recent examples include
the use of abstract syntax trees in order to deter-
mine whether a submission contains the required
programming constructs [22]. In addition, there
are systems such as Ceilidh [3] (later CourseMas-
ter [10]) that allow several different types of assess-
ment: complexity analysis, dynamic correctness,
dynamic efficiency, structural weakness and typo-
graphical analysis. The last aspect of the computer
program that can be analyzed refers to the style
of programming which students use while solving

a given problem. Programming style assessment is
not concerned with the functionality of the program
solution, but measures whether the student is ca-
pable to follow widely accepted coding conventions
(e.g. use comments, code indentation, etc.) and
write understandable program code. Today, there
are several automatic systems that include style as-
sessment feature in software development process
[4][15]. We should, by all means, mention Style++
[1], which allows measurement of 64 different styles
during the development of C++ programs.

The third category consists of AA supporting vi-
sual answers in which a student manipulates visual-
ization in order to develop a solution of a given pro-
gramming task. In addition, visualization can be
used for learning basic programming concepts, par-
ticularly data structures and algorithms. The main
representative of this group of AA is TRAKLA [11]
system that, by using various heuristics, compares
the model answer to the student’s submission and
can thus detect some simple errors in the final stage
of the data structure. On the other hand, its succes-
sor, TRAKLAZ2 [16] is based on generalized assess-
ment procedure which compares submitted solution
of whole simulated algorithm to teacher model so-
lution and tries to find identical states. Among the
other systems which can be placed in this group, we
should mention Stratum [13] which can help stu-
dents to understand logic, regular expressions etc.,
much easier, and Exorciser [24] in which student
can solve his exercise or learn basics of theoretical
computer science through graphical manipulation
of the required entities (e.g. strings).

2.2 Online compilers

The online compilers are usually defined as tools
that enable online development of the software
products. There are several major advantages of
this approach. For example, a student does not
need to have a compiler installed on his personal
computer and may work on the development from
any other Internet and browser enabled device. The
first and obvious precondition is of course that the
online compiler must support a programming lan-
guage a student wishes to use in the development
or programming process. In addition, another ad-
vantage is that this development environment al-
lows students to test their solutions independently
to the platform used during the original or offline

development.

There are several existing solutions, and among
the better-known online compilers we would like to
mention JXXX [23] that compiles java source files
including applets, DJGPP [7] which supports C
programming language, web 2.0 technology based
solution called OLC [2] that supports development
of the software products in four different program-
ming languages. Of course, these and other tools
also have known drawbacks. For example, JXXX
compiler could only be used to test already writ-
ten code, or DJGPP provides simple text editor for
writing code that does not support basic coding
conventions such as keyword highlighting, text in-
denting, et cetera, and almost every online compiler
does not put emphasis on protection from plagia-
rism and does not provide the mechanisms by which
the teacher could be sure that the student actu-
ally wrote submitted solution. Therefore, these so-
lutions are not suitable for teaching programming
and are not applicable to be used as a supplement
to existing tools in learning process. Mentioned
problems motivated us to think of a generative sys-
tem that will include the advantages of other online
compilers, be free of their drawbacks and also pro-
vide the possibility of full personalization of pro-
gramming tasks. We already implemented some of
its functionality in form of on-line generator which
is described in sections that follow.

3 Architecture of on-line gen-
erator

The on-line generator of student’s exercises is based
on a Generator Scripting Model (GSM), introduced
in 2005 by Radosevi¢ [18], and further described by
Radosevi¢ et al. in 2009 [19]. The implemented
generation system is shown in Figure 1.

As shown in Figure 1, students enter their reg-
istry data (ID number, surname and name) via web
interface. The generating system uses the ID num-
ber in generation of program specification.

Program specification is in a form of Python
list and consists of attribute-value pairs, describing
properties of program example (together with stu-
dent’s exercise) to be generated. Our approach was
to use entry Python lists with possible properties to
be chosen, the process of choosing options based on

student’s ID number, and building of specification
list. The entry Python lists could look as follows
(Figure 2).

Generating system

Student's
1D, sumame:
and name

—*

example with
student's

I
I
I

: Program
N I
Ganarating \
program example |

—={ watn student's |—e
exercise

Generaling
program
spacification
(Python)

exarcise

Ces

Wb interface
to studsnts
(Pythen, HTML)

Web interface
to students f—]

{Python, HTML)

{Python)

f

|

1

|

1

Program and |
exercise’s :
1

|

1

|

1

templates

(C++ = target

programming
language)

Figure 1: Generation system of student’s exercises

optional file names
P_files=[file-file1 dat' ‘file:file2 dat' file:file3.dal’ file ﬁ\ad,dal’"hls:l\ls(l‘] optional class names
optional field names

P_classes=['class:list1",'class:list2' 'class:listd' 'class:L4' 'classL_57

P_fields=["field_int:first' field_float:second', field_char:third", field_int:fourth’,
*field_float:fifth’ 'field_char:sixth' field_int:seventh’]

Figure 2: Entry Python lists

Options are chosen using student’s ID (by us-
age of modulo operation), which results in Python
specification list (Figure 3).

Output type QOutput file

[QUTPUT:output', 'output:exercise.cpp’, 'filename:file5.dat',
‘field_int:primary_key",
'field_int:second', "field_float:third', 'field_int:fifth’, ‘field_char:first',

Figure 3: Python specification list

The structure of program specification could be
shown by using of Specification diagram (from Gen-
erator scripting model, as described by Radosevi¢
et al. [19]), Figure 4.

Specification diagram contains all possible at-
tributes to be used in particular student’s exer-
cise specification, while specification list defines at-
tribute values. Square brackets define container for
lower-level attributes and groups end by ’ ’ sign

OUTPUT [:

output

\
[| [[{ 1

student_ID primary_key

exercise | | sumame_name main_template filename

field_int | | field_float field_char

Figure 4: Specification diagram of student’s exer-
cise generator

(e.g. field means group of attributes that contain
field in name), as described by Radosevi¢ et al.
[19]. The attribute OUTPUT is predefined and is
used for defining output types (e.g. type of output
files to be generated).

4 Example of generation

Except the program specification, the implemented
generating system uses sets of program code tem-
plates in target programming language (usually
C++) which include question for students, in a
form of remarks. There are a main program code
template (Figure 5.) and lower-level templates.

The code template contains replacing marks in
47 signs (e.g. #field declarations#) that are re-
placed by specification values (and/or lower-level
templates) during the process of code generation.
Student’s exercises are incorporated in the same file
with the program code template.

The process of generation is defined by generator
configuration. The configuration defines what to do
with the replacing marks in program code template
(Figure 6).

Generator configuration defines file containing
main code template (here 'main.template’) and the
process to be done with the replacing marks:

e direct replacements of replacement mark with
the specification attribute value (2 member
groups, e.g. #length#, length) or

e replacement with usage of lower-
level template (3 member groups,
e.g. #forming record int#, field int,

field record int.template).

#include <iostreams
#include =fstrean=
#include ibrary.cc”
slruct widuzinag]
#field_decarationss#
¥

timdex index;
void F_#angthét_1{#formal_arguments#)]
fatream dat,ind;
witlengihd z#lanagtd:
#Hormal_inte_record#
dat.open {#Hile# dat” ios:oulfios: inlios :binary);
ind.open ("#iled.ind" icaoutfios:infica:binany);
dat.seekp {0, ios::end): ind.seekp (0, ios:zand);
dat.write ({char *)z#lengthd, sizeaf{witlengthi));
indexprimary_key=z#dlengih# primary_kay,;
index_adress={int)dat tellp(}-sizecfiwitlengthat);
ind_writa {{char *}&index, sizecf{tindex));
dat.close():dat clear();ind.close();ind.clear();
k

program
code template

int rini
fatream dat,ind;
datopan ("#ile.dat’, los: outfics: binary);
ind.open (“#ilef ind" jos:out|icabinary);
dal closed);dat clear);ind.close()jind. clear();
#field_declarations#
char forward;
dof
#fiald_antry#
F_flengthst_1(#real_argumentsi);
cout == "Forward {y/n)? "; cin == forward;
1 while (forward=="y'};
F_#angthe_2{);
cout =< "#surname_name# #student 1% \nEnd of program.” <= endl;
i

NExercises;

fiCompile and run the example. Enler test data (in file "Tastdata.tt’; 1 point).
fAnswer tha questins (in Word document):

£, Which is the size of file "#filedt" dat (in byles, when contains test data).
i Which is the size of indax structurs {in bytes)?

N2, Which |5 the record lype of main file, and which of index file?

3. Write the value of function F_#length_2 for entered test data?

fiSave Word docurment inlo file ‘exercse_#student_ID# dee'

fMake the required program modification {1 point):

{MNrite a function for searcing file according o primary kay.

{IFuncticn should write the values of all atiributes fram the record,

J{Put the updated program info file ‘update_#student_ID# .cpp”

exercise
template

Figure 5: Example of main program code template

#1#,,main.template «—— main code template
#exercise#, exercise

#surname_name#,surname_name
#student_ID#,student_ID
#main_template# main_* main_*.template
#field_declarations#,field_* field_*.template

#field# field_*

#length#,length
#formal_arguments#,formal_arguments(field_*)
#formal_into_record# field_* formal_into_record_".template
#fields_struct#,field_* field_struct_*.template
#forming_record_int# field_int,field_record_int.template
#forming_record_float#,field_float,field_record_float.template
#ield# field
#write_record_fields# field_* write_record_fields.template
#fields_entry# field_* fields_entry.template
#real_arguments#, list(field_*)
#test_data# field_* test_data_*.template
#test_data_header# field_* test_data_header.template
#ield_int# field_int

#field_float# field_float

#field_char# field_char

Figure 6: Generator configuration

There are also some special possibilities
like specifying atribute groups by aster-
isk (e.g. #write _record fields#, field *,

write_record fields.template) and template names
according to attribute names (e.g. #test data#,
field *, test data_*.template).

4.1 Generated program with stu-

dent’s example

Generated program consist from several parts:

e identification part (student’s ID, surname and
name; in a form of comments),

e program code in C++ that includes function
which generates file with test data to be en-
tered and

e student exercises (in form of comments).

The whole student session with generation sys-
tem is shown by Use-case diagram in Figure 7.

Generating system (online)

e code
generation

-«—generated code: Code generation

<

Student's local computer
“‘Tene | P

Taley
Compiling and running

et data
\fe
S G,
sl,ul'-‘mg (' Doing axercises
e
a—docume™

%;“:*‘%)’9 LMS system (Moodle)

K4
Storing results s
L
Q‘oc et

Uents ~—a

\
ates

J

Student

g
Grading

;

Teachar

Figure 7: Use-case diagram of the generation sys-
tem

Student enters his/her identification data (stu-
dent’s ID, surname and name) into the online gen-
eration system, which generates program code, to-
gether with exercises. Student downloads the code
and compiles it on a local computer or by using on-
line compiler. The program generates file with test
data. Student does the exercises using test data
and makes the resulting document which contains

required answers. In the current solution the doc-
ument should be manually uploaded on the Learn-
ing management system (LMS), and graded by the
teacher.

5 Discussion and future work

The offered solution in a form of generating sys-
tem has the main goal to personalize the student’s
programming exercises, primarily their homework.
That should aggravate copying solutions among
students. The generation system is easy to use for
the students because they just need to enter their
identification data to receive their program codes
with exercises. Also, they need to upload their so-
lutions to the LMS system (usually Moodle) which
is their usual way to submit their homeworks and
other exercises.

Requirements for the teachers are relatively high
at the moment, because each exercise requires its
particular set of program code templates, which
could be partly inherited from previous exer-
cises, and requires a generator configuration which
can also partly be inherited from previous exer-
cises. So, some skills of teacher in template meta-
programming would be welcome.

Another problem is grading of such personalized
programming exercises, which could take some time
from the teachers. It could be solved by generating
the two polymorphic variants of programming code:
one for student and another one for teacher, which
includes the print of required solution. That could
be automated by on-line compiling of program with
the output in form of dynamic generated web page.
So, the system which is planned for our future work
should introduce that possibility for teachers in or-
der to enable easier grading.

Also, the concept of generating student’s exer-
cises could be used in personalization of written
exercises, which is also planned to be investigated
in our future work.

6 Conclusion

Understanding of programming concepts and algo-
rithms for solving programming tasks are the key
points in achievement of programming skills for
student. But, students often try to avoid under-

standing programming concepts by some "short-
cuts", like learning program code by rote, copying
programs from colleagues etc. Personalization of
student’s programming exercises should aggravate
copying solutions among students who try to avoid
understanding of programming concepts. Auto-
matic on-line generating of student’s programming
exercises offers a solution, where exercises are tied
to student’s ID-s. The solution is easy to be used by
students, but in current implementation phase has
some additional requirements for the teachers. At
first, the offered approach requires more teachers’
work in preparation of exercises and some skills in
template meta-programming. Grading of student’s
exercises could also take some additional time from
the teachers, but that could be solved by some
improvements of the generating system, which are
planned for our future work

References

[1] Ala-Mutka, K., Uimonen, T., Jirvinen, H-
M.: Supporting students in C++ programming
courses with automatic program style assess-
ment, Journal of Information Technology Edu-
cation, vol. 3, pp. 245-262.

[2] Artal, CG., Suarez, M.D.A., Perez, 1.S., Lopez,
R.Q.: OLC, On-Line Compiler to Teach Pro-
gramming Languages, International Journal of
Computers, Communications & Control, vol. 3,
no. 1, pp. 69-79.

[3] Benford, S.D., Burke, E.K., Foxley, E.: Course-
ware to support the teaching of programming,
Proceedings of the Conference on Developments
in the Teaching of Computer Science, University
of Kent, 1992, pp. 158-166.

[4] Benford, S.D., Burke, E., Foxley, E., Gut-
teridge, N., Zin, A.M.: Ceilidh: A course admin-
istration and marking system, Proceedings of the
1st International Conference of Computer Based
Learning, Vienna, Austria, 1993.

[5] Byrne, P., Lyons, G.: The Effect of Student
Attributes on Success in Programming, Proceed-
ings of 6th Conference on Innovation and Tech-
nology in Computer Science Education, June 25-
27, United Kingdom, 2001, pp. 49-52.

[6] Carter, J., English, J., Ala-Mutka, K., Dick,
M., Fone, W., Fuller, U., Sheard, J.: ITICSE
working group report: How shall we assess this?
SIGCSE Bulletin, vol. 35, no. 4, pp. 107-123.

[7] Delorie, D.: DJGPP Public Access Cross Com-
piler, available at http://www.delorie.com/
djgpp/compile/, Accessed: 11'" May 2010.

[8] Forsythe, G.E., Wirth, N.: Automatic grading
programs, Communications of the ACM, vol. 8,
no. 5, pp. 275-278.

[9] Gomes, A., Carmo, L., Bigotte, E., Mendes,
A.J.: Mathematics and programming prob-
lem solving, Proceedings of the 3rd E-Learning
Conference—Computer Science Education (CD-
ROM), September 7-8, Coimbra, Portugal, 2006.

[10] Higgins, C., Symeonidis, P., Tsintsifas, A.:
The marking system for CourseMaster, Proceed-
ings of the 7th annual conference on Innovation
and Technology in Computer Science Education,
June 24-28, Aarhus, Denmark, 2002, pp. 46-50.

[11] Hyvonen, J., Malmi, L.: TRAKLA—a system
for teaching algorithms using email and a graph-
ical editor, Proceedings of HYPERMEDIA in
Vaasa, 1993, pp. 141-147.

[12] Jackson, D., Usher, M.: Grading student pro-
grams using ASSYST, Proceedings of 28th ACM
SIGCSE Technical Symposium on Computer Sci-
ence Education, February 27 — March 01, San
Jose, California, USA, 1997, pp 335-339.

[13] Janhunen, T., Jussia, T., Jérvisalo, M.,
Oikarinen, E.: Teaching smullyan’s analytic
tableaux in a scalable learning environment, Pro-
ceedings of Kolin Kolistelut / Koli Calling —
Fourth Finnish / Baltic Sea Conference on Com-
puter Science Education, October 1-3, Helsinki
University of Technology, 2004, pp. 85-94.

[14] Konecki M., Orehovacki, T., Lovren¢i¢, A.:
Detecting Computer Code Plagiarism in Higher
Education, Proceedings of the 31st International
Conference on Information Technology Inter-
faces, June 22-25, Cavtat, Croatia, 2009, pp.
409-414.

[15] Mékeld, S., Leppénen, V.: Japroch: A tool
for checking programming style, Proceedings of

Kolin Kolistelut / Koli Calling — Fourth Finnish
/ Baltic Sea Conference on Computer Science
Education, October 1-3, Helsinki University of
Technology, 2004, pp. 151-155.

[16] Malmi, L., Karavirta, V., Korhonen, A.,
Nikander, J., Seppéld, O., Silvasti, P.: Visual
algorithm simulation exercise system with au-
tomatic assessment: TRAKLA2, Informatics in
Education, vol. 3, no. 2, pp. 267-288.

[17] Naur, P.: Automatic grading of students’ AL-
GOL programming, BIT 4, pp. 177-188.

[18] Radogevi¢, D., Klicek, B.: The Scripting
Model of Application Generators, Proceedings of
The 16th International DAAAM Symposium In-
telligent Manufacturing & Automation: Focus
on Young Researchers and Scientists, October
19-22, Opatija, Croatia, 2005.

[19] Radosevié, D., Konecki, M., Orehovacki, T.:
Java Applications Development Based on Com-
ponent and Metacomponent Approach, Journal

of Information and Organizational Sciences, vol.
32, no. 2, pp. 137-147.

[20] Radosevi¢, D., Orehovacki, T., Lovrenci¢, A.:
Verificator: Educational Tool for Learning Pro-
gramming, Informatics in Education, vol. 8, no.
2, pp. 261-280.

[21] Robinson, S.K., Torsun, I.S.: The automatic
measurement of the relative merits of student
programs, ACM SIGPLAN Notices, vol. 12, no.
4, pp. 80-93.

[22] Saikkonen, R., Malmi, L., Korhonen, A.:
Fully automatic assessment of programming ex-
ercises, Proceedings of The 6th Annual SIGCSE
/ SIGCUE Conference on Innovation and Tech-
nology in Computer Science Education, Canter-
bury, United Kingdom, 2001, pp. 133-136.

[23] Tschaldr, R.: JXXX Compiler Service,
available at http://www.innovation.ch/java/
java_compile.html, Accessed: 11" May 2010.

[24] Tscherter, V., Lamprecht, R., Nievergelt, J.:
Exorciser: Automatic generation and interactive
grading of exercises in the theory of computation,
Fourth International Conference on New Educa-
tional Environments, May, Lugano, Switzerland,

2002, pp. 47-50.

