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Abstract

In this paper, the set-theoretic approach in the logical theory of normative systems is extended using
Broome’s definition of the normative code function. The syntax and semantics for first order metanor-
mative language is defined, and metanormative language is applied in the formalization of the basic
principles in Broome’s approach and in the construction of a logical typology of normative systems. Spe-
cial attention is given to the types of normative systems which are not definable in terms of the properties
of singular sets of requirements (e.g. the realization equivalence of codes, the social compatibility of
codes, and the compatibility of codes issued by different normative sources). Examples are given of the
application of the typology in the interpretation of philosophical texts. Von Wright’s hypothesis on the
connection of logical properties of normative systems, conceived set-theoretically, with standard deon-
tic logic is proved by introducing the translation function between the metanormative language and the
restricted language of standard deontic logic. The translation reveals that von Wright’s hypothesis must
be appended. The problems of narrow and wide scope readings of the deontic conditionals and of the
meaning of iterated deontic operators are addressed using the distinction between relative and absolute
normative codes. The theorem on the existence of a realization equivalent absolute code for any relative
code is proved.
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1. The Set-Theoretic Approach to Normative
Systems

What use can one make of the logic of intentionality (i.e.
the logic of propositional attitude reports) in predicting
and explaining human behaviour if in reality this logic
can fail? For example, the logic of belief requires any
agent not to have contradictory beliefs, and yet in reality
agents’ inconsistent belief systems abound. The status of
the logic of intentionality has been a puzzling issue, since
two intuitions on the nature of the laws of logic seem to
collide. On the one hand, the laws of logic are construed
as unavoidable in reality. On the other hand, it is well
known that the laws of the logic of intentionality may fail
in human theoretical and practical reasoning. The stan-
dard solution assigns a normative role to the logic of in-
tentionality.

John Broome has developed a general metanormative

perspective which provides a fruitful framework for the
logical analysis of intentionality. In general, according to
Broome, a normative source (e.g. rationality) may accord
with reality and then the corresponding property (e.g. the
property of being rational) is realized. Broome’s distinc-
tion between normative sources and normative properties
fits in well with the thesis of “normative essentialism”
proposed by Zangwill (2005). Zangwill has put forward
the thesis that the essence of the mental is to be subject to
norms, not to conform to them. Using Broome’s concep-
tual distinction, one might rephrase Zangwill’s thesis as
follows: the mental is essentially subjected to the require-
ments of normative sources, and it accidentally might
conform to them, in which case some normative property
becomes instantiated.

There has been a long debate on the logical character
of normativity and on the normative character of logic. I
will not argue for the logicality of the normative, or for the
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normativity of the logical. Rather, I will focus on the ty-
pology of normative systems in order to provide a formal
explication of the different senses that the statements ‘a
normative system is logical’ and ‘a logical system is nor-
mative’ may have. For the purpose of explication, I will
rely on a set-theoretical approach in the logical theory of
normative systems. The approach was introduced by Al-
chourrón and Bulygin (1998) who represented the force
of the norm by the membership of its norm-content in a
set (normative system); later von Wright (1999) discussed
the approach as a possible interpretation of deontic logic;
and, more recently, Broome (2007b) generalized the ap-
proach by treating the sets of norm-contents as values of
code functions. The relevant quotation is reproduced be-
low with minor alterations in symbols in order to match
the signature that will be used later throughout this text.

We must allow for the possibility that the
requirements you are under depend on your
circumstances. Here is how I shall do that
formally, using possible worlds semantics.
There is a set of worlds, at each of which
propositions have a truth value. The val-
ues of all propositions at a particular world
conform to the axioms of propositional cal-
culus. For each source of requirements s,
each person i and each world w, there is a set
of propositions ks(i,w), which is to be inter-
preted as the set of things that s requires of i
at w. Each proposition in the set is a required
proposition. The function ks from i and w to
ks(i,w) I shall call s’s code of requirements.
(Broome, 2007b, 14)

Broome’s approach bears significant resemblance to
the concept of the normative system proposed by Al-
chourrón and Bulygin (1998).

We can now define the concept of a norma-
tive system as the set of all the propositions
that are consequences of the explicitly com-
manded propositions. (Alchourrón and Bu-
lygin, 1998, 391)

Broome’s concept of a code of requirements is more gen-
eral in several respects. First, codes are ternary functions
(taking as arguments a normative source, an agent and a
world) and sets of requirements are their values. So, one
can quantify over variables in the code function and ob-
tain new concepts on that basis. Second, sets of require-
ments can be related to Alchourrón and Bulygin’s norma-
tive system as their special case, namely as values of a
deductively closed absolute code. The significant resem-
blance between the two notions consists in the fact that in

both cases the force of a requirement (or a norm) is rep-
resented by the membership of the requirement-content
(or the norm-content) in some set (in the code of require-
ments and in the normative system, respectively). There-
fore, propositions, and not requirements, make a set of re-
quirements, and, similarly, propositions, and not norms,
constitute a normative system.

Remark 1 Broome does not explicate the notion of nor-
mative source but introduces it by way of examples (sur-
vival, prudence, and rationality). I will not give an expli-
cation of the notion of normative source either, but will
give a sketch of the distinction that was implicit in my
thoughts and that was used for an explication of the re-
lation between the normative and the logical (see Defi-
nitions 2). Normative sources are: formal and material.
Formal normative sources regulate relations between in-
tentional states, either within one category (e.g. theo-
retical rationality) or between categories (e.g. practical
rationality). Material normative sources are those that
require a specific content to be present in an intentional
state. I posit the theoretical type of normative source as
requiring certain beliefs, and the practical type of norma-
tive source as requiring certain desires and decisions or
intentions.

2. The Language of Norm Contents

In order to give a first order translation for Broome’s func-
tional approach, some preliminary steps must be taken.
Metanormative theory speaks about a language in which
norms are stated. Therefore, my starting point is Ln, the
language in which the norms and conditions of their ap-
plication are expressed. By Ln I will denote a language
of propositional modal logic with the following modali-
ties: Bi for ‘i believes that’, Di for ‘i desires that’, Ii for
‘i intends that’. Later, I will give reasons for reducing the
“language of intentionality” to only three modalities.

The normative language Ln is built over the base lan-
guage of propositional logic LPL with modalities added.

Definition 1 Let i ∈ A, X = B,D, I, and p ∈ LPL.
The formulas of language Ln are:

ϕ p | [Xi]ϕ | ¬ϕ | (ϕ1∧ϕ2).

The definitions of truth-functional connectives are stan-
dard.

Considered in isolation, language Ln is not committed to
any particular logic. Still, if a subset of Ln has a logical
property definable within some particular logic l, then that
property will be noted as ‘l-property’.

Remark 2 The sentences of Ln whose main operator is
[Bi], [Di], or [Ii] will be termed ‘modals’.
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Definition 2 The set lit(Ln) of quasi-literals with respect
to propositional logic is the smallest subset of Ln con-
taining the set of propositional letters and their negations,
and the set of modals and their negations.

Let us extend language Ln, itself a standard modal
propositional language, to language Ln(ω1) of a variant of
infinitary logic, which has the same symbols as Ln, but
in Ln(ω1) the infinitary conjunction symbol


is applied

to countably infinite subsets of the set of quasi-literals
lit(Ln). See (Keisler, 1971) for a full-blown infinitary
logic.

Definition 3 Let p ∈ Ln and x ⊆ lit(Ln).
The formulas of language Ln(ω1) are:

ϕ p |


x | ¬ϕ | (ϕ1∧ϕ2).

Let us also extend the deductive system pl of proposi-
tional logic to an ad hoc variant of infinitary propositional
logic pl(ω1) containing the rules of pl and the additional
rules for the countable conjunctions of quasi-literals. Ac-
cording to the grammar of Ln(ω1), the introduction and
elimination rules for


are applicable to the sets of quasi-

literals only. For x ⊆ lit(Ln),

1. Γ,


x pl(ω1) p for all p ∈ x,

2. if Γ pl(ω1) p for all p ∈ x, then Γ pl(ω1)


x.

On the side of semantics, the definition of the truth
assignment h is extended in an obvious way: h(


x) = t

iff h(p) = t for all p ∈ x.
Proposition 1 shows that the ad hoc system pl(ω1) is a

conservative extension of pl.

Proposition 1 For x∪{p} ⊆ Ln, if x pl(ω1) p, then x pl p.

P The proof will be sketched. Assume x pl(ω1) p.
The deductive system pl(ω1) is sound, as can be easily
checked. Therefore, x |=pl(ω1) p. Then also x |=pl p thanks
to the coincidence of the semantic definitions for sen-
tences in Ln. Finally, x pl p by the completeness of the
propositional logic. 

3. Metanormative Language

In order to achieve technical clarity, I will define a first-
order metanormative languageLmeta in which variables of
different sorts range over different objects in the domain.
Lmeta has the following extra-logical vocabulary:

individual constants for normative sources, for agents
and for worlds: s,s1, . . ., a,a1, . . ., v,v1, . . .;

symbols for the code of requirements function, for the
propositional logic consequence function, and for
the axiomatic basis of a modal logic function: k3,
Cn1, l1;

symbols for functions generating sentential forms of
the object language: neg1, conj2, infconj1 and a
set of symbols mod1

Bi, mod1
Di, mod1

Ii for each i ∈
{a,a1, . . .};

symbol for the function extracting quasi-literals from a
given set: lt1;

a ternary predicate symbol for the relation of an agent i
having a property corresponding to a source s in a
world w (normative property predicate): Ks;

a binary predicate symbol for the relation of member-
ship: ∈2.

Additionally, we may introduce a dispensable part of vo-
cabulary containing monadic predicate symbols express-
ing properties of being a normative source, of being an
agent, of being a sentence in Ln, of being a possible
world: Source1, Ag1, Sen1, W1.

Variables comprise:

general variables ranging over everything: x, x1, ...,
y,y1, ..., z,z1, ...;

sorts of variables:

s,s1, ... ranging over {x ∈ D | Source(x)}
i, i1, ... ranging over {x ∈ D | Ag(x)}
p, p1, ...,q,q1, ... ranging over {x ∈ D | Sen(x)}
w,w1, ... ranging over {x ∈ D |W(x)}.

The shorthand notations for neg(p), conj(p,q),
modBi(p), modDi(p), modIi(p), infconj(x) are ¬p, (p∧
q), [Bi]p, [Di]p, [Ii]p, 


x. For ease of reading,

Quine quotes will be used also for the standardly defined
connectives.

Example 1 p→ q stands for neg(conj(p,neg(q))).

A sole variable written between Quine quotes is the same
as the variable itself. Sometimes this redundant notation
will be (ab)used in order to highlight sentence variables
and sentence functions within a formula.

Definition 4 Let c stand for an individual constant, v for
any variable, f n for a function symbol and Pn for a pred-
icate symbol.
The terms are:

t c | v | f n(t1, ..., tn).

The atomic formulas are:

p Pn(t1, ..., tn).

The formulas of Lmeta are:

ϕ p | ¬ϕ | (ϕ1∧ϕ2) | ∀v ϕ.
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Definition 5 Sentences of Lmeta are formulas of Lmeta
with all the variables bound.

The purpose of metanormative language is to enable
talking: about the syntax of sentences in Ln(ω1), about
the properties that the sentences and their sets can have
in different logics (most notably “world logic” and “in-
tentionality logics”), about the semantics of sentences in
Ln(ω1), i.e. about sentence-world relations. The basic on-
tology for the code functions requires: normative sources,
agents, worlds and sets of sentences. Besides the set of
agents and the set of normative sources, all other objects
in the domain are constructed using sentences of the nor-
mative language: the worlds are theoretically identified
with pl-maximal consistent sets of Ln(ω1) (see Definition
6); code values are logic free sets of sentences; axiomatic
bases of logics are sets of substitutional instances of the
sentences in a given set; and sentences are sentences.

Definition 6 A set x is maximally consistent in the logic
pl(ω1) iff x ⊆Ln(ω1), and x pl(ω1) ⊥, and for all y ∈ Ln(ω1)
it holds that if y  x, then x∪{y} pl(ω1) ⊥.
The set of possible worlds is the set

MaxCon(Ln(ω1)) = {x | x is max. consistent in pl(ω1)}.

Modelling constraints This kind of modelling imposes
several constraints. The modal axioms for belief, desire
or intention do not hold in some possible worlds, and so
any kind and any measure of failure in their logics may
occur.

What sets a limit to the amount of irrational-
ity we can make psychological sense of is
a purely conceptual or theoretical matter—
the fact that mental states and events are the
states and events they are by their location in
a logical space. (Davidson, 2004, 183)

The worlds characterized by an extreme “amount of ir-
rationality” on the side of an agent i are admitted in the
modelling. This fact should not be interpreted as a viola-
tion of Davidson’s thesis, but rather as an unrealistic but
harmless and dispensable theoretical possibility.

The T axiom (p→ p) poses a more serious threat
to the modelling that keeps modality and the world apart.
If modalities obeying reflexive axiom T are allowed, then
possible worlds, being defined as maximal consistent sets
in propositional logic, would become intuitively impos-
sible. For example, although {p, [K]i¬p} is a pl(ω1)-
consistent set, we do not want to have it included in
any world since no false proposition may be known as
a true proposition. Since the corresponding T axioms
seem to constitute an important part of the meaning of
verbs of knowledge and of action, epistemic and praxeo-
logical modalities must be excluded from the language of
norms Ln(ω1). The forthcoming analysis does not depend

on the inclusion of “T modalities”, so this strategy may
be adopted as a provisional method.

Von Wright (von Wright, 1963) defined the content of
a norm as “that which ought to or may or must not be or
be done”. Normative language Ln(ω1) departs from von
Wright’s definition by taking norm-content to be the psy-
chological state or relation of psychological states that
ought to or may or must not be present in the mind of the
norm addressee on a particular occasion. The reduction
and the switch may seem drastic, but there is a rationale
for it: the requirement that agent i knows that p could
be replaced by p→ [Bi]p, and a required action to see to
it that p could be replaced by the required intention, i.e.
[Ii]p.

Logical properties of sets of requirements
Broome (2007b, 35) claims that code values are closed
under pl-equivalence, i.e. if p and q are equivalent in
propositional logic, then p is a member of a set of re-
quirements just in case q is a member. He seems to tacitly
hold that this congruence property constitutes the whole
of the logic of “source requirements”. Broome is not iso-
lated in adopting the congruence rule (i.e. closure under
equivalence): a recent proponent is Lou Goble (2009).
Broome (2008, 129) bases the acceptability of the congru-
ence principle on the argument of the absence of contrary
evidence, while Goble (2009, 483) takes it for granted
since: “[it] seems [to be] a minimum requirement for a
logic of ought.” On the other hand, Alchourrón and Bu-
lygin (1998) propose an approach that is both more re-
strictive and more permissive. First, contrary to Broome’s
weak congruence logic, Alchourrón and Bulygin argue
that there is no logic of norms since the existence of a
norm depends on the empirical fact of promulgation. Sec-
ond, they claim that there is a logic of normative systems
since the set of norm-contents is deductively closed. By
contrast, in Broome’s approach there is no general logic
for a set of requirements except congruence, while deduc-
tive closure is merely a special case. Then again, follow-
ing Alchourrón and Bulygin, one may think about a set of
requirements as void of any logic and only later introduce
the set closed under congruence as a special type. In this
respect, I will follow Alchourrón and Bulygin’s proposal
because of its higher level of generality.

If rationality is a normative source or if rationality is
presupposed by some normative sources, then some logic
for rational relations between intentional states will be
needed. Being restricted in no way, a code function may
also deliver sets having particular logical properties. So,
it is convenient to introduce sets of sentences in Ln(ω1)
which obey or contain some modal logic. By doing so,
one can explicate the rational relations in terms of logic
and define the type codes whose output has certain log-
ical properties with respect to some logic of the modal
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operators (Definition 9).

Definition 7 Any function g from Ln ⊂Ln(ω1) to Ln(ω1) is
a restricted substitution function iff

• g(p) ∈ Ln(ω1) if p is a propositional letter

• g(¬p) = ¬g(p)

• g(p∧q) = (g(p)∧g(q))

• g([Xi]p) = [Xi]g(p) for X = B,D, I, i ∈ A.

The set Sb is the set of all restricted substitution functions.

Remark 3 The restriction in the domain of substitution
functions is due to the fact that infinite conjunctions are
not allowed to embed.

Definition 8 The set of all substitutional instances of sen-
tences in a given set x ⊆ Ln is the set l(x) = {q | ∃p∃ f (p ∈
x∧ f ∈ Sb∧ f (p) = q)}.

Definition 9 The set Cn(l(x)) = {y | l(x) pl(ω1) y} is the
logic for axiomatic basis x.

Definition 10 Let [Xi] denote

((p∨¬p) ↔ q) → [Xi]q,

and let K[Xi] denote

[Xi](p → q) → ([Xi]p → [Xi]q).

A set Cn(l(x)) is a normal logic for a set of modal oper-
ators o/x ⊆ {[Xi] | X = B,D, I, i ∈ A, and [Xi] occurs in
some p ∈ x} iff

Cn(l({y | y ∈ o/x}∪ {Ky | y ∈ o/x})) ⊆ Cn(l(x)).

First order structure for metanormative lan-
guage
The domain for metanormative language Lmeta comprises
the following objects: normative sources, x ∈ S; agents,
x ∈ A; sentences, x ∈ Ln(ω1); sets of sentences (code val-
ues, and axiomatic bases for logics), x ⊆ Ln(ω1); worlds,
x ∈ MaxCon(Ln(ω1)).

Definition 11 D = S∪A∪Ln(ω1)∪℘Ln(ω1) where S  ∅,
A  ∅, S∩A = ∅.

Definition 12

I( f )(x1, .., xn) =


y, if x1, .., xn,y ∈ I( f ),
undefined, otherwise.

Definition 13 Function I gives the following interpreta-
tion for the vocabulary of Lmeta:

(interpretation of names of sources) I(si) ∈ S;

(interpretation of the code function symbol) I(k) is a
function:

S×A×MaxCon(Ln(ω1)) → ℘Ln(ω1);

(interpretation of the function symbol for an axiomatic
basis) I(l) is a function: ℘Ln(ω1) → ℘Ln(ω1), such
that for any x ⊆ Ln(ω1)

I(l)(x) = { f (p) | p ∈ x∧ f ∈ Sb};

(interpretation of the pl-consequence function symbol)
I(Cn) is a function: ℘Ln(ω1) → ℘Ln(ω1), such that
for any x ⊆ Ln(ω1)

I(Cn)(x) = {y ∈ Ln(ω1) | x pl(ω1) y};

(interpretation of sentence form function symbols)
I(neg), I(conj), I(modX) for X = Bi, Di, Ii,
I(infconj) are functions: Ln(ω1) → Ln(ω1) , such
that

I(neg) = {x,y | y = ¬x}
I(conj) = {x,y,z | z = (x∧ y)}
I(modX) = {x,y | y = [X]x}
I(infconj) =

=

x,y


x ⊆ lit(Ln)∧
y =

{seq(x)(1),
..., seq(x)(n), ...}



where  is a concatenation operation, and where
seq ∈ 

x, while


x denotes the set of functions f
: N→ x, such that f (i)  f ( j) for each i, j ∈ N;

(interpretation of the function symbol for the extrac-
tion of quasi-literals) lt is the function: ℘Ln(ω1) →
℘Ln(ω1), such that for any x ⊆ Ln(ω1), I(lt)(x) = {y |
y ∈ x∧ y ∈ lit(Ln(ω1))};

(interpretation of “normative property predicate”)

I(Ks) ⊆ A×MaxCon(Ln(ω1));

(interpretation of membership predicate)

I(∈) = {x,y | x,y ∈ D, x ∈ y};

(interpretation for “superfluous predicates”)

I(Source) = S
I(A) = A

I(Sen) =Ln(ω1)

I(W) =MaxCon(Ln(ω1)).

Definition 14 Mmn = D,I.
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Definition 15 Variable assignment g in Mmn = D,I is
a (possibly partial) function g, such that for any variable
v

g(v) ∈ D iff v ∈ domain(g).

For sorts of variables: (source variables) g(v) ∈ S if
v = s,s1, ...; (world variables) g(v) ∈MaxCon(Ln(ω1)) if
v = w,w1, ...; (sentence variables) g(v) ∈ Ln(ω1) if v =
p, p1, ...,q,q1, ...; (agent variables) g(v) ∈A if v = i, i1, ....
The variable assignment g is appropriate for formula p iff
all free variables of p are in the domain of g .

Notation 1 The empty variable assignment g∅ is unde-
fined for any variable: range(g∅) = ∅.
By g[x/d] we denote the variable assignment that differs
from g at most by assigning d for x:

g[x/d](v) =


d, if x = v
g(v), otherwise.

Definition 16

tMmn
g =

=


I(t), if t is an individual constant
g(t), if t is an individual variable
I( f )(t1Mmn

g , . . . ,tnMmn
g ), if t is f (t1, ..., tn).

Definition 17 (Satisfaction) Let g be an assignment in
Mmn which is appropriate for p. Suppose, successively,
that p is P(t1, ..., tn), ¬ϕ, (ϕ∧ψ), and ∀vϕ.

Mmn |= P(t1, ..., tn) [g]

iff t1Mmn
g , . . . ,tnMmn

g  ∈ I(P)
Mmn |= ¬ϕ [g]

iff not Mmn |= ϕ [g]
Mmn |= (ϕ∧ψ) [g]

iff Mmn |= ϕ [g] andMmn |= ψ [g]
Mmn |= ∀vϕ [g]

iff for all d ∈ D,Mmn |= ϕ [g[v/d]].

Definition 18 (Truth in a metanormative model) Formula
ϕ is true inMmn iff g∅ satisfies ϕ inMmn:

Mmn |= ϕ iff Mmn |= ϕ [g∅].

4. Typology of Sets of Requirements and
Code Functions

The use of code functions enriches the discriminative
power of the logical theory of normative systems. On the
one hand, in the functional approach, one may define the
properties and relations of sets of requirements as in other
set theoretic approaches. On the other hand, unlike other
set theoretic approaches, quantifying over different argu-
ment positions in the code function makes it possible for

the functional approach to introduce a number of interest-
ing type distinctions.

First, I will give definitions for some interesting log-
ical properties that are “local”, i.e. properties of sets of
requirements. In each definition, the definiendum intro-
duces both an informal expression and a new predicate of
languageLmeta. The unbound variables are assumed to be
universally quantified.

Definitions 1 A set of requirements ks(i,w1) is pl-
congruent, CGpl(ks(i,w1)), iff

∀p∀q

p↔ q ∈ Cn(∅)→
(p ∈ ks(i,w1)↔ q ∈ ks(i,w1))


.

A set of requirements ks(i,w1) is pl-consistent,
CSpl(ks(i,w1)), iff ∃w2 ks(i,w1) ⊆ w2.

A set of requirements ks(i,w1) is pl-deductively closed,
DCpl(ks(i,w1)), iff ks(i,w1) = Cn(ks(i,w1)).

A set of requirements ks(i,w1) is consistent in logic l(x),
CSl(x)(ks(i,w1)), iff

∃w2 Cn(l(x)∪ks(i,w1)) ⊆ w2.

A set of requirements ks(i,w1) is a logic, LG(ks(i,w1)),
iff ∃xks(i,w1) = Cn(l(x)).

A set of requirements ks(i,w1) is deductively closed with
respect to logic l(x), DCl(x)(ks(i,w1)), iff

∃yks(i,w1) = Cn(l(x)∪ y)).

A set of requirements ks(i,w1) is material (not formal) in
logic l(x), MTl(x)(ks(i,w1)), iff

∃y(y  ∅∧ y  l(x)∧ks(i,w1) = Cn(l(x)∪ y)).

Second, more “global” properties are obtained through
universal generalization over agents and worlds. In this
way, the corresponding properties of normative sources
may be defined. Such a list of the logical properties of
normative sources follows with the focus on more general
logical properties. Therefore, pl-properties of the sources
will be omitted. Additionally, I will use existential gener-
alization to introduce the notion of an achievable source,
a notion that is critical to the theory that separates nor-
mative sources from normative properties, since only an
achievable source can define a property.

Definitions 2 A normative source s issues an l(x)-
consistent code iff ∀i∀wCSl(x)(ks(i,w)).

A normative source s is formal iff ∀i∀wLG(ks(i,w)).

A normative source s issues an l(x)-deductively closed
code iff ∀i∀wDCl(x)(ks(i,w)).
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A normative source s is material with respect to logic
l(x) iff ∃i∃wMTl(x)(ks(i,w)).

A normative source s is achievable iff ∃wks(i,w) ⊆ w.

Third, some of the logical properties of normative sys-
tems are not definable in terms of the properties of a sole
set of requirements. A comparison between sets of re-
quirements leads to the introduction of new conceptual
distinctions. In this way, the difference between relative
and absolute sources becomes visible. Finally, for the
determination of the equilibrium properties of a norma-
tive system, the social logic of normative sources must
be taken into account (see Section 7.), and, therefore, the
notion of social consistency is introduced below.

Definitions 3 A normative source is world-relative iff
∃i∃w1∃w2 ks(i,w1)  ks(i,w2).

A normative source is agent-relative iff

∃w∃i1∃i2 ks(i1,w)  ks(i2,w).

A normative source is world-absolute (world-invariant)
iff it is not world-relative.

A normative source is agent-absolute iff it is not agent-
relative.

A normative source is socially l(x)-consistent iff

∀i1∀i2∀w CSl(x)(ks(i1,w)∪ks(i2,w)).

Fourth, thanks to quantification over sources, the relations
between codes issued by different sources can be defined.
I will give only two definitions of the kind, namely those
that will be used in the rest of this article.

Definitions 4 Normative sources s1 and s2 are realiza-
tion-equivalent iff

∀i∀w(ks1 (i,w) ⊆ w↔ ks2 (i,w) ⊆ w).

Normative sources s1 and s2 are l(x)-compatible iff

∀w CSl(x)(ks1 (i,w)∪ks2 (i,w)).

The typology put to work
The terms defined above, or ones constructed in a similar
fashion, can be applied in the interpretation of philosophi-
cal texts. Let us begin with antique philosopher, Epictetus
(c. 50–c. 120).

[...] instruction consists precisely in learn-
ing to desire each thing just as it happens.
(Epictetus, 1925, 93)

The Lmeta translation gives:

∀i∀w(Di p ∈ kinst(i,w)→ p ∈ w)

where inst names the normative source of instruction and
where modal operator Di stands for ‘agent i desires that’.

Let us consider a modern text in which the author
treats rationality as a normative source that issues a world-
absolute logical code.

It is obvious enough that there are norms of
rationality that apply to thoughts. If we be-
lieve certain things, logic tells us there are
other things we ought or ought not to believe
at the same time; decision theory gives us an
idea of how the beliefs and values of a ratio-
nal man must be related to each other; [...]
(Davidson, 2004, 97)

Let ratio refer to the normative source of rationality. A
likely Lmeta translation for the first clause of the second
quoted sentence states that the normative source of ratio-
nality is deductively closed with respect to the doxastic D
axiom:

∀i∀w DCl({Bi p→¬Bi¬p})(kratio(i,w)).

Another plausible Lmeta translation is a stronger one that
maintains that rationality is a formal normative source
which includes the doxastic D axiom:

∀i∀w
(LG(kratio(i,w))∧ l({Bi p→¬Bi¬p}) ⊆ kratio(i,w)).

In the next example there is an interplay between the
world logic, pl-logic, and some logic of intentionality,
some l(x) logic (such as the one in the previous example
requiring consistency of belief contents).

Rationality is principally concerned with co-
herence among your attitudes such as your
beliefs and intentions, whereas morality, pru-
dence and other sources of normativity are
rarely concerned with those things. Ratio-
nality has a domain of application where it is
pretty much on its own. Examples of conflict
between rationality and other sources of re-
quirements tend to be farfetched... (Broome,
2007a, 164)

The last sentence of the citation could be interpreted as a
claim that any consistent normative source issues a code
that is compatible with one issued by rationality; or, stated
more concisely, that the normative source of rationality is
maximally compatible:

∀s∀i∀w(CSpl(ks(i,w))→ CSl(x)(ks(i,w)∪kratio(i,w))).
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Metanormative interpretation also reveals the hidden the-
sis implied by the claim on the maximally compatible
character of rationality. Rationality, at least in the “hor-
izontal sense” (Zangwill, 2005) of the word, deals with
formal relations between intentional states and therefore it
cannot be maximally compatible unless other sources are
consistent in the logic defined by the axiomatic bases for
the modal part of their language. In other words, norma-
tive sources must obey the logic of the language in which
their requirements are stated. This claim is rather strong,
as the next section will show, for it holds only for ideal
normative sources.

5. Deontic Logic and the Typology of Nor-
mative Systems

Consistent and deductively closed codes seem to play an
important role in the philosophical understanding of basic
normative concepts. For example, deontic KD logic with-
out iterated deontic modalities may be conceived as the
theory of a specific type of code, namely of a consistent
pl-deductively closed code. This type has been discussed
in the literature. For example, Alchourrón and Bulygin
define “the concept of a normative system as the set of
all the propositions that are consequence of the explic-
itly commanded propositions” (Alchourrón and Bulygin,
1998, 391), and that concept corresponds to the concept
of a deductively closed set of requirements (see section
4.). Although Alchourrón and Bulygin allow for a norma-
tive system to be inconsistent, they consider inconsistency
as a serious defect that needs to be cured. So, inconsistent
normative systems are only transient states in the devel-
opment of the system. To Alchourrón and Bulygin’s con-
cept of a consistent normative system there corresponds
the concept of a set of requirements that is both deduc-
tively closed and consistent.

Von Wright has pointed out the connection between
deontic logic and the set-theoretical approach:

. . . classic deontic logic, on the descriptive in-
terpretation of its formulas, pictures a gapless
and contradiction-free system of norms. (von
Wright, 1999, 32)

In order to investigate von Wright’s thesis, a translation
between metanormative language and the language of
classical deontic KD logic will be introduced and used
for a precise determination of the relationship between
KD logic and the typology of sets of requirements.

Definition 19 Let p ∈ LPL be a formula of propositional
logic.
Formulas of restricted language LO

KD:

ϕ p | Op | Pp | ¬ϕ | (ϕ1∧ϕ2).

Let us introduce the translation τ1 from the restricted lan-
guage LO

KD to the metanormative language Lmeta, with
O p and P p standing for ’i in v has an s-obligation (s-
permission) to p’.

Definition 20 Function τ0 maps sentences from the frag-
mentLO

KD∩LPL to the set of sentential variables and sen-
tential function terms of Lmeta:

τ0(a) ∈{p, p1, . . . ,q,q1, . . .}
for propositional letters a ∈ LPL

τ0(¬ϕ) =¬τ0(ϕ)

τ0((ϕ∧ψ)) =(τ0(ϕ)∧τ0(ψ)).

Definition 21 Translation τ1 :LO
KD→Lmeta

τ1(p) =τ0(p) ∈ v if p ∈ LPL

τ1(Oϕ) =τ0(ϕ) ∈ ks(a,v)

τ1(Pϕ) =¬ τ0(¬ϕ) ∈ ks(a,v)

τ1(¬ϕ) =¬τ1(ϕ)

τ1((ϕ∧ψ)) =(τ1(ϕ)∧τ1(ψ)).

Example 2

τ1(Pp↔¬O¬p)

⇔ τ1(Pp)↔ τ1(¬O¬p)

⇔¬ τ0(¬p) ∈ ks(a,v)↔¬ τ1(O¬p)

⇔¬ ¬τ0(p) ∈ ks(a,v)↔¬ τ0(¬p) ∈ ks(a,v)

⇔¬ ¬p ∈ ks(a,v)↔¬ ¬τ0(p) ∈ ks(a,v)
⇔¬ ¬p ∈ ks(a,v)↔¬ ¬p ∈ ks(a,v)
⇔.

There are two interpretations of conditional obligation in
standard deontic logic. N-scope interpretation (narrow
scope interpretation) reads conditional obligation as ‘if p
is the case, then q ought to be the case’, i.e. p→ Oq. W-
scope interpretation (wide scope interpretation) puts the
entire conditional within the obligation range: ‘it ought
to be the case that: if p is the case, then q is the case’,
i.e. O(p→ q). The narrow scope formula, i.e. p→ Oq,
is translated by τ1 as p ∈ v → q ∈ ks(a,v). The wide
scope formula, i.e. O(p→ q), is translated by τ1 as p→
q ∈ ks(a,v). There is a tendency for a natural language
speaker to regard N-scope and W-scope expressions as
equivalent. The impression of equivalence in meaning is
justified by two theoretically derived facts. First, any code
ks(i,w) has its conditionalized variant kcond

s (i,w) and the
following proposition holds (the unbound variables are
assumed to be universally quantified):
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∀w



(p ∈ w→ q ∈ ks(i,w))
N-scope
↔




lt(w)→ q ∈ kcond
s (a,w)


W-scope (generalized)



.

In other words, for any code function requiring conse-
quent of an obligation conditional, there is a coordinated
code function that requires the entire conditional. Sec-
ond, a code and its conditionalized variant are realization
equivalent (see Section 6.for a more detailed exposition).
Therefore, from the behaviouristic point of view or from
the perspective of the normative properties being realized,
there is no difference between the two codes.

Standard deontic logic translated into
metanormative language
The principles of standard deontic logic hold under the
translation τ1:

• mutual definability, Pp↔¬O¬p, holds for any set
of requirements (see Example 2);

• the “gaplessness” condition Pp∨O¬p translates to
¬p  ks(a,v)∨¬p ∈ ks(a,v) and that condition,
obviously, is satisfied by any set of requirements
whatsoever;

• the K axiom becomes p → q ∈ ks(a,v) → (p ∈
ks(a,v)→ q ∈ ks(a,v)) and that condition holds for
any pl-deductively closed set;

• the D axiom translates to p ∈ ks(a,v) → ¬p 
ks(a,v) and that is just another way of stating pl-
consistency.

According to our translation scheme, von Wright’s
claim that classical deontic logic “pictures a gapless and
contradiction-free system of norms” should be appended:
classical deontic logic pictures a system of norms that
is deductively closed, too, while gaplessness condition is
vacuously satisfied.

One may ask whether these properties provide an ade-
quate description of a formally sound set of requirements
or whether the description provided by, some or other, de-
ontic logic is sufficiently fine grained. For example, the τ1

translation for D does not allow [Bi]p∧¬[Bi]p to enter
the set of requirements, but it does allow [Bi]p∧ [Bi]¬p.
So, the question arises whether the consistency property
of a set of requirements is a property that is connected
to the world logic, or rather a property that a set inherits
when it obeys the logic of its contents, i.e. the logic of
intentionality.

Although iterated deontic operators receive no trans-
lation in the scheme proposed above, one may extend the

line of thought by giving additional translation rules for
language of standard deontic logic restricted to a maxi-
mum of two iterations of deontic operators, treating iter-
ated deontic modalities as a sequence of heterogeneous
operators and introducing the distinction into the syntax.

Definition 22 Let p ∈ LO
KD. The formulas of LO2O

KD are:

ϕ p | O2 p | P2 p | ¬ϕ | (ϕ1∧ϕ2).

Definition 23 Let S ub(ϕ) c1
x1

... cn
xn

 denote the substitu-

tional instance of ϕ ∈ Lmeta in which the constants
c1, ...,cn are replaced by the variables x1, ..., xn. Trans-
lation τ2 :LO2O

KD →Lmeta is defined as follows:

τ2(O2 p) = ∀i∀w S ub(τ1(p)) a
i

v
w
 for p ∈ LO

KD

τ2(P2 p) = ∃i∃w S ub(τ1(p)) a
i

v
w
 for p ∈ LO

KD

τ2(¬ϕ) = ¬τ2(ϕ)

τ2(ϕ∧ψ) = (τ2(ϕ)∧τ2(ψ)).

Such an approach to iterated deontic modalities departs
from von Wright’s (1999) “second order descriptive inter-
pretation” where e.g. O2 would stand for the existence of
“normative demands on normative systems” (“norms for
the norm givers”). The “first order” translation τ1 as well
as the “second order” translation τ2 give us statements in
metanormative language Lmeta, both of which may pic-
ture some type of normative system. The difference lies
in the fact that τ1 gives a local picture of a set of require-
ments (for a particular source, agent and world) while τ2

gives a more global picture of a code function. In the sec-
ond case, the properties depicted are the properties of a
normative source.

Let us consider KD45 deontic logic! The τ2 transla-
tions of the reinterpreted axioms 4, O1 p→ O2O1 p and 5,
P1 p→O2P1 p amount to stating that any s-obligation and
any s-permission hold universally. So, the reinterpreted
axioms will hold only if the s-code is absolute.

Following Broome’s approach (2007b; 2008), a
metanormative theory must take into consideration both
normative sources and normative properties since the in-
teraction between the normative and the real takes place
on the level of agent properties. A straightforward defini-
tion of the “all-or-nothing” normative property has been
proposed in (Broome, 2007b, 11) and its Lmeta reformu-
lation is given below.

Definition 24 An agent i at world w has an “all-or-
nothing” normative property Ks that corresponds to the
source s iff the set of requirements ks(i,w) is satisfied in
w, i.e. Ks(i,w)↔ ks(i,w) ⊆ w.

If the only way to satisfy some relative code and some ab-
solute code is to satisfy them simultaneously, then these
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codes define the same normative property. The ques-
tion arises as to whether the (non)absoluteness of a code
function introduces a difference with respect to normative
properties. The next theorem provides a negative answer.

6. A Theorem on the Absolute and the Rela-
tive

There is a number of ways to define a conditionalized
variant of a code. Definition 25, below, introduces one
of the variants by using an infinite conjunction of quasi-
literals to single out a world, and by assigning a condi-
tional for each requirement.

In order to justify the negative resolution of the ques-
tion posed above (i.e. is the normative property de-
pendent on the relative-absolute character of the norma-
tive source that defines it?), several propositions will be
needed. First, Lemma 1 will be established and used in
the proof of Proposition 2 which shows that an adequately
chosen set of quasi-literals is sufficient to determine a
world. After that, the function that assigns to each code
function its conditionalized variant will be introduced in
Definition 25, and Theorem 1 on the existence of a real-
ization equivalent absolute code for any relative code will
be proved. The theorem is equivalent to the claim that
relative and absolute codes do not generate different nor-
mative properties.

Lemma 1 For all p ∈ Ln(ω1), p ∈ Cn(lt(w)) or ¬p ∈
Cn(lt(w)).

P Transfinite induction on the pl-complexity of for-
mulas will be used. Let the complexity of modal formulas
and propositional letters be 0; the complexity of ¬p —
one greater than the complexity of p; the complexity of
(p∧q) — one greater than the maximum of that of p and
q; the complexity of


x — ω. Let us consider only the

cases of limit ordinals, 0 and ω. (0) The lemma holds for
propositional letters and modal formulas in virtue of the
pl-maximality of w. (ω) Suppose p is


x. According to

the definition, any pi ∈ x is a quasi-literal, and by induc-
tive hypothesis the lemma holds for each pi. Either all the
quasi-literals in x are consequences of lt(w), and therefore



x ∈ Cn(lt(w)), or some of the quasi-literals are not
consequences of lt(w), and therefore ¬ x ∈ Cn(lt(w)).



Proposition 2 Cn(lt(w)) = w

P First, suppose p ∈ Cn(lt(w)). Then, p ∈ w since
w is deductively closed. Second, suppose p ∈ w. By
Lemma 2, p ∈ Cn(lt(w)) ∨ ¬p ∈ Cn(lt(w)), and so
p ∈ Cn(lt(w)) since w is consistent. 

Definition 25 A code kcond
s is the conditionalized variant

of a code ks iff

∀p∀w1
p ∈ kcond

s (i,w1)
↔
∃q∃w2(q ∈ ks(i,w2)∧ p = 


lt(w2)→ q)

 .

Lemma 2 Any conditionalized code is absolute.

P Let w1 and w2 be arbitrary worlds. Assume p ∈
kcond

s (i,w1). By Definition 25, ∃q∃w3(q ∈ ks(i,w3)∧ p =



lt(w3)→ q). Then, by universal instantiation of the
same definition, p ∈ kcond

s (i,w2). Obviously, the same
holds in the opposite direction. 

Theorem 1 For each world-relative code there is a real-
ization equivalent world-absolute code.

P We show that conditionalization generates a real-
ization equivalent absolute code. By Lemma 2, each con-
ditionalized code is absolute. It remains to prove that:

ks(i,w1) ⊆ w1↔ kcond
s (i,w1) ⊆ w1.

For the left to right direction, assume that ks(i,w1) ⊆
w1. Further, assume for an arbitrary p that p ∈ kcond

s (i,w1).
Then, by Definition 25, there is some w2 and some
q ∈ ks(i,w2), such that p = 


lt(w2)→ q. By tertium

non datur, either Cn(lt(w2)) = w1 or Cn(lt(w2))  w1. If
Cn(lt(w2)) = w1, then by Proposition 2 w1 = w2. So, q ∈
ks(i,w1), and therefore q ∈ w1 by the initial assumption.
Since, w1 is a deductively closed set, 


lt(w2)→ q


p

∈

w1. If Cn(lt(w2))  w1, then 


lt(w2)  w1. There-
fore, by completeness of w1, ¬ lt(w2) ∈ w1. Then,



lt(w2)→ q


p

∈ w1 by deductive closure.

For the right to left direction, assume kcond
s (i,w1) ⊆

w1. Further, assume for an arbitrary p that p ∈ ks(i,w1).
Then, by Definition 25, 


lt(w1)→ p ∈ kcond

s (i,w1). By
the initial assumption, 


lt(w1) → p ∈ w1. Set w1 is

deductively closed, so, given the fact that 


lt(w1) ∈w1,
we get p ∈ w1 as desired. 

Remark 4 Theorem 1 can be easily generalized to the
claim that for any relative code, either world or agent
relative, there is a realization equivalent world and agent
absolute code.

7. Glimpses Beyond

It seems that a generalized set theoretic approach opens
up a number of interesting topics of historical, social-
theoretical, philosophical and ethical interest.
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In historical terms (as the quotation below shows),
Leibniz’s way of understanding the connection between
normative properties and normative requirements comes
very close to the approach developed here, and differences
and similarities should be more closely investigated:

That is permitted what a good man possibly
is. That is obligatory what a good man nec-
essary is. (Leibniz, 2006, 280)1

The research presented in this paper should be ex-
tended towards the development of a typology of norma-
tive properties and a determination of the deontic logic
that describes the structure of the property requirements.
The typology of normative systems seems to need a sup-
plementary typology of normative properties, most no-
tably of those that are defined in terms of partial satis-
faction.

The motivation for the AGM theory of belief revision
came from a legal context. The AGM theory, inter alia,
has described the logical ways in which the consistency
of a theory should be maintained. The logical proper-
ties that define the state of equilibrium for the homeo-
static dynamics of normative codes should be determined.
Prima facie, a number of other properties, besides mere
pl-consistency, should be taken into account for the deter-
mination of the equilibrium state of normative systems;
in particular, properties such as code compatibility, so-
cial consistency, achievability, and logicality seem to be
of theoretical importance.
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1 Leibniz’s letter to Antoine Arnauld, November 1671:
“Licitum enim est, quod viro bono possibile est. Debitum
sit, quod viro bono necessarium est.” [My translation]
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