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Speaker Localization and Tracking with a
Microphone Array on a Mobile Robot Using von

Mises Distribution and Particle Filtering
Ivan Marković and Ivan Petrović

Abstract—This paper deals with the problem of localizing and
tracking a moving speaker over the full range around the mobile
robot. The problem is solved by taking advantage of the phase
shift between signals received at spatially separated microphones.
The proposed algorithm is based on estimating the time difference
of arrival by maximizing the weighted cross-correlation function
in order to determine the azimuth angle of the detected speaker.
The cross-correlation is enhanced with an adaptive signal-to-noise
estimation algorithm to make the azimuth estimation more robust
in noisy surroundings. A post processing technique is proposed
in which each of these microphone-pair determined azimuths
are further combined into a mixture of von Mises distributions,
thus producing a practical probabilistic representation of the
microphone array measurement. It is shown that this distribu-
tion is inherently multimodal and that the system at hand is
non-linear. Therefore, particle filtering is applied for discrete
representation of the distribution function. Furthermore, two
most common microphone array geometries are analysed and
exhaustive experiments were conducted in order to qualitatively
and quantitatively test the algorithm and compare the two
geometries. Also, a voice activity detection algorithm based on
the before mention signal-to-noise estimator was implemented
and incorporated into the existing speaker localization system.
The results show that the algorithm can reliably and accurately
localize and track a moving speaker.

I. INTRODUCTION

In biological lifeforms hearing, as one of the traditional five
senses, elegantly supplement other senses as being omnidi-
rectional, not limited by physical obstacles, and absence of
light. Inspired by these unique properties, researchers strive
towards endowing mobile robots with auditory systems to
further enhance human–robot interaction, not only by means of
communication but also, just as humans do, to make intelligent
analysis of the surrounding environment. By providing speaker
location to other mobile robot systems, like path planning,
speech and speaker recognition, such system would be a step
forward in developing a fully functional human–aware mobile
robots.

The auditory system must provide robust and non–
ambiguous estimate of the speaker location, and must be
updated frequently in order to be useful in practical tracking
applications. Furthermore, the estimator must be computation-
ally non-demanding and possess a short processing latency to
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make it practical for real-time systems. The afore mentioned
requirements and the fact of an auditory system being placed
on a mobile platform, thus having to respond to constantly
changing acoustic conditions, make speaker localization and
tracking a formidable problem.

Existing speaker localization strategies can be categorized
in four general groups. The first group of algorithms refer
to beamforming methods in which the array is steered to
various locations of interest and searches for the peak in the
output power [1], [2], [3], [4]. The second group includes
beamforming methods based upon analysis of spatiospectral
correlation matrix derived from the signals received at the
microphones [5]. The third group relies on computational
simulations of the physiologically known parts of the hearing
system, e.g. binaural cue processing [6], [7], [8]. The fourth
group of localization strategies is based on estimating the
time difference of arrival (TDOA) of the speech signals
relative to pairs of spatially separated microphones and then
using that information to infer about the speaker location.
Estimation of the TDOA and speaker localization from TDOA
are two separate problems. The former is usually calculated
by maximizing the weighted cross-correlation function [9],
while the latter is commonly known as multilateration, i.e.
hyperbolic positioning, which is a problem of calculating the
source location by finding the intersection of at least two
hyperbolae [10], [11], [12], [13]. In mobile robotics, due
to small microphone array dimensions, usually hyperbolae
intersection is not calculated, only the angle (azimuth and/or
elevation) is estimated [14], [15], [16], [17], [18].

Even though the TDOA estimation based methods are
outperformed to a certain degree by several more elaborate me-
thods [19], [20], [21], they still prove to be extremely effective
due to their elegance and low computational costs. This paper
proposes a new speaker localization and tracking method based
on TDOA estimation, probabilistic measurement modelling
based on von Mises distribution, and particle filtering. Speaker
localization and tracking based on particle filtering was also
used in [1], [31], [34], [37], but the novelty of this paper is the
proposed measurement model used for a posteriori inference
about the speaker location. The benefits of the proposed
approach are that it solves the front-back ambiguity, increases
the robustness by using all the available measurements, and
localizes and tracks a speaker over the full range around the
mobile robot, while keeping low computational complexity of
TDOA estimation based algorithms.

The rest of the paper is organized as follows. Section II
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describes the implemented azimuth estimation method and
the voice activity detector. Section III analyses Y and square
microphone array geometries, while Section IV defines the
framework for the particle filtering algorithm, introduces the
von Mises distribution, the proposed measurement model,
and describes in detail the implemented algorithm. Section
V presents the conducted experiments. In the end, Section VI
concludes the paper and presents future works.

II. TDOA ESTIMATION

The main idea behind TDOA-based locators is a two step
one. Firstly, TDOA estimation of the speech signals relative
to pairs of spatially separated microphones is performed.
Secondly, this data is used to infer about speaker location. The
TDOA estimation algorithm for two microphones is described
first.

A. Principle of TDOA

A windowed frame of L samples is considered. In order
to determine the delay ∆τij in the signal captured by two
different microphones ( i and j ), it is necessary to define a co-
herence measure which will yield an explicit global peak at the
correct delay. Cross-correlation is the most common choice,
since we have at two spatially separated microphones (in an
ideal homogeneous, dispersion-free and lossless scenario) two
identical time-shifted signals. Cross-correlation is defined by
the following expression:

Rij(∆τ) =
L−1∑
n=0

xi[n]xj [n−∆τ ], (1)

where xi and xj are the signals received by microphone i
and j, respectively. As stated earlier, Rij is maximal when
correlation lag in samples, ∆τ , is equal to the delay between
the two received signals.

The most appealing property of the cross-correlation is
the ability to perform calculation in the frequency domain,
thus significantly lowering the computational intensity of the
algorithm. Since we are dealing with finite signal frames, we
can only estimate the cross-correlation:

R̂ij(∆τ) =
L−1∑

k=0

Xi(k)X∗
j (k)ej2π k∆τ

L , (2)

where Xi(k) and Xj(k) are the discrete Fourier trans-
forms (DFTs) of xi[n] and xj [n], and (.)∗ denotes complex-
conjugate. We are windowing the frames with rectangular
window and no overlap. Therefore, before applying Fourier
transform to signals xi and xj , it is necessary to zero-pad
them with at least L zeros, since we want to calculate linear,
and not circular convolution.

A major limitation of the cross-correlation given by (2)
is that the correlation between adjacent samples is high,
which has an effect of wide cross-correlation peaks. Therefore,
appropriate weighting should be used.

B. Spectral weighting

The problem of wide peaks in unweighted, i.e. general-
ized, cross-correlation (GCC) can be solved by whitening the
spectrum of signals prior to computing the cross-correlation.
The most common weighting function is the phase transform
(PHAT) which, as it has been shown in [9], under certain
assumptions yields maximum likelihood (ML) estimator. What
PHAT function (ψPHAT = 1/|Xi(k)||X∗

j (k)|) does, is that it
whitens the cross-spectrum of signals xi and xj , thus giving
a sharpened peak at the true delay. In the frequency domain,
GCC-PHAT is computed as:

R̂PHAT
ij (∆τ) =

L−1∑

k=0

Xi(k)X∗
j (k)

|Xi(k)| |Xj(k)|e
j2π k∆τ

L . (3)

The main drawback of the GCC with PHAT weighting is
that it equally weights all frequency bins regardless of the
signal-to-noise ratio (SNR), thus making the system less robust
to noise. To overcome this issue, as proposed in [1], a modified
weighting function based on SNR is incorporated into GCC
framework.

Firstly, a gain function for such modification is introduced
(this is simply a Wiener gain):

Gn
i (k) =

ξn
i (k)

1 + ξn
i (k)

, (4)

where ξn
i (k) is the a priori SNR at the i th microphone, at

time frame n, for frequency bin k and ξ0
i = ξmin. The a priori

SNR is defined as ξn
i (k) = λn

i,x(k)/λn
i (k), where λn

i,x(k) and
λn

i (k) are the speech and noise variance, respectively. It is
calculated by using the decision-directed estimation approach
proposed in [22]:

ξn
i (k) = αe[Gn−1

i (k)]2γn−1
i (k)+(1−αe)max{γn

i (k)−1, 0},
(5)

where αe is the adaptation rate, γn
i = |Xn

i (k)|2/λn
i (k) is the

a posteriori SNR, and λ0
i (k) = |X0

i (k)|2.
In stationary noise environments, the noise variance of each

frequency bin is time invariant, i.e. λn
i (k) = λi(k) for all n.

But if the microphone array is placed on a mobile robot, most
surely due to robot’s changing location, we will have to deal
with non-stationary noise environments. An algorithm used to
estimate λn

i (k) is based on minima controlled recursive ave-
raging (MCRA) developed in [23], [24]. The noise spectrum
is estimated by averaging past spectral power values, using a
smoothing parameter that is adjusted by the speech presence
probability. Speech absence in a given frame of a frequency
bin is determined by the ratio between the local energy of the
noisy signal and its minimum within a specified time window.
The smaller the ratio in a given spectrum, more probable the
absence of speech is. Further improvement can be made in (4)
by using a different spectral gain function [25].

To make the TDOA estimation more robust to reverberation,
it is possible to modify the noise estimate λn

i (k) to include a
reverberation term λn

i,rev(k):

λn
i (k) 7→ λn

i (k) + λn
i,rev(k), (6)
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where λn
i,rev is defined using reverberation model with expo-

nential decay [1]:

λn
i,rev(k) = αrevλ

n−1
i,rev (k) + (1− αrev)δ|Gn−1

i (k)Xn−1
i (k)|2,

(7)
where αrev is the reverberation decay, δ is the level of
reverberation and λ0

i,rev(k) = 0. Equation (7) can be seen as
modelling the precedence effect [26], [27], in order to give
less weight to frequencies where recently a loud sound was
present.

Using just PHAT weighting, poor results were obtained and
we concluded that the effect of the PHAT function should be
tuned down. As it was explained and shown in [28], the main
reason for this approach is that speech can exhibit both wide-
band and narrow-band characteristics. For example, if uttering
the word ”shoe”, ”sh” component acts as a wide-band signal
and voiced component ”oe” as a narrow-band signal.

Based on the discussion above, the enhanced GCC-PHAT-β
has the following form:

R̂PHAT-βe
ij (∆τ) =

L−1∑

k=0

Gi(k)Xi(k)Gj(k)X∗
j (k)

(|Xi(k)| |Xj(k)|)β
ej2π k∆τ

L .

(8)
where 0 < β < 1 is the tuning parameter.

C. Voice Activity Detector

At this point it would be practical to devise a way of
discerning if the processed signal frame contains speech or
not. This method would prevent misguided interpretations of
the TDOA estimation due to speech absence, i.e. estimation
from signal frames consisting of noise only. Implemented
voice activity detector (VAD) is a statistical model-based one,
originating from methods proposed in [22], [23], [29].

Basically, two hypotheses are considered; Hn
0 (k) and

Hn
1 (k), indicating respectively, speech absence and presence

in the frequency bin k of the frame n. Observing DFT Xi(k) of
the signal at microphone i, the DFT coefficients are modelled
as complex Gaussian variables. Accordingly, the conditional
probability density functions (pdfs) of Xi(k) are given by:

p(Xn
i (k)|Hn

0 (k)) =
1

πλn
i (k)

exp
(
−|X

n
i (k)|2

λn
i (k)

)

p(Xn
i (k)|Hn

1 (k)) =
1

π(λn
i (k) + λn

i,x(k))
×

exp

(
− |Xn

i (k)|2
λn

i (k) + λn
i,x(k)

)
. (9)

Likelihood Ratio (LR) of the frequency bin k is given by:

Λn
i (k) =

p(Xn
i (k)|Hn

1 (k))
p(Xn

i (k)|Hn
0 (k))

=
1

1 + ξn
i (k)

exp
(

γn
i (k)ξn

i (k)
1 + ξn

i (k)

)
. (10)

Figure 1 shows recorded speech and its scaled LR. It can be
seen that the algorithm is successful in discriminating between
speech and non-speech regions. The rise in LR value at the
beginning of the recording is due to training of the SNR
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Fig. 1: Recorded speech signal with corresponding scaled
likelihood ratio

estimator. Finally, a binary-decision procedure is made based
on the geometric mean of LRs:

1
2L

2L−1∑

k=0

log Λn
i (k)

H1

≷
H0

η, (11)

where a signal frame is classified as speech if the geometric
mean of LRs exceed a certain threshold value η. This method
can be further enhanced by calculating mean of optimally
weighted LRs [30]. Also, instead of using a binary-decision
procedure, VAD output can be a parameter based on SNR indi-
cating the level of signal corruption, thus effectively informing
a tracking algorithm to what extent measurements should be
taken into account [31].

D. Direction of Arrival Estimation

The TDOA between microphones i and j can be found by
locating the peak in the cross-correlation:

∆τij = arg max
∆τ

R̂PHAT−βe
ij (∆τ). (12)

Once TDOA estimation is performed, it is possible to compute
the azimuth of the sound source through series of geometrical
calculations. It is assumed that the distance to the source is
much larger than the array aperture, i.e. we assume the so
called far-field scenario. Thus the expanding acoustical wave-
front is modelled as a planar wavefront. Although this might
not always be the case, being that human-robot interaction
is actually a mixture of far-field and near-field scenarios, this
mathematical simplification is still a reasonable one. Using the
cosine law we can state the following (Fig. 2):

ϕij = ± arccos
(

c∆τij

aij

)
, (13)

where aij is the distance between the microphones, c is the
speed of sound, and ϕij is the direction of arrival (DOA) angle.
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Fig. 2: Direction of arrival angle transformation

Since we will be using more than two microphones one
must make the following transformation in order to fuse the
estimated DOAs. Instead of measuring the angle ϕij from
the baseline of the microphones, transformation to azimuth
θij measured from the x axis of the array coordinate system
(bearing line is parallel with the x axis when θij = 0◦)
is performed. The transformation is done with the following
equation (angles ϕ+

24 and θ+
24 in Fig. 2):

θ±ij = αij ± ϕij

= atan2
(

yj − yi

xj − xi

)
± arccos

(
c∆τij

aij

)
. (14)

At this point one should note the following:
• under the far-field assumption, all the DOA angles me-

asured anywhere on the baseline of the microphones
are equal, since the bearing line is perpendicular to the
expanding planar wavefront (angles θ−12 and θ+

24 in Fig.
2)

• front-back ambiguity is inherent when using only two
microphones (angles ϕ−34 and ϕ+

34 in Fig. 2).
Having M microphones, (14) will yield 2 · (M

2

)
possible

azimuth values. How to solve the front-back ambiguity and
fuse the measurements is explained in Section IV.

III. MICROPHONE ARRAY GEOMETRY

The authors find that microphone arrangement on a mobile
robot is also an important issue and should be carefully
analysed. If we constrain the microphone placement in 2D,
then two most common configurations present:
• square array – four microphones are placed on the ver-

tices of a square. The origin of the reference coordinate
system is at the intersection of the diagonals

• Y array – three microphones are places on the vertices of
an equilateral triangle, and the fourth is in the orthocenter
which represents the origin of the reference coordinate
system.

The dimensions of the microphone array depend on the type of
the surface it is placed on. In this paper two microphone array
configurations are compared as if placed on a circular surface
with fixed radius r (see Fig. 3). Hence, both arrays are defined

by their respective square and triangle side length a, which is
equal to a = r

√
2 and a = r

√
3, respectively. Estimation of

TDOA is influenced by the background noise, channel noise
and reverberation, and the goal of (8) is to make the respective
estimation as insensitive as possible to these influences. Under
assumption that the microphone coordinates are measured
accurately, we can see from (14) that the estimation of azimuth
θ±ij depends solely on the estimation of TDOA. Therefore, it
is reasonable to analyse the sensitivity of azimuth estimation
to TDOA estimation error. Furthermore, it is shown that this
sensitivity depends on the microphone array configuration.

Firstly, we define the error sensitivity of azimuth estimation
to TDOA measurement, sij , as follows [32]:

sij =
∂θij

∂(∆τij)
. (15)

By substituting (13) and (14) into (15) and applying simple
trigonometric transformations, we gain the following expres-
sion:

sij =
c

aij

1
| sin(θij − αij)| . (16)

From (16) we can see that there are two means by which
error sensitivity can be decreased. The first is by increasing
the distance between the microphones aij . This is kept under
constraint of the robot dimensions and is analysed for circle
radius r = 30 cm, thus yielding square side length a = 0.42
cm and triangle side length a = 0.52 cm. The second is to
keep the azimuth θij as close to 90◦ relative to αij as possible.
This way we are ensuring that the impinging source wave
will be parallel to the microphones baseline. This condition
could be satisfied if all the microphone pair baselines have
the maximum variety of different orientations.

For the sake of the argument, let us set c = 1. The error
sensitivity curves sij , as a function of azimuth θij , for Y and
square array are shown in Fig. 4. We can see from Fig. 4 that
the distance between the microphones aij mostly contributes
to the offset of the sensitivity curves, and that the variety of
orientations affects the effectiveness of angle coverage. For Y
array, Fig. 4 shows two groups of sensitivity curves: one for
aij = r, the length of the baseline connecting the microphones
on the vertices with the microphone in the orthocenter, and

Fig. 3: Possible array placement scenarios
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Fig. 4: Error sensitivity of azimuth estimation for Y (upper
plot) and square array (bottom plot)

other for aij = r
√

3, the length of the baseline connecting the
microphones on the vertices of the triangle. The first group
has the largest error sensitivity value of 3.8 approximately,
and the second group has the largest error sensitivity value of
2.2 approximately. For the square array, Fig. 4 shows also two
groups of sensitivity curves: one for aij = r

√
2, the side length

of the square, and the other for aij = 2r, the diagonal length
of the square. The first group has the largest error sensitivity
value of 3.3 approximately, and the second group has the
largest error sensitivity value of 2.3 approximately. From the
above discussion we can see that the Y array maximises
baseline orientation variety, while the square array maximises
total baseline length (this length is defined as sum of all the
distances between the microphones and is in favour by factor
1.2 for square array). This type of analysis can also be easily
made for bigger and more complex microphone array systems
in order to search for the best possible microphone placements.

A possible scenario is that one of the microphones gets
occluded and its measurement is unavailable or completely
wrong. For Y array we have selected that one of the mi-
crophones on the vertices is occluded, since this is the most
probable case, and for the square array it makes no difference,
since the situation is only symmetrical for any microphone.
Robustness of error sensitivity with respect to microphone
occlusion is shown in Fig. 5 for both Y and square array,
from which it can be seen that the result is far worse for Y
array. This is logical, since we removed from the configuration
two microphone pairs with largest baseline lengths. From the
above discussion we can conclude that the square array is more
robust to microphone occlusion.

Since we are utilising all microphone pair measurements
to estimate azimuth, it is practical to compare joint error
sensitivity (JES) curves, which we define as:

JES =
∑

{i,j}
sij , ∀ {i, j} microphone pairs. (17)
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Fig. 5: Error sensitivity of azimuth estimation for Y (upper
plot) and square array (bottom plot) with one microphone
occluded
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Fig. 6: Joint error sensitivitiy curves for both Y and square
microphone array configurations

Figure 6 shows both JES curves for Y and square array.
We can see that there are two different peaks for both
configurations. The peaks for Y array come from the fact
that it has two different baseline lengths. The same applies
for square array, which additionally has the largest peak due
to the fact that baselines of two couples of microphone pairs
cover the same angle.

To conclude, we can state the following; although Y array
configuration places microphones in such a way that no two
microphone-pair baselines are parallel (thus ensuring maxi-
mum orientation variety), square array has larger total baseline
length, yielding smaller overall error sensitivity and greater
robustness to microphone occlusion.
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Furthermore, when considering microphone placement on
a mobile robot from a practical point of view, square array
has one more advantage. If the microphones are placed on the
body of the robot (as opposed to the top of the robot, e.g. the
head), problem occurs for Y array configuration considering
the placement of the fourth microphone (the one in the ortho-
center). However, the advantages of Y array should not be left
out when considering tetrahedra microphone configurations
(see [33], for e.g.). Also if the two configurations are analysed
with both having the same total baseline length, Y array would
prove to have superior angle resolution [14].

IV. SPEAKER LOCALIZATION AND TRACKING

The problem at hand is to analyse and make inference
about a dynamic system. For that, two models are required:
one predicting the evolution of the speaker state over time
(system model), and second relating the noisy measurements to
the speaker state (measurement model). We assume that both
models are available in probabilistic form. Thus, the approach
to dynamic state estimation consists of constructing the a
posteriori pdf of the state based on all available information,
including the set of received measurements, which are further
combined due to circular nature of the data, as a mixture of
von Mises distributions.

Before presenting the models and the algorithm in details,
we describe in general major successive steps of the algorithm.
The algorithm starts with an initialization step at which we
assume that the speaker can be located anywhere around the
mobile robot, i.e. we assume that the angle has a uniform
distribution. Any further action is taken only if voice activity
is detected by the VAD described in II-C. When the VAD
condition is fulfilled, the algorithm proceeds with predicting
the state of the speaker trough the sound source dynamics
model described in Section IV-A. Once measurements are
taken, a measurement model based on a mixture of von
Mises distributions, described in Section IV-B, is constructed.
Since this model is inherently multimodal, particle filtering
approach, described in Section IV-C, is utilised to represent
the pdf of such measurement model and to effectively estimate
the speaker azimuth as the expected value this pdf.

A. Sound source dynamics model

The sound source dynamics is modelled by the well behaved
Langevin motion model [34]:

[
ẋk

ẏk

]
= α

[
ẋk−1

ẏk−1

]
+ β

[
υx

υy

]
,

[
xk

yk

]
=

[
xk−1

yk−1

]
+ δ

[
ẋk

ẏk

]
,

(18)

where [xk, yk]T is the location of the speaker, [ẋk, ẏk]T is the
velocity of the speaker at time index k, υx, υy ∼ N (0, συ)
is the stohastic velocity disturbance, α and β are model
parameters, and δ is the time between update steps.

Although the state of the speaker is defined in 2D by (18),
which is found to describe well motion of the speaker [1], [31],
[34], [37], when working with such a small microphone array

like in mobile robotics, due to high uncertainty in distance
estimation only the speaker azimuth is determined [14], [32].
Therefore the system state, i.e. the speaker azimuth, is defined
via the following equation:

θk = atan2
(

yk

xk

)
. (19)

B. The von Mises distribution based measurement model

Measurement of the sound source state with M microphones
can be described by the following equation:

zk = hk(θk, nk), (20)

where hk(.) is a non-linear function with noise term nk,
and zk = [θ±ij , . . . , θ

±
M,M−1]k, i 6= j, {i, j} = {j, i} is the

measurement vector defined as a set of azimuths calculated
from (14). Working with M microphones gives N =

(
M
2

)
microphone pairs and 2N azimuth measurements.

Since zk is a random variable of circular nature, it is
appropriate to model it with the von Mises distribution. The
von Mises distribution with its pdf is defined as [35], [36]:

p(θij |θk, κ) =
1

2πI0(κ)
exp[κ cos(θij − θk)], (21)

where 0 ≤ θij < 2π is the measured azimuth, 0 ≤ θk < 2π is
the mean direction, κ > 0 is the concentration parameter and
I0(κ) is the modified Bessel function of the order zero. Bessel
function of the order m can be represented by the following
infinite sum:

Im(x) =
∞∑

k=0

(−1)k (x)2k+|m|

22k+|m|k! (|m|+ k!)2
, |m| 6= 1

2
. (22)

Mean direction θk is analogous to the mean of the normal
Gaussian distribution, while concentration parameter is anal-
ogous to the inverse of the variance in the normal Gaussian
distribution. Also, circular variance can be calculated and is
defined as:

ϑ2 = 1− I1(κ)2

I0(κ)2
, (23)

where I1(κ) is the modified Bessel function of order one.
According to (14), a microphone pair { i, j } measures two

possible azimuths θ+
ij and θ−ij . Since we cannot discern from a

single microphone pair which azimuth is correct, we can say,
from a probabilistic point of view, that both angles are equally
probable. Therefore, we propose to model each microphone
pair as a sum of two von Mises distributions, yielding a
bimodal pdf of the following form:

pij

(
θ±ij,k|θk, κ

)
= pij

(
θ+

ij,k|θk, κ
)

+ pij

(
θ−ij,k|θk, κ

)

= 1
2πI0(κ) exp

[
κ cos

(
θ+

ij,k − θk

)]
+

+ 1
2πI0(κ) exp

[
κ cos

(
θ−ij,k − θk

)]

(24)

Having all pairs modelled as a sum of two von Mises
distributions, we propose a linear combination of all those
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Fig. 7: A mixture of several von Mises distributions wrapped
on a unit circle (most of them having a mode at 45◦)

pairs to represent the microphone array measurement model.
Such a model has the following multimodal pdf:

p(zk |θk, κ) =
1

2πI0(κ)

N∑

{i,j}=1

βijpij

(
θ±ij,k|θk, κ

)
, (25)

where
∑

βij = 1 is the mixture coefficient. These mixture
coefficients are selected so as to minimise the overall error
sensitivity. As it has been shown, the error sensitivity is
function of the azimuth. The goal of the coefficients βij is
to give more weight in (25) to the most reliable pdfs.

By looking at (16), we can see that the error sensitivity
is the greatest when the argument in the sine function is
zero. This corresponds to a situation when speaker is located
at the baseline of a microphone pair. Furthermore, we can
see that the error sensitivity is the smallest when speaker
is on a line perpendicular to the microphone pair baseline.
Since we need the coefficients βij to give the least weight
to a microphone pair in the former situation and the most
weight to a microphone pair in the latter situation, it would
be appropriate to calculate βij by inverting (16). However, we
use scaled and inverted (16):

βij =
0.5 + |sin(θk−1 − αij)|

1.5
. (26)

where the ratio c/aij is set to one, since it is constant, and the
coefficients are scaled so as to never cancel out completely a
possibly unfavourable pdf. We can also see that the mixture
coefficients are a function of the estimated azimuth and that
this form can only be applied after the first iteration of the
algorithm.

The model (25) represents our belief in the sound source
azimuth. A graphical representation of the analytical (25) is
shown in Fig. 7. Of all the 2N measurements, half of them
will measure the correct azimuth, while their counterparts from
(14) will have different (not equal) values. So, by forming such
a linear opinion pool, pdf (25) will have a strong mode at the
correct azimuth value.

C. Particle filtering

From a Bayesian perspective, we need to calculate some
degree of belief in the state θk, given the measurements zk.
Thus, it is required to construct the pdf p(θk|zk) which bears
multimodal nature due to TDOA based localization algorithm.
Therefore, particle filtering algorithm is utilised, since it is
suitable for non-linear systems and measurement equations,
non-Gaussian noise, multimodal distributions, and it has been
shown in [1], [31], [34], [37] to be practical for sound source
tracking. Moreover, in [1] it is successfully utilised to track
multiple sound sources. Particle filtering method represents
the posterior density function p(θk|zk) by a set of random
samples (particles) with associated weights and computes
estimates based on these samples and weights. As the number
of samples becomes very large, this characterisation becomes
an equivalent representation to the usual function description
of the posterior pdf, and the particle filter approaches the
optimal Bayesian estimate.

Let {θp
k, wp

k}P
p=1 denote a random measure that characterises

the posterior pdf p(θk|zk), where {θp
k, p = 1, . . . , P} is a set

of particles with associated weights {wp
k, p = 1, . . . , P}. The

weights are normalised so that
∑

p wp
k = 1. Then, the posterior

density at k can be approximated as [38]:

p(θk|zk) ≈
P∑

p=1

wp
kδ(θk − θp

k), (27)

where δ(.) is the Dirac delta measure. Thus, we have a discrete
weighted approximation to the true posterior, p(θk|zk).

The weights are calculated using the principle of importance
resampling, where the proposal distribution is given by (18).
In accordance to the sequential importance resampling (SIR)
scheme, the weight update equation is given by [38]:

wp
k ∝ wp

k−1p(zk|θp
k), (28)

where p(zk|θp
k) is calculated by (25), thus replacing θk with

particles θp
k.

The next important step in the particle filtering is the
resampling. The resampling step involves generating a new set
of particles by resampling (with replacement) P times from
an approximate discrete representation of p(θk|zk). After the
resampling all the particles have equal weights, which are thus
reset to wp

k = 1/P . In the SIR scheme, resampling is applied at
each time index. Since we have wp

k−1 = 1/P ∀p, the weights
are simply calculated from:

wp
k ∝ p(zk|θp

k). (29)

The weights given by the proportionality (29) are, of course,
normalised before the resampling step. It is also possible
to perform particle filter size adaptation through the KLD-
sampling procedure proposed in [39]. This would take place
before the resampling step in order to reduce the computational
burden.

At each time index k and with M microphones, a set of 2N
azimuths is calculated with (14), thus forming measurement
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Fig. 8: An unwraped discrete representation of the true
p(zk |θk, κ)

vector zk from which an approximation of (25) is constructed
by pointwise evaluation (see Fig. 8) with particle weights wp

k

calculated from (29) and (25).
The θk is estimated, simply, as expected value of the

system’s state (19):

θ̂k = E [θk] = atan2
(

E[yk]
E[xk]

)
= atan2

(
E [sin(θk)]
E [cos(θk)]

)

= atan2

(∑P
p=1 wp

k sin(θp
k)

∑P
i=p wp

k cos(θp
k)

)
, (30)

where E [ . ] is the expectation operator.

D. Algorithm summary

In order to get a clear overview of the complete algorithm,
we present its flowchart diagram in Fig. 9, and hereafter
describe each step of the algorithm with implementation
details.

Initialization: At time instant k = 0 a particle set
{θp

0 , wp
0}P

p=1 (velocities ẋ0, ẏ0 set to zero) is generated and
distributed accordingly on a unit circle. Since the sound source
can be located anywhere around the robot, all the particles
have equal weights wp

0 = 1/P ∀p, i.e. we assume that the
angle has a uniform distribution.

Voice activity detection: In the speaker detection part a
VAD is applied to recorded signals. Firstly, LR is calculated
with (10), and then a binary-decision procedure is made
through (11). If the VAD result is smaller the threshold η, i.e.
no voice activity is detected, we proceed to a decision logic
in which we either add white Gaussian noise (WGN) defined
with N (µc, σ

2
c ) to particle positions, in order to account for

speaker moving during a silence period, or if this state lasts
longer than a given threshold Ic, the algorithm is reset and we
simply go back to the initialization step. If the VAD result is
larger then the threshold η, i.e. voice activity is detected, then
the algorithm proceeds to speaker state prediction.

Prediction: In this step all the particles are propagated
according to the motion model given by (18).

Measurement model construction: Upon receiving TDOA
measurements, DOAs are calculated from (14) and for each
DOA a bimodal pdf is constructed from (24). To form the pro-
posed measurement model, all the bimodal pdfs are combined
to form (25). The particle weights are calculated from (29)
and (25), and normalized so that

∑P
p=1 wp

k = 1.
Azimuth estimation: At this point we have the approximate

discrete representation of the posterior density (25). The
azimuth is estimated from (30).

Resampling: This step is applied at each time index ensur-
ing that the particles are resampled respective to their weights.
After the resampling, all the particles have equal weights:
{θp

k, wp
k}P

p=1 → {θp
k, 1/P}P

p=1. The SIR algorithm is used (see
[38]), but particle size adaptation is not performed, since we
have a modest number of particles required for this algorithm.
When the resampling is finished, the algorithm loops back to
the speaker detection step.

V. TEST RESULTS

The proposed algorithm is thoroughly tested by simulation
and experiments with a microphone array composed of four
microphones arranged in either Y or square geometry (de-
pending on the experiment). The circle radius for both array
configurations was set to r = 30 cm, yielding side length of
a = 0.52 cm for Y array and a = 0.42 cm for square array.

START

VAD
INITIALIZE

AGAIN?

ADD

WGN

INITIALIZATION

FALSE

FALSE

TRUE

PREDICTION

MEASUREMENT

MODEL

CONSTRUCTION

AZIMUTH

ESTIMATION

RESAMPLING

TRUE

END

SPEAKER DETECTION

SPEAKER TRACKING

Fig. 9: Flowchart diagram of the proposed algorithm
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Hereafter we present first an illustrative simulation and then
the experimental results.

A. Simulation

In order to get a deeper insight into particle behaviour, in
this section we present an illustrative simulation. We con-
structed a measurement vector zk similar to one that would
be experienced during experiments. Six measurements were
distributed close to the true value (θ = 45◦), while the other
six were their counterparts, thus yielding:

zk =
[
θ−12 θ−13 θ+

14 θ+
23 θ+

24 θ+
34 θ+

12 θ+
13 θ−14 θ−23 θ−24 θ−34

]

= [42◦ 44◦ 45◦ 45◦ 46◦ 48◦ 135◦ 75◦ 225◦ 15◦ 315◦ 255◦ ] .
(31)

The algorithm was tested with such zk for the first four
iterations of the algorithm execution. The results are shown
in Fig. 10 where particles before and after the resampling
are shown. We can see that in the first step the particles
are spread uniformly around the microphone array. After the
first measurement, the particle weights are calculated and the
particles are resampled according to their respective weights.
This procedure is repeated throughout the next iterations, and
we can see in Fig. 10 that the particles converge to the true
azimuth value.

B. Experiments

The microphone array consisting of four omnidirectional
microphones is placed on a Pioneer 3DX robot as shown in
Fig. 16. Audio interface is composed of low-cost microphones,
pre-amplifiers and external USB soundcard (whole equipment
costing circa d150). All the experiments were done in real-
time, yielding L/Fs = 21.33 ms system response time. Real-
time multichannel signal processing for the Matlab implemen-
tation was realised with Playrec1 utility, while RtAudio API2

was used for the C/C++ implementation. The experiments
were conducted in a classroom which has dimensions of
7m×7 m×3.2m, parquet wooden flooring, one side covered
with windows and a reverberation time of 850 ms. During
the experiments, typical noise conditions were present, like
computer noise and air ventilation. In the experiments two
types of sound sources were used; a WGN source and a single
speaker uttering a test sequence. The parameter values used
in all experiments are summed up in Tab. I.

The first set of experiments was conducted in order to
qualitatively assess the performance of the algorithm. Two type
of experiments were performed; one with a stationary robot
and the other with a moving robot.

In the experiments with a stationary robot Y array con-
figuration was used, and a loud white noise sound source,
since it represents the best-case scenario in which all the
frequency bins are dominated by the information about the
sound source location. Two cases were analyzed. Figure 11
shows the first case in which a sound source moved around
the mobile robot at a distance of 2 m making a full circle.

1http://www.playrec.co.uk/
2http://www.music.mcgill.ca/∼gary/rtaudio/

Figure 12 shows the results from the second case, where a
sound source made rapid angle changes at a distance of 2
m under 0.5 s (initialization threshold was set to Ic = 10).
Both experiments were repeated with smaller array dimensions
(a=30 cm), resulting in smaller angle resolution, and no
significant degradations to the algorithm were noticed.

In the experiment with a moving robot the speaker was
stationary and uttered a sequence of words with natural voice
amplitude. This experiment was also conducted with Y array
configuration. The robot started at 3m away from the speaker
and moved towards the speaker until reaching distance of 1m.
Then the robot made a 180◦ turn and went back to the previous
position, where it made another 180◦ turn. The results form
this experiment are shown in Fig. 13.

The second set of experiments was conducted in order to
quantitatively assess the performance of the algorithm. In order
to do so, a ground truth system needed to be established.
The Pioneer 3DX platform on which the microphone array
was placed is also equipped with SICK LMS200 laser range
finder (LRF). Adaptive sample-based joint probabilistic data
association filter (ASJPDAF) for multiple moving objects
developed in [40] was used for leg tracking. The authors find
it to be a good reference system in controlled conditions.
Measurement accuracy of the LMS200 LRF is ±35 mm, and
due to determining the speaker location as the centre between
the legs of the speaker, we estimate the accuracy of the
ASJPDAF algorithm to be less than 0.5◦. In the experiments, a
human speaker walked around the robot uttering a sequence of
words, or carried a mobile phone for white noise experiments,
while the ASJPDAF algorithm measured range and azimuth
from the LRF scan.

In this set of experiments three parameters were calcu-
lated: detection reliability, root-mean-square error (RMSE)
and standard deviation. To make comparison possible, the
chosen parameters are similar to those in [1]. The detection
reliability is defined as the percentage of samples that fall
within±5◦ from the ground truth azimuth, RMSE is calculated
as deviation from the ground truth azimuth, while standard
deviation is simply the deviation of the measured set from its
mean value.

The experiments were performed at three different ranges
for both the Y and square array configurations, and, further-
more, for each configuration voice and white noise source
were used. The white noise source was a train of 50 element
100 ms long bursts, and for the voice source speaker uttered:
”Test, one, two, three”, until reaching the number of 50 words
in a row. In both configurations the source changed angle in
15◦ or 25◦ intervals, depending on the range, thus yielding in
total 4150 sounds played. The results of the experiments are
summed up in Tab. II, from which it can be seen (for both array
configurations) that for close interaction the results are near
perfect. High detection rate and up to 2◦ error and standard
deviation rate at distance of 1.5 m are negligible. In general,
for both array configurations performance slowly degrades as
the range increases. With the range increasing the far-field
assumption does get stronger, but the angular resolution is
lower, thus resulting in higher error and standard deviation.
Concerning different array configurations, it can be seen that
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Fig. 10: Simulation results

square array shows better results in all three parameters, on
average up to 2.3% in detection, 0.4◦ in RMSE, and 0.4◦ in
standard deviation.

In [1], where an array of eight microphones was used and a
beamforming approach, similar experiments were performed
with an open and closed array configuration. For the open
configuration, our algorithm shows smaller detection reliability
of less than 4% on average, and larger RMSE of less than 2◦

on average. For the closed configuration, our algorithm shows
the same detection reliability on average, and larger RMSE of
less then 1◦ on average.

From the previous discussion we can see that the algorithm
proposed in [1] shows better or equal performance, on average,
in both detection reliability and RMSE. However, in [1] an
array of eight, compared to four, microphones was used and
a computationally more expensive approach was utilised. The
beamforming approach is based on heuristically dividing the
space around the mobile robot into a direction grid, steering

the microphone array to all possible directions, and for each
direction an expression like (8) is calculated for all micro-
phone pairs. Although more complex, it does however have
an advantage of being able to track multiple simultaneously
talking speakers.

Exactly how much localization based on beamforming is
more complex than our algorithm depends on the previously
mentioned heuristic division, i.e. direction search grid resolu-
tion. For an example, our algorithm requires one calculation of
(8) for all microphone pairs to estimate speaker azimuth, while
a beamforming approach with a grid having angular resolution
of 1◦ would require 360 calculations of (8) for all microphone
pairs.

The third set of experiments was conducted in order to
assess the tracking performance of the algorithm. A speaker
made a semicircle at approximately 2 m range around the
robot uttering: ”Test, one, two, three”, while at the same time
legs were tracked using LRF. The experiment was made for
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full circle
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Fig. 12: Tracking azimuth of a white noise source making
rapid angle changes

both array configurations. Figures 14 and 15 show the azimuth
measured with the leg tracker and with the microphone array
arranged in the Y and square configurations, respectively. It
can be seen that the square array, in this case, shows bigger
deviations from the laser measured azimuth than the Y array
does. In Fig. 15 at 6.3 seconds, one of the drawbacks of
the algorithm can be seen. It is possible that at an occasion,
erroneous measurements might outnumber the correct ones. In
this case, wrong azimuths will be estimated for that time, but
as can be seen in Fig. 15 the algorithm gets back on track in
a short time period.

VI. CONCLUSIONS AND FUTURE WORKS

Using a microphone array consisting of four omnidirectional
microphones, a new audio interface for a mobile robot that
successfully localizes and tracks a speaker was developed.
Novelty of the proposed algorithm is in the method based
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Fig. 13: Speaker tracking while robot is in motion

TABLE I: Values of parameters used in the implemented
speaker localization algorithm

Signal processing

L = 1024 rectangular window (no overlap)
Fs = 48 kHz 16-bit precision

SNR Estimation

αrev = 0.85 δrev = 0.8
αe = 0.9

Voice activity detection

η = 1

Cross-correlation

β = 0.8 c = 344 m/s

Particle filter

α = 0.1 β = 0.04
δ = L/Fs P = 360
κ = 20 σ2

v = 0.1 m/s
µc = 0 σ2

c = 0.02
Ic = 50

on a linear combination of probabilistically modelled time
difference of arrival measurements, yielding a measurement
model which uses von Mises distribution for direction of
arrival analysis and for derivation of an adequate azimuth
estimation method. In order to handle the inherent multimodal
and non-linear characteristics of the system, a particle fil-
tering approach was utilised. The major contribution of the
proposed algorithm is that it solves the front-back ambiguity
and a unique azimuth value is calculated in a robust and
computationally undemanding manner. Indeed, the number of
required cross-correlation evaluations is equal to the number
of different microphone pairs. Moreover, by integrating a voice
activity detector to the time difference of arrival estimation,
operation under adverse noisy conditions is guaranteed up
to the performance of the voice activity detector itself. The
algorithm accuracy and precision was tested in real-time with
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TABLE II: Experimental results of the algorithm performance
for Y and square array configuration

Y-array Square array

Range W. noise Voice W. Noise Voice

Detection [%]

1.50 [m] 97.43 98.93 99.43 97.71
2.25 [m] 97.71 92.86 98.00 96.0
3.00 [m] 94.57 86.86 96.00 91.43

RMSE [◦]

1.50 [m] 1.90 2.20 1.72 2.19
2.25 [m] 1.61 3.07 1.99 2.83
3.00 [m] 2.38 4.58 1.80 3.95

Std. deviation [◦]

1.50 [m] 0.96 1.59 0.94 1.36
2.25 [m] 1.10 2.78 1.04 2.30
3.00 [m] 1.65 3.85 1.14 3.01
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Fig. 14: Speaker tracking compared to leg tracking (Y array)

a reliable ground truth method based on leg-tracking with a
laser range finder.

Furthermore, two most common microphone array geome-
tries were meticulously analysed and compared theoretically
based on error sensitivity to time difference of arrival estima-
tion and the robustness to microphone occlusion. The analysis
and experiments showed square array having several advan-
tages over the Y array configuration, but from a practical point
of view these two configurations have similar performances.

In order to develop a functional human-aware mobile robot
system, future works will strive towards the integration of
the proposed algorithm with other systems like leg tracking,
robot vision etc. The implementation of a speaker recognition
algorithm and a more sophisticated voice activity detector
would further enhance the audio interface.
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Automatización Tecnologı́as de la Producción, Barcelona, 2009, pp.
283–288.
URL http://crosbi.znanstvenici.hr/prikazi-rad?lang=EN\&amp;rad=
389094

[15] T. Nishiura, M. Nakamura, A. Lee, H. Saruwatari, K. Shikano, Talker
Tracking Display on Autonomous Mobile Robot with a Moving Micro-
phone Array, in: Proceedings of the 2002 International Conference on
Auditory Display, 2002, pp. 1–4.

[16] J. C. Murray, H. Erwin, S. Wermter, A Recurrent Neural Network for
Sound-Source Motion Tracking and Prediction, IEEE International Joint
Conference on Nerual Networks (2005) 2232–2236.

[17] V. M. Trifa, G. Cheng, A. Koene, J. Morén, Real-Time Acoustic Source
Localization in Noisy Environments for Human-Robot Multimodal In-
teraction, 16th IEEE International Conference on Robot and Human
Interactive Communication (2007) 393–398.

[18] J. Valin, F. Michaud, J. Rouat, D. Létourneau, Robust Sound Source
Localization Using a Microphone Array on a Mobile Robot, in:
Proceedings on the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2003, pp. 1228–1233.
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.
4899\&amp;rep=rep1\&amp;type=pdf

[19] M. Brandstein, D. Ward, Microphone Arrays: Signal Processing Tech-
niques and Applications, Springer, 2001.

[20] J. Chen, J. Benesty, Y. A. Huang, Time Delay Estimation in Room
Acoustic Environments: an overview, EURASIP Journal on Applied
Signal Processing (2006) 1–19.

[21] A. Badali, J.-M. Valin, F. Michaud, P. Aarabi, Evaluating Real-
Time Audio Localization Algorithms for Artificial Audition in
Robotics, in: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, 2009, pp. 2033–2038.
doi:10.1109/IROS.2009.5354308.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
5354308

[22] Y. Ephraim, D. Malah, Speech Enhancement Using a Minimum Mean-
Square Error Short-Time Spectral Amplitude Estimator, Speech and
Signal Processing (1984) 1109–1121.

[23] I. Cohen, B. Berdugo, Speech Enhancement for Non-Stationary Noise
Environments, Signal Processing 81 (2001) 283–288.

[24] I. Cohen, Noise Spectrum Estimation in Adverse Environments: Im-
proved Minima Controlled Recursive Averaging, Speech and Audio
Processing 11 (2003) 466–475.

[25] Y. Ephraim, I. Cohen, Recent Advancements in Speech Enhancement,
in: C. Dorf (Ed.), Circuits, Signals, and Speech and Image Processing,
Taylor and Francis, 2006.

[26] J. Huang, N. Ohnishi, N. Sugie, Sound Localization in Reverberant
Environment Based on the Model of the Precedence Effect, IEEE
Transactions on Instrumentation and Measurement 46 (1997) 842–846.

[27] J. Huang, N. Ohnishi, X. Guo, N. Sugie, Echo Avoidance in a Com-
putational Model of the Precedence Effect, Speech Communication 27
(1999) 223–233.

[28] K. D. Donohue, J. Hannemann, H. G. Dietz, Performance of Phase
Transform for Detecting Sound Sources with Microphone Arrays in
Reverberant and Noisy Environments, Signal Processing 87 (2007)
1677–1691.

[29] J. Sohn, N. S. Kim, W. Sung, A Statistical Model-Based Voice
Activity Detection, IEEE Signal Processing Letters 6 (1) (1999) 1–3.
doi:10.1109/97.736233.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
736233

[30] S.-I. Kang, J.-H. Song, K.-H. Lee, J.-H. Park Yun-Sik Chang, A
Statistical Model-Based Voice Activity Detection Technique Employing
Minimum Classification error Technique, Interspeech (2008) 103–106.

[31] E. A. Lehmann, A. M. Johansson, Particle Filter with Integrated Voice
Activity Detection for Acoustic Source Tracking, EURASIP Journal on
Advances in Signal Processing.

[32] J. Huang, T. Supaongprapa, I. Terakura, F. Wang, N. Ohnishi, N. Sugie,
A Model-Based Sound Localization System and its Application to Robot
Navigation, Robotics and Autonomous Systems 27 (1999) 199–209.

[33] B. Kwon, G. Kim, Y. Park, Sound Source Localization Methods with
Considering of Microphone Placement in Robot Platform, 16th IEEE In-
ternational Conference on Robot and Human Interactive Communication
(2007) 127–130.

[34] J. Vermaak, A. Blake, Nonlinear Filtering for Speaker Tracking in Noisy
and Reverberant Environments, in: Proceeding of the IEEE International
Conference on Acoustic, Speech and Signal Processing, 2001.

[35] K. V. Mardia, P. E. Jupp, Directional Statistics, Wiley, New York, 1999.
[36] N. I. Fisher, Statistical Analysis of Circular Data, Cambridge University

Press, 1996.
[37] D. B. Ward, E. A. Lehmann, R. C. Williamson, Particle Filtering

Algorithms for Tracking an Acoustic Source in a Reverberant
Environment, IEEE Transactions on Speech and Audio Processing
11 (6) (2003) 826–836. doi:10.1109/TSA.2003.818112.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
1255469

[38] S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A Tutorial on Particle
Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking, Signal
Processing 50 (2001) 174–188.

[39] D. Fox, Adapting the Sample Size in Particle Filter Through KLD-
Sampling, International Journal of Robotics Research 22.
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