
Reasoning about Social Semantic Web Applications

using String Similarity and Frame Logic

Markus Schatten

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaºdin, Croatia

markus.schatten@foi.hr

Vijayalakshmi Kakulapati

JNT University

CSE

500 076 Hyderabad, Andhrapradesh, India

kakulapati.vijayalakshmi@gmail.com

Mirko �ubrilo

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaºdin, Croatia

mirko.cubrilo@foi.hr

Abstract. Social semantic Web or Web 3.0
application gained major attention from academia
and industry in recent times. Such applications
try to take advantage of user supplied meta data,
using ideas from the semantic Web initiative, in
order to provide better services. An open problem
is the formalization of such meta data, due to its
complex and often inconsistent nature. A possible
solution to inconsistencies are string similarity
metrics which are explained and analyzed. A study
of performance and applicability in a frame logic
environment is conducted on the case of agent
reasoning about multiple domains in TaOPis � a
social semantic Web application for self-organizing
communities. Results show that the NYSIIS metric
yields surprisingly good results on Croatian words
and phrases.

Keywords. social semantic web, intelligent agent,
reasoning, frame logic, string similarity metric

1 Introduction

Web 3.0 or the social semantic Web should provide
us with meta data that will be usefull to harvest the
knowledge of large user bases. This knowledge is
the result of a so called collective intelligence which
has already been put to use in various applications

like social bookmarking sites, recommendation sys-
tems, and semantic wikis. An inevitable property
of such meta data is its internal inconsistency which
is due to inconsistencies in the very social system
which generated it [13, 14].

Various methods like web mining web [4, 18],
context analysis through the interconnections [11],
social tagging, group management, network man-
agement, social network analysis, auto comple-
tion mechanisms [15], built-in ontologies or sim-
ple taxonomies, pattern recognition, advanced au-
dio/video processing algorithms, neural networks,
or image tagging [14] have been proposed to deal
with such inconsistencies. However, there hasn't
been any e�ort to deal with syntactic inconsisten-
cies in a frame logic semantic wiki environment
that would address the very nature of meta data
� strings.

Herein we will analyze the possibility of apply-
ing string similarity metrics in order to reason
about semantic wiki systems. String similarity de-
notes the degree to which two strings are simi-
lar. We hypothesize that by using string similarity
metrics we can deal with inconsistencies emerged
due to inadequate or erroneous spelling. In or-
der to test the hypothesis we will analyze meta-
data gathered on the ᵀaOP	�s system [10, 16, 17]
gathered during its use in the past three years

by applying 10 di�erent similarity metrics (namely
Jaro distance, Jaro-Winkler distance, Dice's coe�-
cient, Levenshtein distance, Damerau-Levenshtein
distance, Hamming distance, Overlap coe�cient,
Soundex, NYSIIS and Needleman-Wunsch align-
ment score) and evaluate the results by using two
intelligent agents implemented in the deductive
frame-based language Flora-2 . We will accept
the hypothesis if there is at least one metric that
yields better query results than the agents without
it. The results of this study are constrained due to
the nature of the analyzed meta data which is in
most cases supplied in Croatian language.

2 Reasoning about Social Se-

mantic Web Applications

Through the development of the World Wide Web
as well as the OpenSource paradigm a lot of new in-
formation technologies were introduced that are of
great interest to knowledge management [20]. Such
technologies are often hidden under the term Web
2.0 or the social web, even if there is no clear agree-
ment of what technologies build up Web 2.0. In
most cases, however, lists of such technologies in-
clude wikis, folksonomies, blogs and micro blogs,
social networking, podcasting, forums, social tag-
ging or social bookmarking, as well as others.

On the other hand there is the semantic web
movement [1] which tries to foster the creation
of machine readable data that will allow for au-
tomated search and reasoning through the use of
intelligent agents. The main idea is to provide
structured semantic web ontologies written in some
formalized language like OWL (the Web Ontology
Language) based on description logic or Flora-2
based on frame logic.

By merging these two perspectives one obtains
social semantic web applications, often denoted
with Web 3.0. By reasoning about such a social
semantic application we mean to deduce unknown
facts from the user generated knowledge base across
di�erent (often separated) systems. In order to do
so, one needs to have an adequate query language
like SPARQL or Flora-2 to implement intelligent
agents that will be able to access and query vari-
ous systems. In the following we will use Flora-2
(with a little help of the Python scripting language)

to implement such agents.

2.1 The Case of ᵀaOP	�s

ᵀaOP	�s , which is a Web 3.0 application has a se-
mantic wiki subsystem1 that is based on frame logic
[8], and particularly uses the Flora-2 reasoning
engine [22] to allow its users to query the dynam-
ically created knowledge base. ᵀaOP	�s uses a syn-
tax entitled niKlas that comprises the possibility to
cast dynamic queries inside any wiki page. It allows
users to create semantic linkages between pages as
well as to tag these pages using attribute-value tags.
Special attributes are used to enhance possible se-
mantics (like class, subclass, rule etc.). Such ad-
ditional tags allow the creation of metainforma-
tion in an object-oriented manner. The ᵀaOP	�s
systems and likewise its niKlas syntax is work in
progress that is aimed on a wide range of users. At
its current version the system is still not enough
user-friendly to achieve the stated goals. The main
idea of hiding complex semantic technologies in the
background of the system and providing users with
easy-to-use graphical query builders is still to be
implemented.
A semantic wiki on ᵀaOP	�s consists basically of

an extensible set of wiki pages describing some par-
ticular content. Pages are considered to be ob-
jects having their corresponding classes, attributes
as well as relations to other objects. Relations to
other object are implemented through hyperlinks.
The system has been in everyday use since

June 2007 for various tasks like e-learning, Open-
Source project management, community manage-
ment, alumni, collaborative ontology development
as well as knowledge management. In order to
query ᵀaOP	�s 's various knowledge bases we con-
structed a simple agent querying projects on one
ore more ᵀaOP	�s instances. The following listing
presents a simple Python script that downloads a
given projects knowledge base.

−∗− coding : utf−8 −∗−
import u r l l i b
import re
import sys

i f l en (sys . argv) > 1 :
u r l = sys . argv [1]
proorg_re = re . compi le (r ' proorg =(.∗) ')

1Please refer to [10, 16, 17] for an introduction to ᵀaOP	�s
architecture

proorg = proorg_re . f i n d a l l (u r l)
proorg = proorg [0]

kb = u r l l i b . ur lopen (u r l)
l i n e s = kb . r e a d l i n e s ()

kb_f = open (proorg + ' . f l r ' , 'w')

f o r i in l i n e s :
kb_f . wr i t e (i)

kb_f . c l o s e ()
kb . c l o s e ()
p r i n t proorg

e l s e :
r a i s e Exception , 'No u r l supp l i ed ! '

Using this script the following predicate was im-
plemented in Flora-2 , loading any knowledge
base from an URL.

loadKB(? u r l) :−
str_cat (' python kb . py ' , ? ur l , ?cmd)
@_prolog (s t r i n g) ,
s h e l l_ t o_ l i s t (?cmd , [[?kb]] , ?_)
@_prolog (s h e l l) ,
_add(? kb) .

Where kb.py is the �lename of the above Python
script. Agents were then de�ned as:

?− _add(loadKB) .

load_pro ject :−
loadKB (' http :// address1 /? proorg=Jupiter ') ,
loadKB (' http :// address2 /? proorg=Saturn ') ,
loadKB (' http :// address3 /? proorg=Neptun ') .

?− l oad_pro jec t s .

/∗ Agent d e f i n i t i o n . . . ∗/

Whereby Jupiter, Saturn and Neptune would be
the projects of interest for the agent.

3 String Similarity Metrics

String similarity metrics allow us to measure the
distance between two strings of characters. The
closer two strings are the more likely it is that these
strings are equal (or at least that they were in-
tended to be equal but aren't due to, for example,
a spelling error).

3.1 Jaro distance

The Jaro distance metric tries to take care of typ-
ical spelling deviations [6, 7, 2]. It is de�ned as

follows: for two strings s and t, let s′ be the char-
acters in s that are �in common with� t, and let t′

be the characters in t that are �in common with� s.
One could say that a character a in s is �in common
with� t if the same character a appears in about the
place in t. Let Ts′,t′ measure the number of trans-
positions of characters in s′ relative to t′. The Jaro
similarity metric for s and t is

J(s, t) =
1
3
×

(
|s′|
|s|

+
|t′|
|t|

+
|s′| − Ts′,t′

2|s′|

)

3.2 Jaro-Winkler distance

The Jaro-Winkler distance is an extension of the
Jaro distance metric, from the work of Winkler in
1999 [21, 2]. This extension uses a modi�ed weight-
ing mechanism of poorly matching string pairs s, t
that have a common pre�x. The output score is
then adjusted as:

JW (s, t) = J(s, t) + (l ∗ p ∗ (1.0− J(s, t)))

Where l is the length of common pre�x at the start
of the string, p is a constant scaling factor for how
much the score is adjusted upwards for having com-
mon pre�x's. This adjustment gives better ratings
to strings that match from the beginning for a set
pre�x length, as the (normal) Jaro distance.

3.3 Dice's coe�cient

Dice coe�cient [2] is a term based similarity mea-
sure. It is de�ned as twice the number of characters
common to compared strings divided by the total
number of characters in both tested strings. The
Coe�cient result of 1 indicates identical vectors as
where a 0 denotes orthogonal vectors.

D(s, t) =
2 ∗ c(s, t)

n(s) + n(t)

Where c(s, t) is the number of common charac-
ters in strings s and t, and n(s) and likewise n(t) are
the numbers of characters in the respective string.

3.4 Levenshtein distance

The Levenshtein distance [9, 2] is a distance func-
tion that counts the number of needed edit opera-
tions to equate the strings. The distance is given as

the minimum edit distance which transforms string
s into string t. Levenshtein de�nes four edit oper-
ations with corresponding costs as follows:

• Copy character from s over to t (cost 0) D(i−
1, j − 1) + d(si, tj)

• Delete a character in s (cost 1) D(i, j − 1) + 1

• Insert a character in t (cost 1) D(i, j) =
min D(i− 1, j) + 1

• Substitute one character for another (cost 1)
D(i− 1, j − 1) + d(si, tj)

Whereby d(i, j) is a function and d(c, d) = 0 if
c = d, or else d(c, d) = 1.

3.5 Damerau�Levenshtein distance

The Damerau�Levenshtein distance is an extension
to the previous that includes an additional edit op-
eration: transposition of two characters (cost 1) [3].

3.6 Hamming distance

The Hamming distance [5, 2] is de�ned as the num-
ber of bits which di�er between two binary strings.
It is the number of bits which need to be changed
to turn one string into the other. For example the
bit strings 11011010 and 11001100 have a hamming
distance of 3 bits, (as three bits are di�erent). This
simple hamming distance function can be extended
into a vector space approach where the characters
within a string are compared, counting the number
of characters in the same positions.

3.7 Overlap coe�cient

The overlap coe�cient [2] is a set based similarity
measure. If a set X is a subset of Y or the converse
then the similarity coe�cient is a full match, which
is similar to previously mentioned Dice coe�cient.
The overlap coe�cient is de�ned as:

O(s, t) =
|s ∩ t|

min|s|, |t|

3.8 Soundex

Soundex is a phonetic indexing scheme, often used
in genealogy [2]. This approach is used to match in-
dividuals names and as such has not been provably
applied to a more general context.
Soundex allows phonetic misspellings to be eval-

uated easily, for instance the names Mark, Marko,
Marco and Markus are often genealogically the
same person. This is a term or word based eval-
uation where each term is given a Soundex code.
Each soundex code consists of a letter and three
numbers between 0 and 6, for example "Cubrilo"
is "C164". The letter is always the �rst letter of
the surname. The numbers hash together the rest
of the name. This approach is very promising for
disambiguation of transliterated/misspelled names,
i.e non english names represented as ASCII are fre-
quently misrepresented. The digits are based on
the consonants as in the following listing, (this can
di�er from implementation to implementation):

1. B,P,F,V

2. C,S,K,G,J,Q,X,Z

3. D,T

4. L

5. M,N

6. R

The vowels are excluded. If two or more adjacent
letters, not being not separated by a vowel, have
the same numeric value, only one is used, which
also applies if the �rst (which is used for the letter
in the code), and the second letter in name have the
same value. The second letter would not be used
to generate a digit. If there are not three digits
after the consonants are converted, zeros are added
to the code. For example the name Vijaya has no
consonants after the V and J, so the soundex code
would be V200.

3.9 NYSIIS

In 1970 the New York State Identi�cation and In-
telligence project headed by Robert L. Taft pub-
lished the paper "Name Search Techniques" [19] in
which he compared Soundex with a new phonetic
routine (NYSIIS - New York State Identi�cation

and Intelligence Algorithm). NYSIIS was designed
through rigorous empirical analysis. The algorithm
is as follows:

1. remove all 'S' and 'Z' chars from the end of the
surname

2. trans-code initial strings
MAC ⇒MC PF ⇒ F

3. Trans-code trailing strings as follows,
IX ⇒ IC EX ⇒ EC Y E, EE, IE ⇒ Y
NT, ND ⇒ D

4. trans-code 'EV' to 'EF' if not at start of name

5. use �rst character of name as �rst character of
key

6. remove any 'W' that follows a vowel

7. replace all vowels with 'A'

8. trans-code 'GHT' to 'GT'

9. trans-code 'DG' to 'G'

10. trans-code 'PH' to 'F'

11. if not �rst character, eliminate all 'H' preceded
or followed by a vowel

12. change 'KN' to 'N', else 'K' to 'C'

13. if not �rst character, change 'M' to 'N'

14. if not �rst character, change 'Q' to 'G'

15. trans-code 'SH' to 'S'

16. trans-code 'SCH' to 'S'

17. trans-code 'YW' to 'Y'

18. if not �rst or last character, change 'Y' to 'A'

19. trans-code 'WR' to 'R'

20. if not �rst character, change 'Z' to 'S'

21. trans-code terminal 'AY' to 'Y'

22. remove trailing vowels

23. collapse all strings of repeated characters

24. if �rst char of original surname was a vowel,
append it to the code

3.10 Needleman-Wunsch distance

This approach is known by various names,
Needleman-Wunsch, Needleman-Wunsch-Sellers,
Sellers and the Improving Sellers algorithm [12, 2].
It is similar to the Levenshtein distance, except
that it adds a variable cost adjustment to the
cost of a gap to the distance metric. A gap can
be either an insertion or a deletion. We can view
the Levenshtein distance as the Needleman-Wunch
distance with G = 1.

• Substitution/Copy: D(i− 1, j − 1) + d(si, tj)

• Insertion: D(i, j) = minD(i− 1, j) + G

• Deletion: D(i, j − 1) + G

Where G is the �gap cost� and d(c, d) is again an
arbitrary distance function on characters (e.g. re-
lated to typographic frequencies, amino acid sub-
stitutability, etc).

4 Methodology

Having the various similarity metrics de�ned we
wanted to �nd out how do such metrics behave
when implemented in intelligent agents reasoning
about some given domains. In order to obtain
comparable data we decided to use existing meta
data from the ᵀaOP	�s system. For over 3 years, at
the time of writing this article, student from the
Faculty of Organization and Informatics have been
using ᵀaOP	�s in various e-learning environments.
One such environment includes a Knowledge man-
agement (KM) course, where teams of students col-
laborated on various KM topics with the goal to for-
malize their newly learned knowledge. The result
of this collaboration is a set of KM related semantic
wiki projects, each including plenty of various meta
data [10]. Since the projects were more or less re-
lated to similar topics, we choose 10 that had most
provided meta data and were well structured. The
projects knowledge bases comprise a total of 32792
meta data statements de�ned over 5003 objects.
Two intelligent agents were implemented amalga-

mating the knowledge bases of the chosen projects
and trying to obtain results using the described
similarity metrics. The �rst agent was a simpler
one trying to infer if there were wiki pages with

similar titles. The second agent was more sophis-
ticated, and tried to infer additional attributes of
some object based on the assumption that two ob-
jects de�ne the same concept.
The similarity metrics were implemented as a

Python script, the similarity predicate was imple-
mented in XSB Prolog and the two agents were
implemented in Flora-2 . Due to a combinatoric
explosion of strings that had to be compared we
made use of XSB's and likewise Flora-2 's tabling
facilities and implemented three simple heuristics
before applying the similarity algorithms:

1. If two strings are equal they are similar as well.

2. For a string to be considered at all it has to be
at least 3 characters long.

3. For two strings to be compared their length
shouldn't di�er for more then 3 characters.

Additionally we made use of Flora-2 's class
optimization facilities in order to keep computing
reasonable. The �rst agent was implemented as
follows:

test_1 (?x , ?y , ?metr ic) :−
?_o1 [t i t l e −>?x]@amalgam ,
?_o2 [t i t l e −>?y]@amalgam ,
?_o1 \== ?_o2 ,
s im i l a r (?x , ?y , ?metr ic)@amalgam ,
i n s e r t {

s im_t i t l e (?metric , ?x , ?y)@amalgam
} .

Whereby the variables ?x and ?y are bound to
two similar titles of di�erent objects bound to the
variables ?_o1 and ?_o2, the variable ?metric
has to be bound to one of the similarity met-
rics (jaro, jaro-winkler, dice, levenshtein, damerau-
levenshtein, hamming, overlap, soundex, NYSIIS,
needleman-wunsch), similar/3 is the similarity
predicate (e.g. it succeeds if ?x and ?y are similar
according to metric ?metric, and amalgam is the
dynamic module created from the chosen project's
knowledge bases. Since the computation of results
takes a certain amount of time we used persis-
tent modules in order to store computed results (in
this case in the form of sim_title/3 atoms) in a
database for later analysis.
The second agent's implementation is similar but

more complex:

test_3 (?x , ?y , ? at1 , ? at2 , ?metr ic) :−

?_o1 : ? x@amalgam ,
?_o2 : ? y@amalgam ,
?_o1 \== ?_o2 ,
s im i l a r (?x , ?y , ?metr ic)@amalgam ,
? at1 = c o l l e c t s e t {

?_at1 |
?_o1 [?_at1−>?_]@amalgam

} ,
? at2 = c o l l e c t s e t {

?_at2 |
?_o2 [?_at2−>?_]@amalgam

} ,
i n s e r t {

in f_att (?metric , ?x , ?y , ? at1 , ? at2)
} .

Again variables ?x and ?y are bound to two sim-
ilar strings de�ning two class de�nitions of two dif-
ferent objects ?_o1 and ?_o2, but now the agent
tries to reason as follows: if some object de�nes a
concept that is similar to a concept some other ob-
ject de�nes, then these two objects share common
attributes. These attributes are bound to the logic
variables ?at1 and ?at2, and stored together with
the class de�nition strings in inf_att/4 atoms.

5 Results & Discussion

After running the two de�ned agents obtained re-
sults were evaluated as follows: for each similar-
ity metric the total number of results was counted.
Each result was inspected manually if it was seman-
tically valid or not. Table 1 summarizes the results
for agent 1:

Table 1: The number of valid, invalid and total
results for agent 1

Metric Valid Invalid Total

Jaro 24 23 47
Jaro-Winkler 25 56 81
Dice 5 0 5
Levenshtein 27 12 39
Damerau-Levenshtein 27 12 39
Hamming 17 4 21
Overlap 5 0 5
Soundex 28 79 107
NYSIIS 19 0 19
Needleman-Wunsch 51 538 589

As one can see, only the Dice's coe�cient, the
Overlap coe�cient and the NYSIIS had a 100%
accuracy. Hereby we need to mention that the 5

results, obtained by both using Dice's and Over-
lap coe�cients, were actually equal strings. Thus
the same results would be obtained if not using
any string similarity at all. On the other hand the
Needleman-Wunsch alignment score yielded by far
the most results, but unfortunately most of them
were wrong. Thus in the �rst agent NYSIIS takes
the lead.

Table 2: The number of valid, invalid and total
inferred attributes for agent 2

Metric Valid Invalid Total

Jaro 584 38 622
Jaro-Winkler 611 164 775
Dice 440 0 440
Levenshtein 697 0 697
Damerau-Levenshtein 755 0 755
Hamming 548 0 548
Overlap 440 0 440
Soundex 695 161 856
NYSIIS 562 0 562
Needleman-Wunsch 787 207 994

Table 2 shows the results of the second agent.
This time Dice's coe�cient, Levenshtein distance,
Damerau-Levenshtein distance, Hamming distance,
Overlap coe�cient as well as NYSIIS had a 100 %
accuracy. Again Dice's and Overlap coe�cient's re-
sults were obtained due to solely equal strings. The
other accurate string similarity metrics had both
equal and non-equal strings from which conclu-
sions were drawn. Thus in this case the Damerau-
Levenshtein distance obtained the best results for
agent 2.

The obtained results indicate that the NYSIIS
metric shows surprisingly good results for Croatian
words and short phrases. Even if the Levenshtein,
Damerau-Levenshtein and Hamming distance did
have an 100 % accuracy in the second agent, we
�nd the results of the �rst agent more conclusive.
The �rst agent was looking for similarities in a by
far greater string set then the second, which is due
to the fact that more objects have a title attribute
(which is prede�ned) than they are classi�ed into
some class.

6 Conclusion & Future Re-

search

In this paper we analyzed ten similarity metrics us-
ing two di�erent agents: one trying to �nd objects
with equal or similar titles (thus indicating that one
and the same object is described on two di�erent
pages), and a second trying to suggest attributes
for a some given class based on the similarity of
class names.
After analyzing the di�erent similarity metrics

we conclude that the NYSIIS metric shows the
best results in dealing with syntactic inconsisten-
cies (emerged mostly due to inadequate spelling)
on the given data set of ᵀaOP	�s . This conclusion
can provide us with the means to implement various
suggestion mechanisms. Thus future research will
include the implementation of title, attribute and
tag suggestion mechanisms based on the NYSIIS
metric.

References

[1] Berners-Lee, T., Hendler, J., and Las-
sila, O. The semantic web. Scienti�c Amer-
ican Magazine (May 2001).

[2] Chapman, S. String similarity met-
rics for information integration. Avail-
able at http://www.dcs.shef.ac.uk/~sam/

stringmetrics.html, accessed 1nd April
2010.

[3] Damerau, F. J. A technique for computer de-
tection and correction of spelling errors. Com-
munications of the ACM 7, 3 (March 1964),
171�176.

[4] Dringus, L. P., and Ellis, T. Using
data mining as a strategy for assessing asyn-
chronous discussion forums. Computers & Ed-
ucation 45 (2005), 141�160.

[5] Hamming, R. W. Error detecting and error
correcting codes. Bell System Technical Jour-
nal 26, 2 (1950), 147�160.

[6] Jaro, M. A. Advances in record linking
methodology as applied to the 1985 census of
Tampa Florida. Journal of the American Sta-
tistical Society 64 (1989), 1183�1210.

http://www.dcs.shef.ac.uk/~sam/stringmetrics.html
http://www.dcs.shef.ac.uk/~sam/stringmetrics.html

[7] Jaro, M. A. Probabilistic linkage of large
public health data �le. Statistics in Medicine
14 (1995), 491�498.

[8] Kifer, M., Lausen, G., and Wu, J. Log-
ical foundations of object-oriented and frame-
based languages. Journal of the Associa-
tion for Computing Machinery 42 (May 1995),
741�843.

[9] Levenshtein, V. Binary codes capable of
correcting deletions, insertions, and reversals.
Soviet Physics Doklady 10 (1966), 707�710.

[10] Malekovi¢, M., and Schatten, M. Lead-
ership in team based knowledge management
- an autopoietic information system's per-
spective. In 19th Central European Confer-
ence on Information and Intelligent Systems �
CECIIS2008 Conference Proceedings (Septem-
ber 2008), B. Aurer and M. Ba£a, Eds., Fac-
ulty of Organization and Informatics, pp. 47�
52.

[11] Mehler, A. Structural similarities of com-
plex networks: a computational model by ex-
ample of wiki graphs. Applied Arti�cial Intel-
ligence 22 (2008), 619�683.

[12] Needleman, S. B., and Wunsch, C. D.
A general method applicable to the search for
similarities in the amino acid sequence of two
proteins. Journal of Molecular Biology 48, 3
(1970), 443�453.

[13] Schatten, M. Programming Languages
for Autopoiesis Facilitating Semantic Wiki
Systems. PhD thesis, University of Za-
greb, Faculty of Organization and Informatics,
Varaºdin, Croatia, February 2010.

[14] Schatten, M., Ba£a, M., and Ivankovi¢,
M. Public interfaces as the result of social
systems structural coupling. In Proceedings
of the 1st International Conference on Infor-
mation Society and Information Technologies
ISIT 2009 (October 2009), M. Mertik and
N. Damij, Eds., Faculty of information studies
in Novo mesto.

[15] Schatten, M., Malekovi¢, M., and
Rabuzin, K. Inconsistencies in semantic so-
cial web applications. In Proceedings of the

20th Central European Conference on Infor-
mation and Intelligent Systems (2009), B. Au-
rer, M. Ba£a, and K. Rabuzin, Eds., Faculty
of Organization and Informatics.

[16] Schatten, M., �ubrilo, M., and �eva, J.
A semantic wiki system based on f-logic. In
19th Central European Conference on Infor-
mation and Intelligent Systems � CECIIS2008
Conference Proceedings (2008), B. Aurer and
M. Ba£a, Eds., Faculty of Organization and
Informatics, pp. 57�61.

[17] Schatten, M., and �ugaj, M. Organiz-
ing a �shnet structure. In 29th International
Conference Information Technology Interfaces
Proceedings (Cavtat-Dubrovnik, Croatia, June
25 � 28 2007), pp. 81�86.

[18] Spangler, W. S., Kreulen, J. T., and
Newswanger, J. F. Machines in the con-
versation: Detecting themes and trends in in-
formal communication streams. IBM Systems
Journal 45, 4 (2006), 785�799.

[19] Taft, R. L. Name Search Techniques. New
York State Identi�cation and Intelligence Sys-
tem, Albany, New York, 1970.

[20] �ugaj, M., and Schatten, M. Informaci-
jski sustav za upravljanje znanjem u hipertekst
organizaciji. Ekonomski vjesnik 21, 1-2 (2008),
19�30.

[21] Winkler, W. E. The state of record link-
age and current research problems. Statistics
of Income Division, Internal Revenue Service
Publication R99, 04, 1999.

[22] Yang, G., Kifer, M., and Zhao, C. Flora-
2: A rule-based knowledge representation and
inference infrastructure for the semantic web.
In Second International Conference on Ontolo-
gies, Databases and Applications of Semantics
(ODBASE) Proceedings (Catania, Sicily, Italy,
November 2003).

	1 Introduction
	2 Reasoning about Social Semantic Web Applications
	2.1 The Case of aOPis

	3 String Similarity Metrics
	3.1 Jaro distance
	3.2 Jaro-Winkler distance
	3.3 Dice's coefficient
	3.4 Levenshtein distance
	3.5 Damerau--Levenshtein distance
	3.6 Hamming distance
	3.7 Overlap coefficient
	3.8 Soundex
	3.9 NYSIIS
	3.10 Needleman-Wunsch distance

	4 Methodology
	5 Results & Discussion
	6 Conclusion & Future Research

