
Analysis of B-tree data structure and its usage in
computer forensics

Petra Koruga, Miroslav Bača
Faculty of Organization and Informatics

University of Zagreb
Pavlinska 2, 42000 Varaždin, Croatia

{petra.koruga, miroslav.baca}@foi.hr

Abstract. The idea behind this article is to give
an overview of B-tree data structure and show the
connection between B-tree indexing technique and
computer forensics. B-tree is a fast data indexing
method that organizes indexes into a multi-level
set of nodes, where each node contains indexed
data. This technique is most commonly used in
databases and file systems where it is important
to retrieve records stored in a file when data is
to large to fit in main memory. In that case, B-
trees are used to reduce the number of disk accesses.

Keywords. B-tree, computer forensic, indexing,
filesystem

1 Introduction

When data is to large to fit in main memory, num-
ber of disk accesses is important. The time required
to access and retrieve a word from high-speed mem-
ory is a few microseconds at most and the time
required to locate a particular record on a disk is
measured in milliseconds. Hence the time required
for a single access is thousands of times greater for
external retrieval than for internal retrieval [1]. The
goal in external searching is to minimize the num-
ber of disk accesses, since each access takes so long
compared to internal computation. The idea is to
make the height of the tree as small as possible.
That is where B-trees become useful. They were
named by R. Bayer and E. McCreight, who were
the first to consider the use of multiway balanced
trees for external searching [2]. It allows to keep
both primary data records, and search tree struc-

ture, out on disk. Only a few nodes from the tree
and a single data record ever need be in primary
memory [3].

2 B-tree

B-trees, which are balanced search trees specifically
designed to be stored on magnetic disks. Because
magnetic disks operate much more slowly than ran-
dom access memory, we measure the performance
of B-trees not only by how much computing time
the dynamic-set operations consume but also by
how many disk accesses are performed. For each
B-tree operation, the number of disk accesses in-
creases with the height of the B-tree, which is kept
low by the B-tree operations[5].

2.1 Basics of B-tree

The B-tree was created by Rudolf Bayer and Ed
McCreight while they were working at Boeing Re-
search Lab. They haven’t explained what B stands
for, the most common belief is that B stands for
balanced, other beliefs are that it stands for Bayer,
Boeing, broad or bushy[4]. In computer science,
a B-tree is a tree data structure that keeps data
sorted and allows searches, sequential access, inser-
tions, and deletions in logarithmic amortized time.
The B-tree is a generalization of a binary search
tree in that more than two paths diverge from a
single node[4]. A B-tree of order m is an m-way
search tree in which[1]:

• All leaves are on the same level



Figure 1: Example of a B-tree[1]

• All internal nodes except the root have at
most m nonempty children, and at least m/2
nonempty children

• The number of keys in each internal node is
one less than the number of its nonempty chil-
dren, and these keys partition the keys in the
children in the fashion of a search tree

• The root has at most m children, but may have
as few as 2 if it is not a leaf, or none if the tree
consists of the root alone

2.1.1 Height

The question of height of a b-tree is important be-
cause maximum height of a b-tree gives an upper
bound on number of disk accesses[5]. If a B-tree
has height h, the root contains at least one key and
all other nodes contain at least t - 1 keys. So there
are at least 2 nodes at depth 1, at least 2t nodes
at depth 2, at least 2t2 nodes at depth 3, and so
on, until at depth h there are at least 2th−1 nodes.
Thus, the number n of keys satisfies the inequality
th ≤ (n + 1)/2. Taking a base-t algorithm of both
sides gives: h≤logt ((n+1)/2).

2.1.2 Example

The following example is of a B-tree of order 5.
This means that all internal nodes have at least
ceil(5 / 2) = ceil(2.5) = 3 children (and at least 2
keys). Of course, the maximum number of children
that a node can have is 5 (4 is the maximum number
of keys). Each leaf node must contain at least 2
keys. In practice B-trees usually have orders a lot
bigger than 5[1].

2.2 Operations on B-trees

2.2.1 Initial Construction

First operation on a B-tree is its initial construc-
tion. That construction will be explained with
pseudocode [5]:
B-Tree-Create(T)

x <- Allocate-Node()
leaf[x] <- TRUE
n[x] <- 0
Disk-Write(x)
root[T] <- x
The B-Tree-Create(T) creates an empty b-tree

by allocating a new root node that has no keys and
is a leaf node.

2.2.2 Insertion

B-trees grow at the root, they are not allowed to
grow at their leaves because all leaves must be at
the same level. General insertion method (pseu-
docode) [5]:
B-TREE-SPLIT-CHILD(x, i, y)

z <- ALLOCATE-NODE()
leaf[z] <- leaf[y]
n[z] <- t - 1
for j <- 1 to t - 1

do keyj[z]<- keyj+t[y]
if not leaf [y]
then for j<- 1 to t

do cj[z] <- cj+t[y]
n[y] <- t - 1
for j<- n[x] + 1 downto i + 1

do cj+1[x] <- cj [x]
ci+1[x] <- z
for j<- n[x] downto i

do keyj+1[x] <- keyj[x]
keyi[x] <- keyt[y]
n[x] <- n[x] + 1
DISK-WRITE(y)
DISK-WRITE(z)
DISK-WRITE(x)

2.2.3 Search-data retrieval

Searching in B-trees is actualy deciding between
n[x] +1 choices. Pseudocode[5]:
B-TREE-SEARCH(x, k)

i <- 1
while i <= n[x] and k > keyi[x]



Figure 2: Insertion into a B-tree[1]

do i <- i + 1
if i <= n[x] and k = keyi[x]
then return (x, i)
if leaf [x]
then return NIL
else DISK-READ(ci[x])
return B-TREE-SEARCH(ci[x], k)
After finding the value greater than or equal to

the desired value, the child pointer to the left of
that value is followed. If all values are less than
the desired value, the rightmost child pointer is fol-
lowed. The search is terminated when the desired
node is found [1].

2.2.4 Deletion

Deletion from a B-tree is a little bit more com-
plicated then insertion. B-tree after deletion must
have the same properties that define a B-tree. Es-
pecially property that the path to where the key
is to be deleted has the minimum number of keys.
Deletion can have several cases [5]:

• If the key k is in node x and x is a leaf, key k
from x has to be deleted

• If the key k is in node x and x is an internal
node:

– If the child y that precedes k in node x
has at least t keys, then the predecessor
k’ of k in the subtree rooted at y has to be
found. Recursively k’ has to be deleted,
and replaced by k’ in x

– Symmetrically, if the child z that follows
k in node x has at least t keys, then the
successor k’ of k in the subtree rooted at
z has to be found. Recursively k has to
be deleted, and replaced by k’ in x

– Otherwise, if both y and z have only t - 1
keys, k and all of z have to be merged into
y, so that x loses both k and the pointer to
z, and y now contains 2t - 1 keys. Then, z
has to be freed and k recursively deleted
from y

• If the key k is not present in internal node x,
the root ci[x] of the appropriate subtree that
must contain k has to be determined, if k is in
the tree at all. If ci[x] has only t - 1 keys, step
1 or 2 is executed as necessary. Then recursing
on the appropriate child of x has to be done.



Figure 3: Deletion in a B-tree[1]

– If ci[x] has only t - 1 keys but has an im-
mediate sibling with at least t keys, ci[x]
is given an extra key by moving a key
from x down into ci[x], moving a key from
ci[x]’s immediate left or right sibling up
into x, and moving the appropriate child
pointer from the sibling into ci[x]

– If ci[x] and both of ci[x]’s immediate sib-
lings have t - 1 keys, ci[x] is merged with
one sibling, which involves moving a key
from x down into the new merged node
to become the median key for that node

2.3 Usage of B-trees

2.3.1 Databases

A database is a collection of data, organized so that
supports updating, retrieving, and managing the
data. The data can be anything, from names, ad-
dresses, pictures, and numbers. Databases are used
everyday, a University might maintain a database
of students and their grades, university employees
or similar.

To be useful and usable, databases must sup-
port operations, such as retrieval, deletion and in-
sertion of data. Databases are usually large and
cannot be maintained entirely in memory, b-trees
are often used to index the data and to provide
fast access. Searching an unindexed and unsorted
database containing n key values will have a worst
case running time of O(n). If the same data is in-
dexed with a B-Tree, the same search operation will
run in O(log n) [6]. To perform a search for a single
key on a set of one milion keys (1,000,000), a linear
search will require at most 1,000,000 comparisons.
If the same data is indexed with a b-tree of mini-
mum degree 10, 114 comparisons will be required
in the worst case[6].

2.3.2 Filesystem

B-tree structures are also used in file systems. Di-
rectories in NTFS are indexed to make finding a
specific entry in them faster. They are stored
in a B-tree in alphabetical order. That takes a
little more time when adding files to an NTFS
directory, however it takes less time when using
a directory. There are two NTFS system at-
tributes that describe the B-Tree contents: IN-
DEX_ROOT and INDEX_ALLOCATION. The
INDEX_ROOT value is one or more "Index En-
try" structures that each describe a file or di-
rectory. The "Index Entry" structure contains
a copy of the FILE_NAME attribute for the
file or sub-directory. For small directories, IN-
DEX_ALLOCATION attribute will not exist and
all information will be saved in the INDEX_ROOT
structure. The content of this attribute is one or
more "Index Buffers". Each "Index Buffer" con-
tains one or more "Index Entry" structures, which
are the same ones found in the INDEX_ROOT[7].
The benefit of using B-tree structures is evident
when NTFS enumerates files in a large folder. The



Figure 4: Catalog B-tree leaf node containing file
records[9]

B-tree structure allows NTFS to group, or index,
similar file names and then search only the group
that contains the file, minimizing the number of
disk accesses needed to find a particular file, es-
pecially for large folders. Because of the B-tree
structure, NTFS outperforms FAT for large fold-
ers because FAT must scan all file names in a large
folder before listing all of the files[8].

3 Application in computer
forensics

On a FAT32 file system, files are deleted by re-
placing the first character of the filename with the
hex byte E5. The file’s clusters are flagged as avail-
able, and the E5 entry in the directory still contains
the (changed) name, attribute flags, date and time
stamps, and logical size. On an NTFS system, the
entry is un-indexed from the MFT[9].

Filenames and information on type and creator
codes are visible on Figure 4[9]:

• x00 ulong fLink - Forward link to next node
on the same level

• x04 ulong bLink - Backward link to previous
node

• x08 uchar node - Type FF=leaf node, 00=in-
dex node, 01=B-tree Header node, 02=2nd
VBM

• x09 char level - Level of this node (1=leaf)

Figure 5: catalog B-tree leaf node containing file
records after deletion of Wipe Info[9]

• x0A uint numRecs - Number of records in this
node

It is visible from the Figure 5 that the forward
link to the next node is 00 00 04 60 (x00-x03), the
backward link to the previous node is 00 00 04 5c
(x04-x07), node type is FF (x08) which means that
the node in question is leaf node, that the node is
at level one (x09). At the position x0A is visible
that there are three records in current node. At
the right side of the picture names of these files
are visible: Windows 98.img, Wipe Info, wrap.gif.
After deletion of the file Wipe Info the number of
records (x0A) is decreased from 3 to 2, and the
second entry (Wipe Info) is replaced by the third
entry which is now the second entry.

Although the leaf node entry may be physically
overwritten, other instances of the node data may
still exist in unallocated space, in index nodes, and
in nodes that have been removed from the tree at
a higher level. If all the files in a node are deleted
because their common parent (directory) has been
deleted, it is not unusual to see "pruned" nodes
with all of the records intact[9]. Within each file en-
try in the B-tree are numerous bit fields, pointers,
keys, and data values that include important things
like creation and modification dates, file ID num-
bers and locations for the data blocks that make
up the file[9]. Small folders reside whole within
the MFT record, while large folders have a b-tree
index structure to other data blocks. A person
could search unallocated space for file entries in leaf
nodes, but this presumes that a person knows what
he/she is looking for, as in a filename or attribute



data. If that is not the case, places that are likely to
have what wants to be found, need to be searched
and such places are leaf nodes in the B-tree[9].

4 Conclusion
Small folders reside whole within the MFT record,
while large folders have a b-tree index structure to
other data blocks. A person could search unallo-
cated space for file entries in leaf nodes, but this
presumes that a person knows what he/she is look-
ing for, as in a filename or attribute data. If that
is not the case, places that are likely to have what
wants to be found, need to be searched and such
places are leaf nodes in the B-tree[9]. B-trees could
be used in data retrieval, but the main problem is
that the B-tree is reorganized after files or direc-
tories are deleted, overwriting the entries for the
deleted items. There seems to be a temporary in-
termediate state where the entry is rendered invalid
but is still present in the B-tree, but this seems to
only be the case on live systems. It may be possible
to find the data for deleted entries after the end of
a list in a B-tree node or in unused nodes. Future
research will be oriented on data retrieval using B-
trees in live computer forensics and live computer
forensic in general.

References
[1] Kruse R. L., Ryba A. J. : Data Structures

and Program Design in C++, Prentice-Hall Inc.,
New Jersey, USA, 2000.

[2] Sedgewick, R. : Algorithms, Addison-Wesley
Publishing company,Massachusetts, USA, 1983.

[3] Grey, N. : A Beginners C++

[4] Comer, D. : The Ubiquitous B-Tree, Comput-
ing Surveys 11

[5] Cormen T. H., Leiserson C. E., Rivest R. L. :
Introduction to algorithms, McGraw-Hill Book
Company, New York, USA, 2000.

[6] Bayer R., Schkolnick M.: Concurrency of Oper-
ations on B-Trees. In Readings in Database Sys-
tems, 1994.

[7] Kristian Dreher: NTFS, Master’s thesis

[8] Microsoft: How NTFS works available at
http://technet.microsoft.com/en-us/
library/cc781134%28WS.10%29.aspx, ac-
cessed: 20th April 2010.

[9] Philipp A., Cowen D., Davis C.: Hacking ex-
posed Computer forensics, McGraw-Hill Book
Company, New York, USA, 2010.


