
Bounded memory Dolev-Yao adversaries in
collaborative systems

Max Kanovich1, Tajana Ban Kirigin2, Vivek Nigam3, and Andre Scedrov3

1 Queen Mary, University of London, UK
mik@dcs.qmul.ac.uk
2 University of Rijeka, HR
bank@math.uniri.hr

3 University of Pennsylvania, Philadelphia, USA
{vnigam,scedrov}@math.upenn.edu

Abstract. This paper extends existing models for collaborative systems. We in-
vestigate how much damage can be done by insiders alone, without collusion with
an outside adversary. In contrast to traditional intruder models, such as in protocol
security, all the players inside our system, including potential adversaries, have
similar capabilities. They have bounded storage capacity, that is, they can only re-
member at any moment a bounded number of facts. This is technically imposed
by only allowing balanced actions, that is, actions that have the same number of
facts in their pre and post conditions. On the other hand, the adversaries inside
our system have many capabilities of the standard Dolev-Yao intruder, namely,
they are able, within their bounded storage capacity, to compose, decompose,
overhear, and intercept messages as well as update values with fresh ones. We in-
vestigate the complexity of the decision problem of whether or not an adversary
is able to discover secret data. We show that this problem is PSPACE-complete
when all actions are balanced and can update values with fresh ones. If we further
impose the condition, called progressing, that in a plan any instance of an action
can be used at most once, then this new problem is NP-complete when actions are
balanced and only a fixed number of updates with fresh values is allowed and it is
PSPACE-hard when actions are balanced and any number of updates with fresh
values is allowed. Finally, we return to traditional intruder models and demon-
strate that many protocol anomalies, such as the Lowe anomaly in the Needham-
Schroeder public key exchange protocol, can also occur when the intruder is one
of the insiders with bounded memory.

1 Introduction
A major concern in any system where agents do not trust each other completely is
whether or not the system is secure, that is, whether or not any confidential information
or secret of any agent can be leaked to a malicious agent. This paper investigates the
complexity of such problem in the context of collaborative system with confidentiality
policies [17, 18].

Following [18], we assume here that all actions in our system are balanced, that is,
they have the same number of facts in their pre and post conditions. This implies that
all players inside our system, including adversaries, have a bounded storage capacity,
that is, they can only remember at any moment a bounded number of facts. This con-
trasts with traditional intruder models, which normally include a powerful Dolev-Yao

intruder [11] that has an unbounded memory. On the other hand, our adversaries and
the standard Dolev-Yao intruder [11] share many capabilities, namely, they are able,
within their bounded storage capacity, to compose, decompose, overhear, and intercept
messages as well as update values with fresh ones.

This paper shows that the secrecy problem of whether or not an adversary can dis-
cover a secret is PSPACE-complete when actions are balanced and can update values
with fresh ones. This contrasts with previous results in protocol security literature [12],
where it is shown that the same problem is undecidable. However, there they allowed
the intruder to have un-balanced actions, or in other words, they assumed that the in-
truder’s memory is not necessarily bounded.

This paper also considers systems that are progressing [16], i.e., systems where
plans can contain at most one instance of any action. The notion of progressing is moti-
vated in a similar way as the use of protocol roles in [12]. The idea is that whenever one
step of a protocol is performed, one never needs to repeat this step again. We show that,
in such progressing systems, the same secrecy problem is NP-complete when actions
are balanced and only a fixed number of updates with fresh values is allowed and it is
PSPACE-hard when actions are balanced and any number of updates with fresh values
is allowed.

Finally, we investigate the consequences of our results in the domain of protocol
security. In particular, we demonstrate that when our adversary has enough storage ca-
pacity, then many protocol anomalies, such as the Lowe anomaly [19] in the Needham-
Schroeder public key exchange protocol, can also occur in the presence of a bounded
memory intruder. We believe that this is one reason for the successful use in the past
years of model checkers to verify protocols. Moreover, we also provide some quantita-
tive measure for the security of protocols, namely, the smallest size memory needed by
the intruder to carry out the anomalies for several protocols.

This paper is structured as follows: in Section 2 we review the main definitions of
local state transition systems used to model collaborative systems. We formalize the
notion of fresh values in Section 3, and in Section 4, we summarize the main theoreti-
cal results involving the complexity of the different problems considered. We show in
Section 5 that many protocol anomalies can also be carried by our bounded memory
intruder. Finally, in Sections 6 and 7, we discuss related work and conclude by pointing
out some future work.

Some of the results involving the progressing systems also appear in a workshop
paper [16] without formal proceedings and the full details are in a technical report [15].

2 Preliminaries
In this section we review the main vocabulary and concepts introduced in [17, 18] and
also extend their definitions to accommodate actions that can update values with fresh
ones and introduce an adversary.
Local State Transition Systems At the lowest level, we have a first-order signature Σ
that consists of a set of sorts together with the predicate symbols P1, P2, . . ., function
symbols f1, f2, . . ., and constant symbols c1, c2, . . . all with specific sorts (or types).
The multi-sorted terms over the signature are expressions formed by applying functions
to arguments of the correct sort. Since terms may contain variables, all variables must
have assiciated sorts. A fact is a ground, atomic predicate over multi-sorted terms. Facts

have the form P (t) where P is an n-ary predicate symbol and t is an n-tuple of terms,
each with its own sort. A state, or configuration of the system is a finite multiset W
of facts. We use both WX and W,X to denote the multiset resulting from the multiset
union of W and X .

Definition 1. The size of a fact is the number of term and predicate symbols it con-
tains. We count one for each predicate and function name, and one for each variable or
constant symbol. We use |P | to denote the size of a fact P .

For example, |P (x, c)| = 3, and |P (f(x, n), z)| = 5. We will normally assume in this
paper an upper bound on the size of facts, as in [12, 17, 18].

Following [17, 18], we assume that the global configuration is partitioned into dif-
ferent local configurations each of which is accessible only to one agent. There is also
a public configuration, which is accessible to all agents. This separation of the global
configuration is done by partitioning the set of predicate symbols in the signature and
it will be usually clear from the context. However, differently from [17, 18], we assume
that among the agents in the system, there is an adversary M . We also assume the exis-
tence of a special constant s in Σ denoting the secret that should not be discovered by
the adversary.

As in [17, 18], each agent has a finite set of actions or rules which transform the
global configuration. Here, as in [12, 16], we allow agents to have more general ac-
tions which can update values with fresh ones (nonces). Actions that belong to an agent
A have the form: XAXpub →A ∃t.YAYpub. The multisets XA and YA contain facts
belonging to the agent A and the multisets Xpub and Ypub contain only public facts.
Actions work as multiset rewrite rules. All free variables in a rule are treated as univer-
sally quantified. XAXpub are the pre-conditions of the action and YAYpub are the post-
conditions of the action. By applying the action for a ground substitution (σ), the pre-
condition applied to this substitution (XAσXpubσ) is replaced with the post-conditions
applied to the same substitution (YAσYpubσ). In this process, the existentially quanti-
fied variables (t) appearing in the post-condition are replaced by fresh variables (also
known as eigenvariables). The rest of the configuration remains untouched. Thus, we
can apply the action PA(x), Qpub(y) →A ∃z.RA(x, z), Qpub(y) to the global config-
uration V, PA(t), Qpub(s) to get the global configuration V, RA(t, c), Qpub(s), where
the constant c is fresh.

Definition 2. A local state transition system (LSTS) T is a tuple 〈Σ, I, M,RT , s〉,
where Σ is the signature of the language, I is a set of agents, M ∈ I is the adver-
sary, RT is the set of actions owned the agents in I , and s is the secret.

We classify a rule as balanced if the number of facts in its precondition is the same
as the number of facts in its postcondition. As discussed in [18], if we restrict actions
to be balanced, then the size of the configurations in a run remains the same as in the
initial configuration. Since we assume facts to have a bounded size, the use of balanced
actions imposes a bound on the storage capacity of the agents in the system.

We use the notation W >T U to mean that there is an action in T which can be
applied to the configuration W to transform it into the configuration U . We let >+

T

and >∗
T denote the transitive closure and the reflexive, transitive closure of >T re-

spectively. Usually, however, agents do not care about the entire configuration of the
system, but only if a configuration contains some particular facts. Therefore we use the

notion of partial goals. We write W T Z to mean that W >T ZU for some multiset
of facts U . For example with the action r : X →A Y , we find that WX r Y , since
WX >r WY . We define +

T and ∗
T to be the transitive closure and the reflexive,

transitive closure of T respectively. We say that the partial configuration Z is reach-
able from configuration W using T if W ∗

T Z. Finally, given an initial configuration
W and a partial configuration Z, we call a plan any sequence of actions that leads from
configuration W to a configuration containing Z. A plan is progressing [16] if and only
if any instance of any action is used at most once in the plan.

In order to achieve a final goal, it is often necessary for an agent to share some pri-
vate knowledge with some another agent. However, although agents might be willing
to share some private information with some agents, they might not be willing to do
the same with other agents. For example, a patient might be willing to share his medi-
cal history with his doctor, but not with all agents, such as the doctor’s secretary. One
is, therefore, interested in determining if a system complies with some confidentiality
policies, such as a patient’s medical history should not be publicly available. We call
a critical configurations any configuration that conflicts with some given confidential-
ity policies, and we classify any plan that does not reach any critical configuration as
compliant. A confidentiality policy is determined by a set of critical configurations.

This paper assumes that one can, as in [18], determine in polynomial space with
respect to the size of a configuration whether a configuration is a critical. In this pa-
per, we also make an additional assumption that critical configurations are closed un-
der renaming of nonce names, that is, if W is a critical configuration and Wσ =
W ′ where σ is substitution renaming the nonces in W , then W ′ is also critical. This
is a reasonable assumption since critical configurations are normally defined with-
out taking into account the names of nonces used in a particular plan, but only how
they relate in a configuration to the initial set of symbols in Σ and amongst them-
selves. For instance, in the medical example above consider the following configuration
{Paul(n1, hist), Sec(n1, hist), Sec(n1, paul)}. This configuration is critical because
the secretary knows Paul’s medical history, hist, since she knows his idendity number,
denoted by the nonce n1, and the medical history associated to this identifier. Using the
same reasoning, one can easily check that the configuration resulting from renaming
the nonce n1 is also critical.

In [17, 18] several notions of plan compliances were proposed. Here, we consider
only the weakest one, called weak plan compliance. This paper makes the additional
assumption that initial and the goal configurations are closed under renaming of nonces.
• (Weak plan compliance) Given a local state transition system T , an initial configura-
tion W , a (partial) goal configuration Z, and a set of critical configurations, is there a
compliant plan which leads from W to Z?

Regarding protocol security, we will be interested in the following two different
problems. The first problem, called the secrecy problem, is basically an instantiation
of the weak plan compliance problem with no critical configurations: Is there a plan
from the initial configuration to a configuration where the adversary M owns the fact
M(s) where s is a secret originally owned by another participant? It is interesting to
note that this problem can also be seen as a kind of dual to the weak plan compliance
problem; is there is a plan from the initial configuration to a critical configuration where
the adversary M owns the fact M(s) where s is a secret originally owned by another

participant? We also consider another problem, called secrecy problem for progressing
plans, which is the same as the secrecy problem but when restricted to progressing plans
only. Since all players in the system have the same capabilities, if we assume that the
system is progressing, then so is the adversary, that is, the adversary is also not allowed
to repeat an instance of any action. The progressing notion has a similar effect as the
use of role predicates in [12]. While the progressing condition naturally appears in the
specification of security of protocols, note that here we differ from [12] because we use
only balanced actions. In particular, there, the intruder can copy facts, i.e., the intruder’s
memory is unbounded.

3 Formalizing Freshness for LSTSes with Balanced Actions
A fresh value can be seen as a new value that has not occurred anywhere in the system
yet. For example, when an artist creates his original work of art, it is different to any
other song, sculpture or picture developed in human history. However, a fresh value can
also be seen as any value that does not belong to any agent of the system in a particular
configuration or at a particular moment or period of time. Under the latter interpretation,
even values that appeared before in a plan, but that do not appear in a configuration
anymore, can be considered fresh. For example, consider the scenario where customers
are waiting for a counter. Whenever a new customer arrives, he picks a number and
waits until his number is called on. Since only one person is called at a time, usually
in a first come first serve fashion, a number that is picked has to be a fresh value, that
is, it should not belong to any other customer in the waiting room. Furthermore, since
only a bounded number of customers waits at the counter in a period of time, one only
needs a bounded number of tickets: once a customer is finished, his number can be in
fact reused and be assigned to another customer. This idea of freshness also appears
in the execution of protocols. At some moment in a protocol run an agent might need
to update a value with a fresh one, or nonce, that is not known to any other agent in
the network. This nonce when encrypted in a message is then usually used to establish
a secure communication among agents, that is, where a third party or intruder cannot
overhear messages transmitted.

We can generalize the idea illustrated by the example above to systems with bal-
anced actions. Since in such systems all configurations have the same number of facts
and the size of facts is bounded, in practice we do not need an unbounded number of
new constants in order to reach a goal, but just a small number of them. This is formal-
ized by the following theorem:

Theorem 1. Given an LSTS with balanced actions that can update nonces, any plan
leading from an initial configuration W to a partial goal Z can be transformed into
another plan also leading from W to Z that uses only a polynomial number of nonces
with respect to the number of facts in W and an upper bound on the size of facts.

The proof of Theorem 1 relies on the observation that from the perspective of an
insider two configurations can be considered the same whenever they only differ on
the names of the nonces used. Consider for example the following two configurations,
where the nis are nonces and tis are constants in the initial signature:

{A(t1, n1), B(n2, n1), C(n3, t2)} and {A(t1, n4), B(n5, n4), C(n6, t2)}
Since these configurations only differ on the nonce’s names used, they can be regarded
as equivalent: the same fresh value, n1 in the former configuration and n4 in the latter,

is shared by the agents A and B, and similarly, for the new values n2 and n5, and n3

and n6. Inspired by a similar notion in λ-calculus [8], we say that these configurations
above are α-equivalent.

Formally, two configurations S1 and S2 are α-equivalent, denoted by S1 =α S2, if
there is a bijection σ that maps the set of all nonces appearing in one configuration to
the set of all nonces appearing in the other configuration, such that the set S1σ = S2.
That is, when we apply the complete function derived from σ that maps the nonces
from S1 to the nonces in S2 to all facts in S1, then the resulting set is S2. For exam-
ple, the two configurations above are α-equivalent because of the following the bijec-
tion {(n1, n4), (n2, n5), (n3, n6)}. It is easy to show that the relation =α is indeed an
equivalence, that is, it is symmetric, transitive, and reflexive.

The following lemma formalizes the intuition described above that from the point of
view of an insider two α-equivalent configurations are the same, that is, one can apply
the same action to one or the other and the resulting configurations are also equivalent.
This is similar to the notion of bisimulation in process calculi [20].
Lemma 1. Let m be the number of facts in a configuration S1 and a be an upper
bound on the size of facts. Let Nm,a be a fixed set of 2ma nonce names. Suppose that
the configuration S1 is α-equivalent to a configuration S′

1 and, in addition, each of
the nonce names occurring in S′

1 belongs to Nm,a. Let r be an action whose instance
transforms the configuration S1 into the configuration S2. Then there is a configuration
S′

2 such that: (1) an instance of action r can transform S′
1 into S′

2; (2) S′
2 is α-equivalent

to S2; and (3) each of the nonce names occurring in S′
2 still belongs to Nm,a.

Proof Let r be a balanced action that does not update nonces. Let r’s instance used
to transform S1 to S2 contain the nonces n that are in S1. Let σ be a bijection between
the nonces of S1 and S ′

1. Then an instance of r where the nonces n are replaced by
(nσ) transforms the configuration S ′

1 into S ′
2. The configurations S ′

2 and S2 are α-
equivalent since these configurations differ only in nonce names which are changed by
the bijection σ.

Let r be a balanced action that updates nonces. Suppose that some occurrences of
nonces n1 within S1 are updated with fresh nonces n2 resulting in S2. Note that other
places may still keep some of these old nonces n1. Take the corresponding occurrence
of say n1σ in S′

1 (in accordance with our α-equivalence). Since the number of all places
is bounded by ma, we can find enough elements (at most ma in the extreme case where
all nonces are supposed to be updated simultaneously) n′

2 in Nm,a that do not occur in
neither S1 nor S ′

1. We update the particular occurrence in question with n′
2, resulting

in the desired S′
2. Moreover, from the assumption that critical configurations are closed

under renaming of nonces and that S2 is not critical, the configuration S′
2 is also not

critical. 2

We are now ready to prove Theorem 1:
Proof (of Theorem 1). The proof is by induction on the length of a plan and it is
based on Lemma 1. Let T be a LSTS with balanced actions that can update nonces, m
the number of facts in a configuration, and a the bound on size of each fact. Let Nm,a

be a fixed set of 2ma nonce names. Given a plan P leading from W to a partial goal Z
we adjust it so that all nonces updated along the plan P are taken from Nm,a.

For the base case when the plan is of the length 0 it is the case that W already
contains Z. Since W is the initial configuration it does not contain any nonces.

Assume that any plan of length n can be transformed in a plan that uses the fixed
number of nonces. Let a plan P of the length n + 1 be such that W >∗

T ZU . Let r be
the last action in P and Z1 →r ZU . By induction hypothesis along W →∗

T Z1, we
only have nonces form the set Nm,a. We can then apply Lemma 1 to the configuration
Z1 and conclude that all nonces in ZU belong to Nm,a. Therefore all nonces updated
along the plan P are taken from Nm,a. 2

In principle, with the use of nonces, exponential plans can involve an exponential
number of nonces. However, Theorem 1 allows one to circumvent this problem.

Corollary 1. For LSTSes with balanced actions that can update nonces, we only need
to consider the planning problem with a polynomial number of fresh nonces, which can
be fixed in advance, with respect to the number of facts in the initial configuration and
the upper bound on the size of facts.

4 Complexity Results
The following result improves the result in [18, Theorem 6.1] since in their encoding
they allowed any type of balanced actions. Here, we tighten their lower bound by show-
ing that LSTSes with balanced actions that can modify at most a single fact and in the
process check whether a fact is present in the configuration is also PSPACE-hard. The
main challenge here is to simulate operations over a non-commutative structure (tape)
by using a commutative one (multiset). (For more discussion on this see [16].) Please
also note that in this theorem no nonce updates are allowed.

Theorem 2. Given an LSTS with only actions of the form ab → a′b, the weak plan
compliance problem and the secrecy problem are PSPACE-hard.

The PSPACE upper bound for this problem can be inferred directly from [17].
Proof In order to prove the lower bound, we encode a non-deterministic Turing ma-
chine M that accepts in space n within monadic actions, whenever each of these actions
is allowed any number of times. In our proof, we do not use critical configurations and
need just one agent A.

For each n, we design a local state transition system Tn as follows:
First, we introduce the following propositions: Ri,ξ which denotes that “the i-th cell

contains symbol ξ”, where i=0, 1, .., n+1, ξ is a symbol of the tape alphabet of M ,
and Sj,q denotes that “the j-th cell is scanned by M in state q”, where j =0, 1, .., n+1,
q is a state of M .

Given a machine configuration of M in space n - that M scans j-th cell in state q,
when a string ξ0ξ1ξ2..ξi..ξnξn+1 is written left-justified on the otherwise blank tape,
we will represent it by a configuration of Tn of the form (here ξ0 and ξn+1 are the end
markers):

Sj,qR0,ξ0R1,ξ1R2,ξ2 · · ·Rn,ξnRn+1,ξn+1 . (1)

Second, each instruction γ in M of the form qξ→q′ηD, denoting “if in state q
looking at symbol ξ, replace it by η, move the tape head one cell in direction D along
the tape, and go into state q′”, is specified by the set of 5(n+2) actions of the form:

Si,qRi,ξ →A Fi,γRi,ξ, Fi,γRi,ξ →A Fi,γHi,γ , Fi,γHi,γ →A Gi,γHi,γ ,
Gi,γHi,γ →A Gi,γRi,η, Gi,γRi,η →A SiD,q′Ri,η,

(2)

where i=0, 1, .., n+1, Fi,γ , Gi,γ , Hi,γ are auxiliary atomic propositions, iD := i+1
if D is right, iD := i−1 if D is left, and iD := i, otherwise.

The idea behind this encoding is that by means of such five monadic rules, applied
in succession, we can simulate any successful non-deterministic computation in space n
that leads from the initial configuration, Wn, with a given input string x1x2..xn, to the
accepting configuration, Zn.

The faithfulness of our encoding heavily relies on the fact that any machine config-
uration includes exactly one machine state q. Namely, because of the specific form of
our actions in (2), any configuration reached by using a plan P , leading from Wn to Zn,
has exactly one occurrence of either Si,q or Fi,γ or Gi,γ . Therefore the actions in (2)
are necessarily used one after another as below:

Si,qRi,ξ →A Fi,γRi,ξ →A Fi,γHi,γ →A Gi,γHi,γ →A Gi,γRi,η →A SiD,q′Ri,η.
Moreover, any configuration reached by using the plan P is of the form similar to (1),
and, hence, represents a configuration of M in space n.

Passing through this plan P from its last action to its first v0, we prove that what-
ever intermediate action v we take, there is a successful non-deterministic computation
performed by M leading from the configuration reached to the accepting configuration
represented by Zn. In particular, since the first configuration reached by P is Wn, we
can conclude that the given input string x1x2..xn is accepted by M . 2

We turn our attention to the case when actions can update nonces. We show that the
weak plan compliance problem and hence also the secrecy problem for LSTSes with
balanced actions that can update nonces is in PSPACE. From Theorem 2, we can infer
that this problem is indeed PSPACE-complete.

To determine the existence of a plan we only need to consider plans that never reach
α-equivalent configurations more than once. If a plan loops back to a previously reached
configuration, there is a cycle of actions which could have been avoided. Thus, at worst,
a plan must visit each of the LT (m,a) configurations, where m is the number of facts in
the initial configuration and a an upper bound on the size of facts. The following lemma
imposes an upper bound on the number of different configurations given an initial finite
signature.

Lemma 2. Given an LSTSes T under a finite signature Σ, then the number of con-
figurations, LT (m,a), that are pairwise not α-equivalent and whose number of facts
(counting repeatitions) is exactly m is such that LT (m,a) ≤ Jm(D + 2ma)ma, where
J and D are, respectively, the number of predicate and the number of constant and
function symbols in the initial signature Σ; and a is an upper bound on the size of facts.

Proof There are m slots for predicate names and at most ma slots for constants and
function symbols. Constants can be either constants in the initial signature Σ or nonce
names. Following the Theorem 1, we need to consider only 2ma nonces. 2

Clearly, the upper bound above on the number of configurations is an overestimate.
It does not take into account, for example, the equivalence of configurations that only
differ on the order of the facts. For our purposes, however, it will be enough to assume
such a bound. In particular, we show next that the secrecy problem for LSTSes with
balanced actions that can update nonces is in PSPACE.

Although the secrecy problem is stated as a decision problem, we prove more than
just PSPACE decidability. Ideally we would also be able to generate a plan in PSPACE

when there is a solution. Unfortunately, the number of actions in the plan may already
be exponential in the size of the inputs, precluding PSPACE membership of plan gener-
ation. For this reason we follow [18] and use the notion of “scheduling” a plan in which
an algorithm will also take an input i and output the i-th step of the plan.

Definition 3. An algorithm is said to schedule a plan if it (1) finds a plan if one exists,
and (2) on input i, if the plan contains at least i actions, then it outputs the ith action
of the plan otherwise it outputs no.

Following [18], we assume that when given an LSTS, there are three programs,
C,G, and T , such that they return the value 1 in polynomial space when given as input,
respectively, a configuration that is critical, a configuration that contains the goal con-
figuration, and a transition that is valid, that is, an instance of an action in the LSTS,
and return 0 otherwise.

Theorem 3. The weak problem compliance problem and the secrecy problem for LST-
Ses with balanced actions that can update nonces are in PSPACE.
Proof Assume as inputs an initial configuration W containing m facts, an upper
bound, a, on the size of facts, programs G, C, and T , as described above, and a natural
number 0 ≤ i ≤ LT (m,a).

We modify the algorithm proposed in [18] in order to accommodate the updating
of nonces. The algorithm must return “yes” whenever there is compliant plan from
the initial configuration W to a goal configuration. In order to do so, we construct an
algorithm that searches non-deterministically whether such configuration is reachable,
that is, a configuration S such that G(S) = 1. Then we apply Savitch’s Theorem to
determinize this algorithm.

The algorithm begins with W0 := W . For any t ≥ 0, we first check if C(Wt) = 1.
If this is the case, then the algorithm outputs “no”. We also check whether the configu-
ration Wt is a goal configuration, that is, if G(Wt) = 1. If so, we end the algorithm by
returning“yes”. Otherwise, we guess a transition r such that T (r) = 1 and that is ap-
plicable using the configuration Wt. If no such action exists, then the algorithm outputs
“no”. Otherwise, we replace Wt by the configuration Wt+1 resulting from applying the
action r to Wt. From Lemma 2 the goal configuration is reached if and only if it is
reached in LT (m,a) steps. We use a global counter, called step-counter, to keep track
of the number of actions used in a partial plan constructed by this algorithm.

In order to accommodate nonce update, we need a way to enforce that whenever
an action updates nonces, these are considered fresh. This is done, as in the proof of
Theorem 1, by replacing the relevant nonce occurrence(s) with nonces from a fixed
set of nonce names so that they are different from any of the nonces in the enabling
configuration.

We now show that this algorithm runs in polynomial space. We start with the step-
counter: The greatest number reached by this counter is LT (m,a). When stored in
binary encoding, this number takes only space polynomial to the given inputs:

log2(LT (m,a)) ≤ log2(Jm(D + 2ma)ma) = log2(Jm) + log2((D + 2ma)ma)
= m log2(J) + ma log2(D + 2ma).

Therefore, one only needs polynomial space to store the values in the step-counter.
Following the Theorem 1 there are at most polynomialy many nonces updated in

any run, namely at most 2ma. Hence nonces can also be stored in polynomial space.

Table 1. Summary of the complexity results for the secrecy problem. We mark the new results
appearing in this paper with a ?.

Secrecy Problem Progressing Not necessarily progressing

Bounded No of Nonces NP-complete? PSPACE-complete [18]Balanced Actions
Unbounded No of Nonces PSPACE-hard? PSPACE-complete?

Unbalanced Actions Undecidable [15] Undecidable [17]

We must also be careful to check that any configuration, Wt, can also be stored in
polynomial space with respect to the given inputs. Since our system is balanced and we
assume that the size of facts is bounded, the size of a configuration remains the same
throughout the run. Finally, the algorithm needs to keep track of the action r guessed
when moving from one configuration to another and for the scheduling of a plan. It has
to store the action that has been used at the ith step. Since any action can be stored by
remembering two configurations, one can also store these actions in space polynomial
to the inputs. 2

Our PSPACE-complete result contrast with results in [12], where the secrecy prob-
lem is shown to be undecidable. Although they also impose an upper bound on the size
of facts, they did not restrict the actions of their systems to be balanced. Therefore, it is
possible for their intruder to remember an unbounded number of facts, while the mem-
ory of all our agents is bounded. Moreover, for their DEXP result, they impose a bound
on the number of nonces that can be updated, whereas we do not impose such a bound.

We now move our attention to the secrecy problem for progressing plans.

Theorem 4. Given an LSTS with only balanced actions, then the secrecy problem for
progressing plans is NP-complete when only a bounded number of instances of actions
that can update nonces is allowed in a plan.

Proof The proof for the lower bound is proved by encoding the 3 SAT problem and
the NP upper bound by showing that one can check in polynomial time whether any run
solves the secrecy problem. The complete proof, which is similar to previous work [2,
7], can be found in [15]. 2

Theorem 5. Given an LSTS with actions of the form ab → a′b or of the form ab →
∃t.a′(t)b, then the weak plan compliance problem and the secrecy problem for pro-
gressing plans are PSPACE-hard.

Proof (Sketch) The proof goes in a similar fashion as the lower bound proof of The-
orem 2. However, we cannot use the same encoding appearing in (2). Since only one
instance of any rule in the LSTS can be used, we would only be allowed to encode runs
that use an action of M at most once. In order to overcome this problem, here, instead
of using propositional rules, we use 6(n + 2) first-order actions of the form:

Si,q(t)Ri,ξ →A ∃tn.Fi,γ(tn)Ri,ξ, Fi,γ(t)Ri,ξ →A Fi,γ(t)Hi,γ(t),
Fi,γ(t)Hi,γ(t) →A Gi,γ(t)Hi,γ(t), Gi,γ(t)Hi,γ(t) →A Gi,γ(t)Ri,η,
Gi,γ(t)Ri,η →A SiD,q′(t)Ri,η, Si,q(t) →A Si,q.

(3)

where i=0, 1, .., n+1. The initial configuration contains a fact Si,q(c) with some con-
stant c and the goal configuration is the accepting configuration with a propositional

variable Sj,q (of arity zero). Intuitively, the first five rules above are used in the same
way as before to encode M ’s actions of the form Si,qRi,ξ →A SiD,q′Ri,η , but, now, we
create a new constant, tn, everytime we apply the first rule. This allows us to encode
runs where the same action of M is used more than once, since, for each use of this
action, we use a different instance of the rules in (3). Moreover, since in the accepting
configuration one is not interested in the constant t appearing in the variables Si,q(t),
we use the last rule in (3) when the accepting configuration is reached. Notice that after
this last action is used, no other rule in (3) is applicable. 2

The NP-completeness result is related to a similar result in [12], as both rely on
notions similar to progressing. As shown in [18], the secrecy problem without the pro-
gressing condition is PSPACE-complete even when actions cannot update nonces. Thus
the use of progressing systems improves the complexity for this problem. We also have a
EXPSPACE upper bound for the secrecy problem when actions can update nonces [15]
and we are currently working on tighter bounds.

Table 1 summarizes the main complexity results for the secrecy problem.

5 Protocol theories with a bounded memory intruder
We return to traditional intruder models and discuss that many protocol anomalies, such
as Lowe’s anomaly [19], can also occur when using our bounded memory adversary.
We assume that the reader is familiar with such anomalies, see [9, 12, 19]. The complete
details can be found in the technical report [15].

As in [12], we assume that all messages are transmitted by passing first through the
intruder, that is, the intruder acts as the network of the system. We use the public pred-
icate names NS and NR to denote messages that are, respectively, sent from an agent
to the intruder and from the intruder to another agent. On the other hand, the predicates
C, D, and M are private to intruder. The first two are used when he is composing and
decomposing messages, respectively, while the third predicate is used to denote some
data learned by the intruder. Since the memory or space of agents is bounded, it is im-
portant to keep track of how many facts they can store. In particular, the public fact
P (∗) denotes a free memory-slot available to any agent and the private fact R(∗) de-
notes a free memory-slot available only to the intruder. The use of the two distinct facts
for free memory-slots helps us to formalize precise upper-bounds on the space needed
by the intruder to realize an anomaly, see [15]. There, we also prove that the secrecy
problem is PSPACE-hard when using intruder models, similar to those in [12], but that
contain only balanced actions.

We use balanced actions to model the intruder’s actions. In particular, our bounded
memory Dolev-Yao intruder is also two-phased [12], that is, he first decomposes mes-
sages that are intercepted in the network and only then he starts composing new mes-
sages. For example, the following rules belong to the intruder:

REC : NS(x)R(∗) → D(x)P (∗) SND : C(x)P (∗) → NR(x)R(∗)
DCMP : D(〈x, y〉)R(∗) → D(x)D(y) COMP : C(x)C(y) → C(〈x, y〉)R(∗)
USE : M(x)R(∗) → C(x)M(x) LRN : D(x) → M(x)
GEN : R(∗) → ∃n.M(n)

The rules REC and SND specify, respectively, the intruder’s actions of intercepting a
message from and sending a message to the network. The rules DCMP and COMP
specify the intruder’s actions of decomposing and composing messages. The rules USE

Table 2. Table containing the total number of facts, the number of R(∗) facts, and the largest size
of facts needed to encode protocol runs and known anomalies when using LSTSes with balanced
actions. The largest size of facts needed to encode an anomaly is the same as in the corresponding
normal run of the protocol. In the cases for the Otway-Rees and the Kerberos 5 protocols, we
encode different anomalies, which are identified by the numbering, as follows: (1) The type flaw
anomaly in [9]; (2) The attack 5 in [24]; (3) The ticket anomaly and (4) the replay anomaly in [5];
(5) The PKINIT anomaly also for Kerberos 5 described in [6].

Needham Otway Woo Kerberos
Protocol

Schroeder
Yahalom

Rees Lam 5
PKINIT(5)

No of facts 9 8 8 7 15 18Normal
Size of facts 6 16 26 6 16 28

No of facts 19 15 11(1), 17(2) 8 22(3), 20(4) 31Anomaly
No of R(∗) 7 9 5(1), 9(2) 2 9(3), 4(4) 10

and LRN specify the intruder’s actions of using a known data to compose a message and
learn some data from an intercepted message. Finally, the rule GEN specifies that the
intruder can update fresh values. Notice the role of the facts P (∗) and R(∗) in the rules.
For instance, in the REC rule, when the intruder intercepts a message from the network,
one of the the intruder’s free memory slots, R(∗), is consumed and a free memory slot,
P (∗), belonging to the other agents is created. The intruder is not allowed to intercept
a new network fact if he does not have any free memory slot left.

Therefore, differently from [12] where the intruder had only persistent facts, the
intruder here might have to forget data. That is, he has actions that replace some fact
owned by him by the empty fact R(∗), allowing hence the adversary to store eventually
new information. For instance, the following rule specifies the intruder’s action of for-
geting a data known to the intruder: M(x) → R(∗). The complete set of rules for the
adversary, including rules involving encryption and decryption, is given in [15].

Regarding protocol anomalies, the main observation is that when the adversary has
enough R(∗) facts, then anomalies can also occur using adversaries with bounded mem-
ory. We believe that this is one reason for the successful use in the past years of model
checkers to verify protocols. In the technical report [15], we show that many anomalies
can be realized using our bounded memory intruder. Table 2 summarizes the number
of P (∗) and R(∗) facts and the upper bound on the size of facts needed to encode nor-
mal runs, where no intruder is present, and to encode the anomalies where the bounded
memory intruder is present. We specify protocols using rules that handle encryption
and decryption, as in [12]. For instance, to realize the Lowe anomaly to the Needham-
Schroeder protocol, one needs a bit more than the twice the number of empty facts as
in its normal run, and the intruder requires only seven R(∗) facts.1

Since all players in our system have a bounded memory, the role generation phase
in well-founded theories [12] necessarily yields a bounded number of protocols roles
in our system, using here the terminology from [12]. This is because in such theories

1 Notice that here we only encode standard anomalies described in the literature [5, 9, 24]. This
does not mean, however, that there are not any other anomalies that can be carried out by an
intruder with less memory, that is, with less R(∗) facts.

all protocol roles that are used in a run are created at the beginning. Since the size
of configurations when using balanced actions is bounded, the number of roles that
can be created is also bounded. Thus, under well founded theories, our PSPACE upper
bound result (Theorem 3) reduces to the NP upper bound from [12, Theorem 3]. We
therefore do not use well-founded theories, but rather allow protocol roles to be created
not necessarily at the beginning of the run, but also after a protocol run is finished.
Once a protocol session is finished it can be deleted, creating a free memory slot to be
(possibly) used to create new protocol roles. Existing protocol analysis tools seem to
proceed in a similar fashion.

6 Related Work
As previously discussed, we build on the framework described in [18, 17]. In particular,
here we investigate the use of actions that can update values with nonces, providing
new complexity results for the partial reachability problem. In [3, 4], a temporal logic
formalism for modeling organizational processes is introduced. In their framework, one
relates the scope of privacy to the specific roles of agents in the system. We believe that
our system can be adapted or extended to accommodate such roles depending on the
scenario considered.

In [22], Roscoe formalized the intuition of reusing nonces to model-check protocols
where an unbounded number of nonces could be created, by using methods from data
independence . We confirm his initial intuition by providing tight complexity results and
demonstrating that many protocol anomalies can be specified when using our model that
reuses nonces.

Harrison et al. present a formal approach to access control [14]. In their proofs,
they faithfully encode a Turing machine in their system. However, in contrast to our en-
coding, they use a non-commutative matrix to encode the sequential, non-commutative
tape of a Turing machine. We, on the other hand, encode Turing machine tapes by us-
ing commutative multisets. Specifically, they show that if no restrictions are imposed
to the systems, the reachability problem is undecidable. However, if actions are not
allowed to update values with fresh ones, then they show that the same problem is
PSPACE-complete. Furthermore, if actions can delete or insert exactly one fact and in
the process one can also check for the presence of other facts and even update values
with nonces, then they show the problem is NP-complete, but in their proof they im-
plicitly impose a bound on the number of nonces that can be created. In their proofs,
the non-commutative nature of their encoding plays an important role.

Our paper is closely related to frameworks based on multiset rewriting systems
used to specify and verify security properties of protocols [1, 2, 7, 10, 12, 23]. While
here we are concerned with systems where agents are in a closed room and collaborate,
in those papers, the concern was with systems in an open room where an intruder tries
to attack the participants of the system by manipulating the transmitted messages. This
difference is reflected in the assumptions used by the frameworks. In particular, the
security research considers a powerful intruder that has an unbounded memory and that
can, for example, accumulate messages at will. On the other hand, we assume here that
each agent has a bounded memory, technically imposed by the use of balanced actions.

Much work on reachability related problems has been done within the Petri nets
(PNs) community, see e.g., [13]. Specifically, we are interested in the coverability prob-
lem which is closely related to the partial goal reachability problem in LSTSes [17].

To our knowledge, no work that captures exactly the conditions in this paper has yet
been proposed. For instance, [13, 21] show that the coverability problem is PSPACE-
complete for 1-conservative PNs. While this type of PNs is related to LSTSes with bal-
anced actions, it does not seem possible to provide direct, faithful reductions between
LSTSes and PNs in this case.

7 Conclusions and Future Work
This paper extended existing models for collaborative systems with confidentiality poli-
cies to include actions that can update values with fresh ones. Then, given a system with
balanced actions, we showed that one only needs a polynomial number of constants
with respect to the number of facts in the initial configuration and an upper bound on
the size of facts to formalize the notion of fresh values. Furthermore, we proved that
the weak plan and system compliance problems for systems with balanced actions that
can update values with fresh ones are PSPACE-complete. We also proved that for sys-
tems with balanced actions, the secrecy problem for progressing plans is NP-complete
when only a bounded number of nonces can be created, and it is PSPACE-hard when
an unbounded number of nonces can be created. Finally, we showed that a number of
anomalies for traditional protocols can be carried by a bounded memory intruder, whose
actions are all balanced.

There are many directions to follow from here, for which we are currently working
on. Here, we only prove the complexity results for the secrecy problem. We are search-
ing for complexity bounds for the weak plan compliance and other policy compliances
problems proposed in [17]. We would also like to understand better the impact of our
work to existing protocol analysis tools, in particular, our PSPACE upper-bound result.
Moreover, we are currently working on determining more precise bounds on the mem-
ory needed by an intruder to find an attack on a given protocol. We are investigating the
consequences of increasing the expressiveness of the language by allowing actions to
have constraints, such as arithmetic constraints. Finally, despite of our idealized model,
we believe that the numbers appearing in Table 2 provide some measure on the security
of protocols. Specifically, the more space required by the intruder to carry an anomaly,
the safer one could consider a protocol to be. We are currently investigating how to en-
rich our model in order to include new parameters, such as the number of active sessions
running at the same time required by the intruder to carry out an attack. In general, we
seek to provide further quantitative information on the security of protocols. Some of
these parameters appear in existing model checkers, such as Murφ. We are investigating
precise connections to such tools.
Acknowledgments: We thank Elie Bursztein, Iliano Cervesato, Anupam Datta, Ante Derek,

George Dinolt, F. Javier Thayer Fabrega, Joshua Guttman, Jonathan Millen, Dale Miller, John
Mitchell, Paul Rowe, and Carolyn Talcott for helpful discussions.

Scedrov, Nigam, and Kanovich were partially supported by ONR Grant N00014-07-1-1039,
by AFOSR MURI ”Collaborative policies and assured information sharing”, and by NSF Grants
CNS-0524059 and CNS-0830949.

References

1. R. M. Amadio and D. Lugiez. On the reachability problem in cryptographic protocols. In
CONCUR ’00, pages 380–394, 2000. Springer-Verlag.

2. R. M. Amadio, D. Lugiez, and V. Vanackère. On the symbolic reduction of processes with
cryptographic functions. Theor. Comput. Sci., 290(1):695–740, 2003.

3. A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum. Privacy and contextual integrity:
Framework and applications. In IEEE Symposium on Security and Privacy, 2006.

4. A. Barth, J. C. Mitchell, A. Datta, and S. Sundaram. Privacy and utility in business processes.
In CSF, pages 279–294, 2007.

5. F. Butler, I. Cervesato, A. D. Jaggard, A. Scedrov, and C. Walstad. Formal analysis of ker-
beros 5. Theor. Comput. Sci., 367(1-2):57–87, 2006.

6. I. Cervesato, A. D. Jaggard, A. Scedrov, J.-K. Tsay, and C. Walstad. Breaking and fixing
public-key kerberos. Inf. Comput., 206(2-4):402–424, 2008.

7. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP decision procedure for
protocol insecurity with XOR. Theor. Comput. Sci., 338(1-3):247–274, 2005.

8. A. Church. A formulation of the simple theory of types. J. Symbolic Logic, 5:56–68, 1940.
9. J. Clark and J. Jacob. A survey of authentication protocol literature: Version 1.0. 1997.

www.cs.york.ac.uk/˜jac/papers/drareview.ps.gz
10. H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and insecurity

decision in presence of exclusive or. In LICS ’03, page 271, 2003. IEEE Computer Society.
11. D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on

Information Theory, 29(2):198–208, 1983.
12. N. A. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov. Multiset rewriting and the com-

plexity of bounded security protocols. Journal of Computer Security, 12(2):247–311, 2004.
13. J. Esparza and M. Nielsen. Decidability issues for Petri nets - a survey. Bulletin of the

EATCS, 52:244–262, 1994.
14. M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. On protection in operating systems. In

SOSP ’75, pages 14–24, New York, NY, USA, 1975. ACM.
15. M. Kanovich, T. B. Kirigin, V. Nigam, and A. Scedrov. Bounded memory Dolev-Yao

adversaries in collaborative systems. ftp://ftp.cis.upenn.edu/pub/papers/
scedrov/FAST2010-TR.pdf, 2010.

16. M. Kanovich, T. B. Kirigin, V. Nigam, and A. Scedrov. Progressing collaborative systems.
In FCS-PrivMod, 2010.

17. M. Kanovich, P. Rowe, and A. Scedrov. Policy compliance in collaborative systems. In CSF
’09, pages 218–233, , 2009. IEEE Computer Society.

18. M. Kanovich, P. Rowe, and A. Scedrov. Collaborative planning with confidentiality. Journal
of Automated Reasoning, 2010. To appear. This is an extended version of a previous paper
which appeared in CSF’07.

19. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In
TACAS, pages 147–166, 1996.

20. R. Milner. Communicating and Mobile Systems : The π-calculus. Cambridge University
Press, New York, NY, USA, 1999.

21. Y. L. N.D. Jones, L.H. Landweber. Complexity of some problems in Petri nets. Theoretical
Computer Science, 4:277–299, 1977.

22. A. W. Roscoe. Proving security protocols with model checkers by data independence tech-
niques. In CSFW, pages 84–95, 1998.

23. M. Rusinowitch and M. Turuani. Protocol insecurity with a finite number of sessions and
composed keys is NP-complete. Theor. Comput. Sci., 299(1-3):451–475, 2003.

24. G. Wang and S. Qing. Two new attacks against Otway-Reese protocol. In IFIP/SEC2000,
Information Security, pages 137–139, 2000.

