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Abstract

The modelling of nonisothermal continuous stirred chemical reactor dynamics by linear and nonlinear principal components methods is investigated. The derived models are analysed with respect of their ability to predict existence of the reactor multiple steady states and their use for adaptive on-line process control. Time evolution of the state variables is approximated by a single step finite difference prediction equation.  Nonlinear principal components are determined by a feedforward neural network with a single hidden layer. Input and output patterns are jointly projected to a two dimensional surface yielding an implict process model. The ability of implicit models to predict controlled and manipulative variables without the need for separate model development for the direct and inverse models makes them ideally applicable in adaptive internal model control loops. The model correctly predicts the existence of three steady states and provides an excellent fit to untrained samples of patterns under various dynamic conditions. The linear models based on a partial least squares algorithm provide fit to patterns under unsteady conditions, but they fail to predict multiple steady states in chemical reacting systems which makes them, under this condition, unsuitable for process control.
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1. Introduction


Development of principal component analysis (PCA) and related modelling techniques [1] initially attracted a great deal of attention from the chemometrics community but soon it also become of great interest to chemical engineers. At about the same time neural networks (NN) become a popular tool for modelling of nonlinearities in chemical and biochemical reaction engineering [2]. The PCA method enables effective modelling of processes with multivariable data and solves the problem of numerical instabilities and ill-modelling due to data collinearity by a linear projection method to a lower dimensional space of latent variables. On the other hand, NN are effective in nonlinear mapping of multivariable sets of input and output patterns without prior analytical knowledge of nonlinearities. The PCA and NN methodologies have been used for: process monitoring, modelling, determination of control structures, automatic decoupling of process variables, variable lumping, quality assurance, and process optimisation [3-9]. From a control engineering perspective the application of these methods in modelling of process dynamics is the most important, and is still an object of research. Use of linear and nonlinear autoregression for discrete sequences of input and output variables is the most popular approach. Networks are designed with static neurons and information on dynamics of a system is stored in additional memory buffers which contain a sequence of delayed patterns of input and output variables. Propagation of patterns is unidirectional (feedforward) or may be with recurrent (feedback) loops. An alternative approach is in the application of networks with neurons, which are modelled as systems with linear dynamics and nonlinear gain [10]. In this approach, patterns are instantaneous values of input and output variables, and information on system dynamics is stored locally into dynamic part of neurons. Neural networks have been applied with complex structures and numerous input and output patterns, but in view of the success of PCA in linear models, neural networks with minimal structures obtained by the projection of variables into the latent variable space have also been applied. Projections can be nonlinear [11], or linear PCA is applied as a separate reduction stage prior to a neural network [15,16]. Linear systems can be applied effectively for modelling of nonlinear systems if they are continuously adapted to process conditions. Adaptation can be performed with recursive PCA [12] or ordinary recursive least squares [17].


The aim of this work is to study modelling of a nonlinear dynamic system by linear and nonlinear principal components. A nonisothermal continuous stirred tank chemical reactor is selected as a standard benchmark. Due to its nonlinearity, steady state multiplicity and existence of limit cycle behaviour, it has been used as a strong test for modelling techniques in numerous works [12-14,17].

2. Theory


Modelling of chemical process dynamics by linear and nonlinear principal components from the control point of view is analysed. Assumed is a general dynamical system with multiple inputs and multiple outputs (MIMO) defined as a set of nonlinear ordinary differential equations (ODE):
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The system state variables are given by vector y, the input variables are x, f is a vector of model equations (mass, energy and momentum balances), t is time. The system output variables z are defined by nonlinear static transformation h of the state variables given by a general form:
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The model equations (1-2) represent numerous chemical engineering models, which may posses complex properties, such as: multiple steady states, limit cycles, mathematical chaos and others. Development of such models for complex reactions and transport conditions in industrial processes is expensive, i.e. it requires full knowledge of chemical complexity, extensive experiments are needed and accurate parameter estimation is required. From a process control point of view, analytical models may be reduced to simple input-output mapping relations which can be applied in control feedforward and/or feedback control loops. Such models may be "black" or "grey boxes", but they must closely approximate complex input-output relations under steady and unsteady conditions. Based on sampled data provided by on-line control instrumentation and computer systems, ODE models are approximated by discrete nonlinear models given by:
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The model (3) provides single step prediction of output variables based on previous values of output and input variables. The lengths r and s are time windows for the corresponding variables which are determined from the dimensions of the system state space. The inverse of (3) enables the determination of manipulative variable x(k) which will produce the next (reference) value of y(k+1), i.e.:
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The direct h and the inverse h-1 models are applied in an internal model control (IMC) loop, which is a combination of feedforward control with a feedback for process error compensation [2-4]. The optimal profile of the input variable in the time window (horizon) of length nh is determined by a nonlinear optimisation problem given by:
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The objective function J is minimised based on a difference between consecutive predictions of output y(k+j) and reference value yr(k+j). The weighing coefficients ( are preselected in order to match the system dynamics to a selected criterion. Number of future predictions nh defines the control horizon which determines the system stability. Usually the minimisation (5) is constrained with respect to lower and upper boundaries and the rate of change of input given by:
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The objective function J is iteratively optimised for each single step prediction. The linear form of both the direct (3) and inverse (4) models is very attractive from computational considerations. Such models are linear with the respect to the parameters ( and the variables and can be expressed in matrix form as:
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Due to constraints by physical and chemical laws the input and output data in (7) can be highly correlated leading to ill-conditioned ATA and corruption of the ordinary least square estimates (OLS) of model parameters (. The difficulties in estimation are avoided by projection of the original high dimensionality input-output space into a lower dimension space defined by a few orthogonal latent variables ( s1, s2, ..snr ) [1].    The model parameters are estimated in lower dimensions by principal component regression (PCR) or partial least squares (PLS) methods. The PLS method of projection to lower dimensions is derived from the maximisation of covariance between the output and input data. Details of the methods can be found in [1,5-8]. From the perspective of a process control engineer, the projection method significantly reduces dimensions of the state space, removes correlated process variables, and enables lumping of variables and decoupling of control loops [6]. It leads to simpler and more robust models for adaptive control, process monitoring and fault detection.

However, most of the chemical engineering systems are profoundly nonlinear and linear models (7) are only applicable in a close vicinity of a process working point. Control based on linear models should therefore be restricted to local perturbations. When a working point moves along a trajectory, linear models must be continuously adapted to new input-output data [12,17].

 In order to develop a control system based on global nonliner properties a nonlinear projection method to a space of latent variables is considered. Instead of developing separate direct (3) and (4) indirect models needed for IMC control, a new method is proposed here for an implicit nonlinear model based on a nonlinear projection method. Applied is a bottle-neck neural network configuration for projection to low dimension space of latent variables. Consider an implicit model with input variables at time k given by the row vector 
[image: image9.wmf](

)

i

n

x

t

R

k

1

Î

x

 (ni = number of input variables) and the output variables at time k by the row vector 
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 ( no = number of output variables). The row vector 
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 is the concatenated vector of the lagged input and output variables with the single step ahead prediction of the output variables:
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Components of vector u ( R1xnv  where nv refers to the number of variables in the vector and can be given by  nv = (1+r)ni + sno where r and s refer to the number of lagged input and output samples used for the one step  prediction of z(k+1). The number of components is nv ( number of variables) and it is the high dimensional space defined by the joint input and output variables. The process data are stored in a matrix U ( Rns x nv , where ns refers to the number of samples contained in the matrix. Due to high correlation, matrix U is often ill-conditioned, and for purposes of data modelling are nonlinearly projected to a space of lower dimension (nr). The projection is defined by:
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Projection is defined by neural network NN1 with neuron parameters collected into the matrix W1. Input patterns are u(k) and latent variables ( scores) s(k) are the network output patterns. The inverse projection of the latent variables into the original space of physical variables is defined by the second network:
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Selected are neurons with a sigmoid activation function F defined by:
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In (11) the definition is adopted by which a scalar function F of a vector u yields a vector s. For the sake of simplification in notation, it is assumed that NN1 is a single layer network. W10 is the vector of threshold activities of the output layer. Dimensions of the matrices in (11) are: dim(W1) = (nr,nv); dim(W01) =(nr,1).   Neurons are static and signals of patterns are feedforward propagating without feedback loops. Adaptation of network parameters is performed by minimisation of the total sum of squares of errors expressed by the objective function S:
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The conjugate gradient method is applied for minimisation of  S. Methodology of data scaling, network structure selection and model validation are described in details in  [18]. Dimension nr of the space of latent variables s is equal to the number of neurones on the output layer of NN1, and is determined as the minimal number when the total variance of patterns t is close to variance of input u,  (2( T ) ( (2( U ), i.e. to the level when it accounts for 95% or better of the original variance. The level to which a model should explain variance of a training set of patterns should be judged from analytical error estimated by replicate (parallel) experiments. The neural network is adapted to identity mapping, hence:
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with small ( negligible) error e. The secondary mapping in (13) enables determination of the latent variables by:
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It is a set of nv linear equations with nr unknowns. Since nr<nv it is possible to determine s in terms of ordinary least squares (OLS) with a partial vector up. In the case of multiple input single output (MISO), when unv(k) = y(k+1) and the partial vector has nv-1 components, i.e. up = u(1: nv-1). The OLS solution of (14) for s is:
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The partial matrices in (15) have dimensions dim(W2p) = ( nv-1, nr ) and dim(W02p) = ( nv-1, 1). The predicted variable unv is explicitly evaluated by the residual of the neural network, hence:
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Wnv2 is a vector, W2(nv,1:nr) and Wnv,0 is a scalar.

 The relations (15) and (16) represent an implicit model of a dynamical system where the union of sets of input and output patterns is nonlinearly projected into a joint space of lower dimension. The nonlinear projections are the latent variables ( or nonlinear scores) of a system, and unlike the linear PCA, the nonlinear NN-PCA are not orthogonal. The important benefit of implicit modelling is that the model equations (15-16) serve at the same time as a direct and an inverse model. When an implicit model is a part of a feedback/feedforward control loop the value of control input variable x(k) is determined for one given step ahead for the referent value yr of the output variable y(k+1)=yr. The calculation of x(k) is given by the same equations (15-16) with only a change in indexing, x(k) becomes the last component of u, i.e. x(k)=unv. Furthermore, the fact that the same implicit model serves as a direct and inverse model results in effective modelling error compensation in the internal model control (IMC) [9,13-14].

3. Experimental


Linear and nonlinear projection methods are applied for modelling of a chemical continuous stirred tank reactor (CSTR) at nonisothermal conditions. The example is selected because it is a paradigm of chemical reaction engineering, which possesses complexities such as multiple steady states and limit cycle behaviour. Due to the change of sign of the steady state gain, a classical proportional, integral and differential (PID) regulator can not globally control this process.  The model equations in dimensionless forms are:
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The state variables are relative concentration c and temperature T, Tr  is reference or nominal temperature of a heat exchanger and is the input control variable. Model parameters are: Da is Damkhuler number, Ea is the activation energy, Hr is the enthalpy of reaction, and Kh is heat transfer coefficient. The parameters are dimensionless relative quantities and have values Da=0.072, Ea=20, Kh=0.3 and Hr=8. The model                                                           equations are integrated by  MATLAB® ode45 routine [19] and solutions are sampled at dimensionless time intervals ( = 0.5. For purpose of modelling and model validation in different dynamical regimes, two classes of experiments are performed based on pseudo random binary sequences (PRBS) and harmonic changes of the input variable Tr. To simulate measurement errors, normally distributed random numbers in the range of relative standard deviation 0-10% are added to the simulation responses. Applied is uniform random generator provided by MATLAB®  5.1 [19]. All data are stored in separate files with 500 samples. Each file corresponds approximately to a period of twenty process time constants.


Multiple steady states are calculated analytically by the following relations:
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The steady state temperatures Tr and T are determined as functions of concentration in the range c ( [ 0, 1 ]. All numerical calculations involved in linear and nonlinear principal component modelling are performed with MATLAB® v. 5.1. language and standard routines for matrix calculation [19].

4. Results and discussion


The result of analytical evaluation of multiple steady states by equation (18) is presented in Fig. 1. The steady state curve is plotted in the joint space of the state and input variables (c,T,Tr). It is an S-shaped curve which in the range Tr ( [ -0.5, 0.5] yields three concentrations corresponding to low, high and intermediate reaction rates. In the multiplicity region  [ -0.5, 0.5] the steady state process gain dc/dTr twice changes its sign. The range of the derivative is (-(,() with the jump discontinuities at the two turning points, Fig. 10.  Intermediate reaction steady states are unstable and may be surrounded by limit cycles. When perturbation of the input variable Tr  covers the region of multiple steady states the output variable c exhibits jumps between low and high reaction rates.


At the start of the process modelling a linear PCA is performed to determine the number of latent variables needed to explain the measurement data. From noise free simulated data a matrix A is formed for nonlinear autoregression with external input (ARX) modelling given by:
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 PCA analysis was performed separately for the PRBS and harmonic perturbations of Tr  and it was found that the first three components account for 86.0% ,90.6% and 96,9 % of (2(A) respectively. The PCA result correctly indicates that measurement data reveal a discrete system with two latent variables obtained by sampling a two dimensional state space dynamic system (17). Fig. 2 is shows the plane determined by the first two loading vectors presented in the space of (c(k+1), c(k), Tr(k)). The plane is determined from data with PRBS perturbations used for model development. In the same figure are depicted data obtained by harmonic perturbations, which are applied for model validation. The graphical presentation of the results indicate that most of data are well projected on the plane, however systematic errors are clearly detected.


The following nonlinear implicit model is considered:
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                                                                             (20)                                                                                 Nonlinear latent variables are determined by neural network identity mapping U(U. Applied are two (NN1,NN2)  single layer networks with a neuron sigmoid activity function. The sum of squares of the error given by equation (12) is minimised by use of the conjugate gradient method. The surface of nonlinear latent variables determined from data with PRBS perturbations is presented in Fig. 3. It accounts for 98.3% of the total variance. In the same plot are presented patterns from the untrained set with a harmonic perturbation. Improvement of  NN-PCA ( Fig. 3) over linear PCA ( Fig. 2) is obvious as patterns from the set used for NN training and validation very closely fall on the nonlinear surface. The only exceptions are the initial points, which are data independent of the system constraints anyway.


Accuracy of predictions of c(k+1) by the linear PLS and the implicit model based on NN-PCA can be observed from Fig. 4 and Fig. 5. Presented data are from the set with PRBS perturbations used in modelling, but the same conclusion holds for the validation set with harmonic perturbations. Although the PRBS cover the full range of  the input variable, in Fig. 4 and Fig. 5 the output concentration remains only at low or high level due to unstable intermediate reaction rates. Both of the models provide almost perfect fit for a single step prediction of the output variable. 


Besides prediction of the output variable, the implicit model given by equations (15-16) also serves as an inverse model enabling determination of the input variable Tr(k) for a given c(k+1) and c(k). In Fig. 6 are presented results for the experiment with PRBS perturbation of Tr.


The implicit model based on NN-PCA is validated by a set of patterns unused in model development (NN training). A harmonic perturbation of Tr(t)=Tr0(cos(((t) is selected as a test perturbation. Prediction of the output variable c(k+1) and true values are depicted in Fig. 7. Although the perturbation is a harmonic, the output has a form of a square pulse due to unstable steady states in the region of multiplicity. The model correctly predicts the dynamics of the system although the validation patterns were not used in the model development.


Comparison of the first linear and nonlinear latent variable (score) is given in Fig. 8. The results are again given for the experiment with PRBS perturbations. The first linear latent variable accounts for 86%, while the first nonlinear accounts for 93.6% of the total variance. The both signals are close to each other, however the linear score uniformly attains higher values in the range of lower concentrations. The time course of the first two nonlinear scores is given in Fig. 8. The nonlinear scores are not orthogonal, and due to the nonsequential method of calculation, the first score from Fig. 9 does not correspond to the first score given in Fig. 8.


Since the emphasis of the present work is on modelling for process control it is important to test the PLS versus implicit model based on NN-PCA by investigation of global (qualitative) input/output relationship. For a successful application of a model for process control it is imperative that a model can predict a change in sign of a static process gain. Therefore, here are compared steady states determined by PLS and the implicit NN-PCA models. Steady states of the implicit NN-PCA model are based on equation (16). A steady state concentration cs for a given steady state referent temperature Trs is calculated from the following nonlinear equation:
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In (21) the score vector s(cs,Trs) is determined by the equation (15). Since the steady state equation (21) is nonlinear for cs the iterative Newton method [19] was applied. The first solution was determined for Tr = -2, and the solution was used as a starting value for the next iteration when temperature is increased for 0.05. By this sequential method the whole steady state curve was determined in the range Tr ( [-2 , 2]. The result is presented in the Fig. 10. In the same figure are presented the results obtained by the analytical method given in equation (18) and the PLS model. Because the PLS is a linear model it must fail to predict multiple steady states and change of sign of the static process gain. Static gain obtained by PLS is also incorrect in an average sense, i.e. its value greatly differs from the true average gain. Moreover, it also wrongly predicts steady state concentrations outside the physical range of cs ( [0,1] for Tr < -0.7 and Tr > 1.5. In contrast to PLS, implicit NN-PCA gives correct qualitative prediction of steady state multiplicity. Coordinates of the turning points of the S-curve are outside the actual values for 0.5 in temperature and 0.1 in concentration. The important effect of change in the sign of the static gain is correctly predicted, and values of the gain in the stable low and high reaction rate ranges are correct in the average sense.


Modelling by implicit neural network NN-PCA is also tested for sensitivity of predictions on measurement noise. On sampled data from simulation of the analytical model given by the equations (17) are superimposed random numbers with normal (Gaussian) probability density function:
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In Fig. 11 are presented results for relative standard deviation in prediction of the output variable c(k+1) for increasing relative noise level. The relative noise level is defined as the ratio between the noise standard deviation ( and the measurement range of the output variable. The standard deviation in prediction is relative to the standard deviation of the modelling error obtained for noise free measurements. In Fig. 11 are presented standard deviations for the set of patterns applied in modelling and the set used for the model validation. The standard deviation for validation set is higher compared to the training, but the difference may not be considered significant. Due to noise rejection by the modelling procedure standard deviation in prediction is dominated by the modelling error in the range of low noise level, bellow 5%. At higher noise levels errors in prediction exponentially grow with noise.


From the perspective of a process control engineer it is very important to test a model for its long-range predictability. In Fig. 12 are given results of the relative standard deviation in prediction of the output variable c( k +j ), for j =1 to 20. The standard deviations are relative to the standard deviation for one step prediction c(k+1). The maximum horizon of 20 samples corresponds approximately to the reactor time constant determined from a response of the output variable c(k) to a step change in the manipulative variable Tr(k). Presented are results for noise free data from the training and model validation sets. The error in prediction exponentially increases with length of the time window, and is larger for data from the training set. It can be explained by the fact that the training set is based on PRBS sequence with short-range auto-correlation, while the test set is derived from a simple harmonic perturbation, which is well auto-correlated in the specified time window.
5. Conclusions


In the work is
proposed a new method for input-output modelling by use of implicit neural network principal component analyses NN-PCA. Union of sets of system input and output variables is mapped to low dimension space of latent variables by neural networks. The implicit model is invertible, which enables its use for prediction of output and input variables. Thus, it serves at the same time as a direct and inverse model in an internal model control and provides improved model error compensation in the feedforward/feedback loop.


Implicit NN-PCA is compared versus explicit linear PLS in modelling of dynamics of a nonisothermal continuous stirred tank reactor (CSTR). The test example is inherently nonlinear with multiple steady states and complex dynamic phenomena such as reaction rate "jumps" due to instability of intermediate states. Both of the models proved to be accurate for the task of a short-range single step prediction of the output variable. However, the PLS model proved to be wrong in a global sense since it can not predict multiplicity of steady states. Increase of included number of principal components in PLS may result in more accurate short range predictions, but can not eliminate shortcomings of PLS when a chemical process exhibits multiplicity due to nonlinear kinetic and/or energy coupling. Inability of the PLS model to predict the phenomena of change of sign of static gain, which is only a prerequisite of the stringent requirements for models applied in control, makes the PLS unusable as a global controller. Thus is proved that unadaptive PLS models are very effective models only in the vicinity of the process working points, and must be used with care in chemical reaction systems, which are profoundly nonlinear.


In contrast to PLS, the implicit model NN-PCA with neural networks can correctly predict the multiplicity of steady states and the phenomena of change of sign in the static gain. Correct global behaviour of implicit NN-PCA models makes them suitable for global adaptive control and process optimisation.
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Figure Legends

Fig.1. Multiplicity of steady states in the space of reactor concentration (C) and temperature (T), and heat exchanger referent temperature (Tr ).

Fig. 2. Model plane in the space of  the output  c(k) and input variable Tr(k) obtained by 2 component linear PCA. Training patterns by PRBS are depicted by open circles (    ),  untrained patterns by harmonic perturbations are (    ). The initial states are denoted by (    ).

Fig. 3. Model plane in the space of  the output  c(k) and input variable Tr(k) obtained by 2 component implicit nonlinear NN-PCA. Training patterns are depicted by open circles (  ),  untrained patterns are (   ), and the initial states are (    ).

Fig. 4. Experimental (    ) and predictions of concentrations ( C ) by implicit linear PCA model (      ). The results are obtained in a training experiment with PRBS perturbations of the input variable ( Tr ).

Fig. 5. Experimental (    ) and predictions of concentrations ( C ) by implicit nonlinear NN-PCA model (      ). The results are obtained in a training experiment with PRB perturbations of the input variable ( Tr ).

Fig. 6. Experimental (    ) and predictions of  the input variable  ( Tr ) by implicit nonlinear NN-PCA model (      ). The results are obtained in a training experiment with PRB perturbations.

Fig. 7. Experimental (    ) and predictions of concentrations ( C ) by implicit nonlinear NN-PCA model (      ). The results are obtained in an untrained experiment with a harmonic perturbation of the input variable ( Tr ).

Fig. 8. Dynamics of the first linear (      ) and nonlinear (     ) score variables. The results are from an experiment with PRB perturbations of the input variable  ( Tr ).

Fig. 9. Dynamics of the first  (      ) and second nonlinear (      ) score variables. The results are from an experiment with PRB perturbations of the input variable  ( Tr ).

Fig. 10. Multiplicity of the input ( Tr ) and output variable ( C ) under steady state conditions. Experimental values are depicted by (      ), steady states by the linear PLS model are represented by ( ---- ), and by (    ) calculated from implicit nonlinear NN-PCA. Stable (   ) and unstable steady states (    ) are  presented. 

Fig. 11. Average relative standard deviation of predictions by implicit nonlinear NN-PCA model for 1 step prediction obtained in experiments with increasing level of Gaussian noise in measurements of the input and output variable. Depicted are results obtained in trained and untrained experiments.

Fig. 12. Average relative standard deviation of predictions by implicit nonlinear NN-PCA model for prediction horizons from 1 to 20 samples. Results are given for trained and untrained experiments.
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