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Abstract—Phase information has recently been used 

quite frequently in the field of face recognition, 

especially when the facial images are taken under 

variable illumination conditions. The approach which 

combines a PCA with the phase information in order to 

extract the facial features and reduce the dimensionality 

of the feature space is called eigenphase method. This 

paper focuses on four modifications to the eigenphase 

method. The methods differ in terms of their approach 

to obtaining the phase information from the facial 

images. The modifications are evaluated on the 

XM2VTS, Yale and ORL datasets in order to examine 

their robustness, primarily under variable and 

normalized illumination conditions and for slightly 

variable head poses and facial expressions. The results 

of the experiments are presented and discussed. 

1 Introduction 

Face recognition is a rapidly developing area of 

research. There are already many methods [1] that can 

produce relatively high face-recognition rates (above 

95%) when applied to images obtained under stable 

illumination conditions. Illumination, pose and the 

expression on the human face are unconstrained in real-

world environments, which tends to reduce face-

recognition rates. There are, however, many methods 

that attempt to solve the problem of variable 

illumination in the images [2], [3]. One such method is 

based on eigenphases [4]. In general, phase information 

contains most of the information useful for image 

analysis, intelligibility, reconstruction and recognition 

[5]. The eigenphase method uses the phase information 

combined with a Principal Component Analysis (PCA) 

[6] to extract image features that may result in 

successful face recognition. Different approaches can be 

used to extract phase information from an image [5], 

[7], [8]. 

Oppenheim and Lim [5] emphasized the importance 

of phase information over magnitude information for 

signal intelligibility when a signal is expressed in the 

frequency domain. The effect was demonstrated by 

showing that the reconstructed images are still 

intelligible in the image domain if their magnitude 

spectrum in the frequency domain is “removed”. Two 

ideas about how to “remove” the magnitude spectrum in 

the frequency domain were presented. The first idea 

suggests that the magnitude should be set to unity 

throughout the whole of the spectrum. The second idea 

is to set the magnitude throughout the spectrum to the 

average values of the magnitude spectrum over an 

arbitrary image set. 

The eigenphase method was described by Savvides et 

al. [4]. The method supplements the idea presented in 

[5], that the image intelligibility is mainly related to the 

phase information by establishing that the illumination 

of the image mostly influences the magnitude spectrum, 

but not the phase spectrum of the image. The 

eigenphase method was applied to the face-recognition 

problem using the CMU PIE face dataset, which 

contains image sets that vary only in terms of the 

illumination conditions. The facial images were 

transformed to the frequency domain and the PCA was 

then applied to the phase spectra of the training images. 

It was demonstrated that the PCA, by itself, has the 

same effect on the recognition rates, regardless of the 

domain in which it is applied (the frequency or image 

domain). The recognition rates of the eigenphase 

method were higher than the rates of the LDA, PCA and 

3D Linear Subspace methods in all the experiments. 

The authors concluded that the higher recognition rates 

of the eigenphase method were due to the phase 

spectrum’s invariance to the illumination conditions and 

partial occlusions. 

Zaeri et al. showed that the eigenphase method can be 

efficiently implemented in devices with limited memory 

[7], [8]. Their method combined MPEG-7 Fourier 

Feature Descriptor (FFD) vectors with the eigenphase 

method and phase-information binarization producing 

an efficient face-recognition method with a high 

recognition rate. The method was tested on the 

XM2VTS and ORL datasets and the reported 

recognition rates were better than those achieved using 

PCA in the image domain, eigenphase and MPEG-7 

methods. 

This paper presents four different phase-information 

extraction approaches and gives the results of 

preliminary face-recognition experiments based on 

modifications to the eigenphase method. 

2 Eigenphase-based face recognition 

The eigenphase method transforms the facial images 

into the frequency domain, where the PCA is applied to 

the phase information to extract the features for 

recognition. 

The eigenphase-based face-recognition process can 

be divided into the following steps: image 

preprocessing, image transformation to the frequency 

domain, phase-feature extraction and classification. 



 

2.1 Image preprocessing and transformation to 

the frequency domain 

The facial images are converted to grayscale, resized 

to 64 x 64 pixels and converted into vectors by scanning 

them row by row. Each sample vector consisting of 1 x 

Z components (Z = 4096) is denoted as xm , m = 1, …, 

N, where N is the total number of samples (i.e., facial 

images) in the dataset. 

The samples are then transferred to the frequency 

domain by: 

 
m DFT m

ˆ ˆ= ⋅f F x  (1) 

where 
mf̂ is a sample vector in the frequency domain, m 

= 1, 2, …, N and 
DFTF̂  is a Fourier-transform matrix.  

2.2  Phase-feature extraction and classification 

The phase features are extracted from the phase 

information by using the PCA. The phase information 

can be obtained from sample vectors transformed into 

the frequency domain by using three phase-extraction 

approaches:  

(i) (MagUn approach) Phase information is 

obtained by setting all the magnitudes of the 

components 
mnf̂  of the vector 

mf̂ to unity [5]: 
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where m = 1, 2, …, N; n = 1, 2, …, Z and | | 

denotes    the absolute value of 
mnf̂ . 

(ii) (MagAv approach) Phase information is 

obtained by setting the magnitudes of the 

components 
mn

f̂  of the complex vector 
mf̂  to 

the average magnitudes 
nA  (n = 1, 2, …, Z) 

of the corresponding components throughout 

the arbitrary image set [5]. Usually, this 

image set is formed from the training subset 

of the dataset (its cardinality being N1 < N): 
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  where m = 1, 2, …, N; n = 1, 2, …, Z. 

(iii) (PhAngle approach) The phase spectrum is 

obtained from the components of the 

complex vector 
mf̂  in the form of an angle 

determined by the well-known atan2 variant 

of the arctangent function. 

 ( ) ( )( )'
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where m = 1, 2, …, N and n = 1, 2, …, Z. By 
'

mf  we denote an angle sample vector with the 

components '

mnf . 

Although the form of the phase information is 

different depending on the chosen approach (for the 

PhAngle approach the sample vectors are real) the 

following steps of the method remain the same. The 

PCA is used to extract the sample features and reduce 

the dimensionality of the sample space. 

 

 
Fig. 1. The eigenvectors corresponding to the highest 

eigenvalues. Column a) represents eigenfaces calculated on 

the normalized XM2VTS, the cropped Yale and the ORL 

datasets, respectively. Columns b), c), d) and e) represent 

eigenphases after conversion back to the image domain 

calculated by using the MagUn, MagAv, PhAngle and CovUn 

approaches, respectively. 

 

In face recognition the number of training samples N1 

is usually much smaller than the dimensionality of the 

samples Z, which means that the feature space can have 

N1 - 1 dimensions at most. It is simpler to calculate M 

eigenvectors where 1 ≤ M ≤ N1 – 1 using the N1- by-N1 

matrix 
TĈ  than using the covariance matrix Ĉ : 
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The eigenvectors of the matrix 
TĈ  are denoted as 

rû , 

where 1 ≤ r ≤ N1 - 1. Every eigenvector 
rû  can be 

transformed to the corresponding eigenvector 
qv̂  of the 

covariance matrix Ĉ  according to: 

 r
q
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where q = 1, 2, …, N1 – 1 and λr = λq is the 

corresponding eigenvalue. The eigenvectors 
qv̂ (they 

correspond to the highest eigenvalues; Fig. 1) represent 

the axes of a new, transformed sample coordinate 

system in the frequency domain that forms the feature 

space. Like with the eigenface, each eigenvector 
qv̂  can 

be rearranged into an image whose size is equal to the 

size of the original image. Such a form of representation 

for an eigenvector is named the eigenphase.  

The projections of the samples into the feature space 

are calculated as: 
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where m = 1, 2, …, N. 
m

ν̂ννν  is a projected sample, *V̂  is 

a  conjugate transpose of V̂ , where [ ]1 2 M
ˆ ˆ ˆ ˆ, ,...,V = v v v  

is a reduced eigenvector matrix.  

According to the phase-extraction approach described 

in [7] it is possible to obtain phase information from the 

covariance matrix Ĉ  during the PCA process (CovUn 

approach). The phase information is extracted by setting 

the magnitude of the complex components of the 

covariance matrix in the frequency domain Ĉ  to unity:  
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Ĉ
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where k = 1, 2, …, Z; l = 1, 2, …, Z. The first M ≤ N1 - 

1 eigenvectors with the largest associated eigenvalues 

define the feature subspace.  

The 1-NN (nearest-neighbor) rule based on the 

Euclidean distance is used as the classifier in all the 

face-recognition experiments. 

3 Experimental setups and results 

Three different datasets were used to evaluate the 

performance of the modifications of the eigenphase 

method based on the phase-information extraction 

approaches: the XM2VTS database [9], [10] the 

Extended Yale Face Database B [11] and The ORL 

Database of Faces [12]. 

 

 
Fig. 2.  Dataset examples. First row shows image examples 

from the normalized XM2VTS dataset; second row, from the 

cropped Yale dataset; and third row, from the ORL dataset. 

 

A few processed images from each of the datasets 

mentioned above are depicted in Fig. 2. The 

performance of the four different phase-information 

extraction approaches described in Section 2 was tested 

on these datasets. 

To allow a recognition-rate comparison in the 

experiments, the results of the PCA method in the image 

domain are shown along with the results of the 

eigenphase approaches. 

3.1 Experiments 

The goal of the experiments was to compare the 

recognition rates of the eigenphase approaches as a 

function of the feature-space dimensionality. The 

dimensionality of the feature space was iteratively 

increased up to 199 dimensions for all four approaches. 

This upper bound is determined by the training set for 

the ORL database. Half of each dataset was used as a 

training set. The results achieved on all the datasets are 

shown in Figs. 3 - 5. 

It is clear from Figs. 3 - 5 that the ratios of the 

recognition rates of the approaches change depending 

on the conditions that cause variations in the dataset. 
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Fig. 3.  Recognition rates for the normalized XM2VTS dataset 

as a function of the feature-space dimensionality.  
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Fig. 4.  Recognition rates for the cropped Yale dataset as a 

function of the feature-space dimensionality. 
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Fig. 5.  Recognition rates for the ORL dataset as a function of 

the feature-space dimensionality. 

 

When variations in the dataset are caused by head 

positioning or facial expressions, while illumination 

variations are small (the normalized XM2VTS dataset; 

Fig. 3), the MagAv approach significantly outperforms 

all the other eigenphase approaches, with a recognition 



 

rate of around 78%. Note that the PCA in the image 

domain outperforms the MagAv approach. When 

variations in the dataset are mostly caused by 

illumination conditions (the cropped Yale dataset; Fig. 

4) the MagUn approach achieves the best recognition 

rate, around 96%, and the MagAv approach achieves 

around 92%. In the case when the variations in the 

images originate from all the aforementioned sources 

(the ORL dataset; Fig. 5) the MagAv approach 

outperforms the other eigenphase approaches, but its 

recognition rate is lower than the recognition rate of the 

PCA in the image domain. The performance of the 

MagUn and PhAngle approaches is unacceptably low 

for the datasets whose images exhibit head positioning 

and facial expression variations (the normalized 

XM2VTS and ORL datasets). The MagAv approach 

performs well on all the examined sources of variation. 

The reason for this is the fact that the average 

magnitude in the frequency domain falls off at higher 

frequencies, which happens naturally in typical images 

[5]. We assume that the average magnitude tends to 

absorb and average all the variations from the image set, 

becoming robust to variation effects. The MagUn 

approach assumes the uniformity of the magnitude 

spectrum, while the PhAngle approach completely 

ignores the magnitude spectrum, which suppresses only 

the effect of illumination and their success is therefore 

limited to the cropped Yale dataset. It is important to 

note that in these experiments the variations within the 

datasets are adequately represented in each of the 

training sets because each of them contains half of the 

dataset. Under these conditions the PCA in the image 

domain performs well. The eigenphase approaches were 

able to significantly outperform the recognition rate of 

the PCA in the image domain when the illumination 

conditions vary significantly (Fig. 4). The recognition 

rate of the PCA can be improved to around 94% by 

omitting the first 10 principal components when the 

illumination conditions vary significantly. 

4 Conclusion 

Four different approaches to phase-information 

extraction were presented. Three of them extract the 

phase information directly from the Fourier 

transformation of the facial images: the MagUn 

approach - the magnitude spectrum is set to unity, the 

MagAv approach - the magnitude spectrum is set to the 

average magnitude spectrum, and the PhAngle approach 

- calculates the phase spectrum based on the atan2 

function. The fourth approach, called CovUn, uses a 

covariance matrix of the Fourier transformation of the 

facial images. The application of the PCA to the phase 

information obtained with the above approaches is 

called the eigenphase method. The modifications of the 

eigenphase method were evaluated on the normalized 

XM2VTS, the cropped Yale and the ORL datasets. The 

results were different depending on the source of the 

variation in the dataset images. The MagAv approach, 

which combines the average magnitude spectrum with 

image phase information, resulted in relatively high and 

stable face-recognition rates under all the presented 

image variations (variations caused by illumination 

conditions, head positioning and facial expressions). 

The recognition rates of the MagUn approach achieved 

the best recognition rate and demonstrated robustness 

when the dataset exhibited large illumination variations. 

The approaches MagUn and PhAngle did not perform 

well on the datasets where variations of the head pose 

and facial expressions were present. 
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