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1. Introduction 
 
Since the discovery of penicillin natural products have been extensively used in human 

medicine and have helped to improve the quality of life. They have contributed to the 

greatly extended life span in the last century. Even today, natural products remain the most 

important "weapons" against diseases with more than 60 % of approved pharmaceutical 

products being either natural products or their derivatives. (Demain, 2009). The interest of 

the pharmaceutical industry for natural products is not fading as natural products and their 

derivatives make up more than 50 % of newly introduced drugs into the market in the last 25 

years (Newman and Cragg, 2007). Through the time various sources of natural products have 

been used. In the past plants have been the major sources of them. In the middle of the last 

century microorganisms became the major source of active compounds from nature. 

Especially rich in secondary metabolites are bacteria from the soil-dwelling Streptomyces 

genus with various species being widely used as producers for pharmaceutical industry 

(Bentley et al., 2002; Ikeda et al., 2003). In the last decades other niches have been explored 

and the one showing most promise in richness and diversity of life, as well as possible 

natural products, are oceans (Newman and Cragg, 2004; Dunlap, et al., 2006) - as it was 

shown in recent metagenomic study of Atlantic and Pacific oceans (Rusch et al., 2007). 

Usually natural products are secondary metabolites which help their producers either to 

"cope better" with the environment or to gain certain advantages over other organisms in 

the habitat. Large numbers of these compounds show antimicrobial properties and have 

been extensively employed in medicine. Today natural products and their derivatives make 

up almost 80 % of antibacterial drugs used (e.g. erythromycin, tetracyclins, rifamycins). 

Emerging fields of usage are as anticancer drugs (e.g. epothilones, doxorubicin, 

daunorubicin), where natural products are the basis for 74 % of all new chemical entities. 

They are also helping in diseases specific for modern society, like high blood pressure (e.g. 

captopril-ACE inhibitor) and high cholesterol levels (e.g. lovastatin), in which natural 

products constitute more than half of the compounds used (Demain, 2009). 

 
With the growing need for new biologically active compounds to help humans cope with the 

ailments typical of modern society, the growing number of resistant pathogens and the 

advances in technology which allows us to obtain genetic makeup of a large number of 
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microorganisms, a lot of approaches and methods have been tried to obtain novel 

biologically active compounds. Some methods focus on more efficient ways of screening 

natural habitats for active compounds (Shen, et al., 2003; Foerstner and Bork 2007; Shu 

1998; Singh and Pelaez, 2008; Van Lanen and Shen, 2006) while others try to modify or 

rearrange already know "factories" of natural products (Hranueli et al., 2005; Menzella et al., 

2005; Cane et al., 1998; Sherman, 2005; Bachmann, 2005). In this thesis an attempt has been 

made to improve recognition and specificity of an enzyme family that synthesizes one 

chemical class of the natural products – the polyketides. 

 

1.1 Polyketide synthases 
 
Polyketides are a diverse class of chemical compounds synthesized by the secondary 

metabolism of bacteria, fungi, plants and animals. They have a wide range of pharmaceutical 

properties, including antibacterial (e.g. erythromycin, rifamycin B), anticancer (e.g. 

epothilone), anticholesterol (e.g. lovastatin) and immunosuppressant (e.g. rapamycin) 

(Staunton and Weissman, 2001). Polyketides are synthesized by a family of enzymes called 

polyketide synthases, (PKS) [similar to fatty acid synthases (FAS)], which differ in 

organisation and structure of the enzyme complex but all have a common pattern of 

biosynthesis. No matter the type of the enzyme used, they are all assembled by successive 

rounds of decarboxylative Claisen condensations between a thioesterified acyl extender unit 

and a growing acyl thioester chain. As building  blocks residues of acetate (malonyl-CoA) and 

propionate (methylmalonyl-CoA) are mostly used, but more complex units can also be used 

(such as benzoyl-CoA, 3,4-dihydroxycyclo-hexanecarbonyl-CoA (3,4-DHCHC-CoA), 3-

Methylbutyryl-CoA (Chan et al., 2009) 

 
Every unit contributes with two carbon atoms to the assembly of the linear chain (backbone) 

and the β-carbon always carries a keto group which can be reduced to hydroxyl or fully 

removed by dehydration and enoyl reduction during the biosynthesis. This alternating 

occurrence of keto groups is responsible for the name "polyketide" for this group of 

compounds. The other (α) carbon atom incorporated in the backbone chain by each building 

unit can carry different substituents depending on the building block used (H for acetate, 

CH3 for propionate, CH3CH2 for butyrate etc.). Although having a common mechanism of 
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biosynthesis polyketides are a very diverse class of compounds. Mechanisms that contribute 

to great diversity of polyketide products are incorporation of various substrates, different 

reduction level of keto groups on the β-carbon atom, possibility of various chiral 

configurations of the branching groups and the total length of the chain synthesized 

(Hopwood and Sherman 1990). 

 

1.1.1 Type I polyketide synthases 

 
As mentioned before, PKSs are classified in three groups (Fig. 1) based on the organisation of 

the enzyme complex. The best understood are type I PKSs, which are further divided in two 

subgroups - iterative and modular. Organisationally they resemble animal FAS - with same 

type and order of catalytic domains. The difference is in the presence/activity of reduction 

domains, which are not obligatory in PKSs, and in the specificity of acyltransferase domains 

(AT), which in PKSs can select several substrates while in fatty acid biosynthesis only 

malonyl-CoA is used. The main characteristic of type I PKSs is the presence of several 

functional domains on a single polypeptide, which is organised in the higher organisational 

structure called module. A module carries out one elongation cycle of the polyketide 

product. 

 
Iterative type I PKS consist of only one set of domains (one module) which are used 

iteratively until the desired chain length is reached. They are, therefore pre-programmed. A 

minimal set of domains needed for the biosynthesis consists of ketosynthase (KS), 

acyltransferase (AT) and acyl carrier protein (ACP) domain. Optional domains that can be 

part of the module are ketoreductase (KR), dehydrogenase (DH) and enoyl reductase (ER) 

and are involved in processing of the beta hydroxyl group of incorporated building unit. The 

mechanism of biosynthesis of these compounds follows the general mechanism of 

polyketide biosynthesis but the regulatory mechanisms are still not fully understood as the 

same enzyme complex is capable of using different substrates and carrying out different 

levels of reduction processing at different iteration cycles (Staunton and Weissman 2001). 
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Fig. 1 Examples of typical organisations of several groups of PKSs and their respective products. A – schematic 
representation of modular type I PKS and its model compound - erythromycin. The 6-desoxyerythronolide B 
(6DEB) – a precursor of the erythromycin is shown. B – Type II PKS. The PKS involved in the biosynthesis of 
daunorubicin/doxorubicin and one product are shown. C - the schematic representation of the iterative type I 
PKS typical for fungi and bacteria with the typical example of the synthesized product – aflatoxin. D – the 
schematic representation of the PKSI-PKSIII hybrid from Dictyostelium discoideum with the characterised 
product. E – the schematic representation of the typical D. discoideum PKS gene. 
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Studies of the typical example for this type of enzyme, lovastatin PKS, suggested that other 

enzymes involved in the biosynthetic pathway may play a role in modulating the overall 

activity of the synthase, thus granting it the ability to discriminate between polyketide 

intermediates at different stages of assembly (Kennedy et al., 1999). 

 
Much better understood are the modular type I PKSs, and their model system – 

erythromycin PKS. Modular type I PKS consists of several sets of domains organised in 

modules on a single polypeptide. Each module is responsible for catalysis of one complete 

cycle of polyketide elongation and associated functional group modifications. Two types of 

modules can be distinguished – extender modules and starter or loading modules. Each 

extender module must minimally contain ketosynthase (KS), acyltransferase (AT) and acyl 

carrier protein (ACP) domain. Optional are domains involved in processing the beta hydroxyl 

group of incorporated substrate: ketoreductase (KR), dehydrogenase (DH) and enoyl 

reductase (ER). The starter module does not have the minimal set of domains and varies 

greatly between different PKSs. The process of polyketide biosynthesis occurs in four phases: 

priming of the apo-synthase, chain initiation, chain elongation, and termination. In this first 

step, priming of the apo-synthases, conversion of inactive apo-form of acyl carrier protein 

(ACP) to the active, phosphopantetheinyl containing, holo-ACP form is taking place. After the 

conversion process each ACP carries a 20 Å–long phosphopantetheinyl prosthetic group. The 

phosphopantetheinyl prosthetic group ends in a cysteamine thiol group that becomes the 

site of covalent attachment for acyl groups and serves as a flexible tether for both the 

monomer units and growing polyketide chain. The ACP is, after the conversion to its active 

holo form, able to support initiation, elongation and termination of its characteristic 

polyketide product (Cane et al., 1998). 

 
Type I modular PKSs are considered to be "genetically pre-programmed assembly lines" – as 

it is possible in principle to predict the chain length, building units used and level of 

reduction of each building unit of the polyketide product from the DNA sequence of 

respective polyketide synthase.Recently PKSs capable of skipping or re-using a module have 

been discovered. Although the mechanisms of these actions are still unclear, it shows that 

synthases can somehow bypass their "genetic programming", thus, giving even more 

potential to increase diversity of synthesized products (Moss et al., 2004; Wenzel and 
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Müller, 2005). In the next step of biosynthesis, the initiation of the polyketide chain, an 

activated monomer (acyl-CoA thioester) is loaded onto the first holo-ACP. The resultant 

acylthio-enzyme intermediates then act as a donor for the first elongation step. Modules 

involved in the initiation step of polyketide biosynthesis are one of the major sources for 

polyketide diversity as most of the unusual building units are incorporated by loading 

modules, e.g. isobutyryl-CoA (avermectin), cyclohexenoyl-CoA (FK506), and 3-amino-5-

hydroxybenzoyl-CoA (rifamycin). After the initiation of the biosynthesis, there follow a series 

of elongation cycles (Cane et al., 1998). 

 
For carrying out the elongation step a minimal module (KS, AT and ACP) and an upstream 

ACP domain supplying the donor chain are required. The mechanism of each elongation 

cycle is as follows: the upstream acyl group (growing polyketide chain) is transferred from 

the ACP onto an active site cystein of the KS domain in the downstream (next) module. The 

KS then carries out the decarboxylation of the acyl-S-ACP [acyl = (methyl)malonyl] 

generating a carbanion which elongates and translocates polyketide chain from the KS 

domain to the ACP domain in the same module. The newly generated polyketide chain, 

which has been extended by two carbon atoms in the backbone, then serves as a donor for 

the next module. If additional (reduction) domains are present in the module modifications 

related to the β-carbon atom can occur. The presence of all reduction domains causes a full 

reduction of β-ketoacyl intermediate to the saturated methylene. Inactivation or absence of 

one or more of the reduction domains (KR, DH and ER) causes no or partial reduction of the 

product (β-keto, β-hydroxy, or α,β-unsaturated) (Keatinge and Walsh, 1999). When the 

product reaches the final module of the synthase polyketide chain, termination with release 

of the full-length polyketide chain occurs. The chain can be released from the synthase 

directly by hydrolysis, giving rise to the free acid, or by intramolecular capture by a hydroxyl 

of the acyl chain itself, giving rise to a lactone product. The other possibility for chain 

termination and release, not present in all PKSs, is the use of a terminal thioesterase domain 

(TE). The thioesterase has an active serine site to which the acyl chain can be transferred 

from the last ACP domain. The acyl-TE intermediate polyketide chain is again cleaved either 

by hydrolysis or by cyclization (Cane et al., 1998). When the polyketide chain is fully 

synthesized and released from the PKS it usually undergoes further enzymatic tailoring by 

auxiliary enzymes. Most of the enzymes involved in post-PKS modifications are specific to 
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the PKS pathway itself and are usually found as part of the PKS cluster. Common activities 

used in post-PKS modification are hydroxylases, glycosyl transferases and methyl 

transferases, which for example in erythromycin PKS transform biologically inactive 6-DEB, 

released from the synthase, to erythromycin A, a  widely used antibiotic (Staunton and 

Weissman, 2001). 

 

1.1.2 Type II polyketide synthases 

 
Unlike type I, which form large multienzyme complexes, type II PKSs are composed of 

several individual, monofunctional or bifunctional enzymes that form a dissociable complex. 

Again, several proteins form a so called "minimal PKS" which consists of two ketosynthase 

units - called KSα and KSβ and an acyl carrier protein (ACP). Additional subunits can include 

ketoreductases, cyclases, aromatases, oxygenases, as well as gylcosyl and methyl 

transferases. The minimal PKS catalyses the iterative decarboxylative condensation of 

malonyl-CoA extender units with an acyl starter unit (Hertweck et al., 2007). Both KS 

subunits have a high sequence identity and, as was found from recent structural studies of 

the PKS type II complex, have evolved highly complementary contacts (Keatinge-Clay et al., 

2004). The crucial difference between the subunits is the lack of the active site cystein in the 

KSβ subunit. Therefore, based on analogy with other types of PKSs, the KSα subunit obviously 

catalyzes the Claisen-type condensation between the nascent polyketide chain and malonyl 

units. The function of the KSβ subunit is still rather unclear. Its main role is determining the 

length of the synthesized polyketide chain and because of this property it is sometimes also 

called the chain length factor (CLF). Recently the idea prevailed that the chain length is 

determined by "measuring" its length. It is "measured" in a protein cavity located at the 

interface of the heterodimer (KSα and KSβ subunit) and several residues in KSβ, named 

gatekeepers, involved in determining the length of the cavity (channel) were identified 

(Burson and Khosla, 2000; Tang et al., 2003; Keatinge-Clay et al., 2004). Although KSβ is the 

primary determinant of polyketide chain length, it is definitely not the only one. It was 

shown that cyclases can influence the length of the chain (Shen et al., 1999) and is currently 

speculated that chain length is, in some limited degree, determined by entire PKS complex. It 

has been proposed that the KSβ subunit also has catalytic activity. It was found that it is 

involved in loading of malonyl-CoA and generating acetyl by decarboxylation of malonyl-ACP 
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in the actinorhodin and tetracenomycin PKSs (Bisang et al., 1999). The other candidate for 

supplying malonyl building units is a malonyl-CoA:ACP transferase (MCAT). However, as 

MCAT is missing in the majority of PKS type II clusters and was experimentally shown not to 

be required for in vitro polyketide synthesis (Matharu et al., 1998) it was not included in the 

type II minimal PKS. Adding more confusion to the debate about which protein supplies the 

malonyl building units was the discovery of Simpson and collaborators (Arthur et al., 2006) 

who found that ACP is capable of self-malonylation in vitro. Unlike type I PKSs, all known 

type II PKSs use only malonyl-CoA as an extender unit but which protein is responsible for 

supplying it is still remains unclear. After the polyketide product is fully synthesized it can 

undergo ketoreduction, if a KR domain is present in the synthase, followed by cyclization and 

aromatisation of the polyketide product. 

 
The type II PKS producing the anticancer drug daunorubicin and its derivative doxorubicin, 

from S. peucetius (Grimm et al., 1995), was used as a model for the investigation of protein 

interactions within the complex and for the overall quaternary structure of the complex. The 

information about the overall three dimensional (3D) organisation of the type II PKS 

complexes is very limited, as the only crystal structure involving more than one discrete 

protein is that of KS/CLF heterodimer involved in the biosynthesis of actinorhodin in S. 

coelicolor (Keatinge-Clay et al., 2004). Much more structural information is available for the 

individual proteins of the polyketide type II synthases. The protein with the most 3D 

structures available is the ketosynthase (KSα) domain, with more than 25 structures having 

40 % sequence identity to the ketosynthase of the actinorhodin PKS (data accessed from 

PDB database on March 3, 2010 http://www.pdb.org/pdb). Its homologue, the chain length 

factor (CLF) has a similar number of homologue structures in the Protein Data bank (PDB) 

but with lower sequence identity (> 30 %). For the last part of the minimal synthase, the ACP 

domain, several structures from similar systems are available (Crump et al., 1997; Li et al., 

2003). Structural data from related organisms was also available for most of the proteins 

which are not part of the minimal synthase complex, namely KR (Hadfield et al., 2004) and 

MCAT (Keatinge-Clay et al., 2003) from the S. coelicolor actinorhodin PKS, cyclase from S. 

nogalater (Sultana et al., 2004) and S. glaucescens (Thomspon et al., 2004) and 

aromatase/cyclase from S. glaucescens (Ames et al., 2008). 
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1.1.3 Type III polyketide synthases 

 
The type III PKSs are often called chalcone/stilbene synthase (CHS/STS). They were first 

identified in plants, as these enzymes are catalyze the first steps of the flavonoid 

biosynthesis pathway. Later they were also found in bacterial genomes but were regarded as 

more typical of plant secondary metabolism. Unlike other two types of PKSs, the type III PKSs 

are relative small in size (350-390 amino acids). They also show a significant difference to 

other types of PKSs, both in organization and functioning of the enzyme. The type III PKSs 

are quite a diverged protein family, most of them sharing about 25 % amino acid sequence 

identity with CHS and with each other. Within the type III PKS protein family of enzymes 

there are differences in the preference for starter molecule, the number of acetyl additions 

(iterations) they catalyze, the mechanism of chain termination and the pattern of 

intermolecular cyclization. The best studied member of the family is chalcone synthase (CHS) 

which functions in a homodimer form. It contains an acyltransferase activity which loads the 

p-coumaroyl-CoA starter unit onto a catalytic cysteine, a decarboxylase activity that 

activates malonyl-CoA, an iterative condensing activity that couples the resulting acetyl 

anion to the growing ketide chain, a cyclase activity that forms the cyclised polyketide 

precursor of chalcone via an intermolecular Claissen condensation of the linear tetraketide 

intermediate, and an aromatase-like activity at the same catalytic site. Using the CHS crystal 

structure core chemical machinery of the type III PKS, the active site was identified as a 

catalytic trio (Cys, His, Asn) positioned at the top of the active site cavity (Austin and Noel, 

2003). 

 
The Dictyostelium genome revealed two type III PKS which are unique in enzyme 

organisation as both occur as C-terminal fusions to multidomain polypeptides homologous 

to type I PKS/FAS. It is believed that the acylthioester product of the type I PKS part of the 

enzyme is directly transferred from the pantetheine arm of the ACP domain to the catalytic 

cysteine of the neighboring type III PKS domain and serves as a starter unit. The crystal 

structure of the type III PKS domain shows it has a homodimeric structure and the active site 

cavity contains the same catalytic triad previously observed in all type III PKSs with known 

protein structure (Austin et al., 2006). 
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1.1.4 Specificity of type I PKS domains 

 
Polyketide compounds represent one of the biggest reservoir of active compounds used in 

medicine (Demain, 2009). Due to the chronic lack of new drugs, especially antibiotics, 

pharmaceutical companies have started to develop methods of generating novel polyketide 

compounds from known clusters. This is being done in several ways: 

 

 by changing the number of modules (genes) in PKSs which causes changes in polyketide 

chain length, 

 by changing/substituting the acyl transferase (AT) domain which selects the building unit 

incorporated into the polyketide chain, 

 by changing (e.g. deleting) the reduction domains from the module thus altering the level 

of reduction, and finally 

 by changing the stereochemistry at centres which carry alkyl and hydroxyl groups by 

altering the domains determining it. 

 
The first attempts to generate novel polyketide compounds started in the middle of the 90’s 

by deleting end modules of the erythromycin synthase and moving the final thioesterase 

(TE) domain to upstream modules (Cortes et al., 1995). Soon after followed experiments in 

which one or more modules at the beginning of the synthase were deleted and the PKS 

supplied with various intermediary products (Jacobsen et al., 1997). In both cases the newly 

created synthases synthesised the expected/predicted products, although at much lower 

yields than the "original" (unaltered) synthase but the experiments showed a certain amount 

of robustness and tolerance "incorporated" in the synthase itself which increases the 

opportunity of creating novel hybrid complexes. After changes affecting the entire module 

the more subtle alterations were carried out on the level of the modules themselves by 

replacing entire domains with domains from other modules/PKSs (Oliynyk et al., 1996; 

Bedford et al., 1996). Swapping of AT domains as well as KR domains showed that most of 

the domains are quite robust in accepting intermediary products and carrying out the 

expected enzymatic reactions. It was also shown that there is a certain degree of 

dependency/correlation both between domains in a specific module as well as between 

modules themselves for synthases to function at an optimal level. These examples gave a 

new boost to the polyketide genetic/enzyme engineering field at the end of the 90’s and 
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studies started researching on even smaller subunits of the PKS – a single domain, its 

specificity and factors determining it. The first research dealing with the question of 

substrate-determining residues in AT domains was done by Peter Leadlay’s group (Haydock 

et al., 1995). Based on alignment of AT domains specific for malonyl-CoA and 

methylmalonyl-CoA, they identified variable regions within the AT domain which allowed 

them to unambiguously assign newly-sequenced domains to a specific subgroup. The group 

of Chaitan Khosla used experimental methods to identify a short variable C-terminal 

segment of the AT domain as the principal determinant of substrate specificity (Lau et al., 

1999). The KOSAN Biosciences, Inc. used cassette replacement of AT domains in DEBS with 

heterologous AT domains with different substrate specificities to generate a library of 

polyketide compounds. As several replacements of the AT domain in module 4 of DEBS had 

failed, site-directed mutagenesis of specific residues believed to be involved in determining 

substrate specificity was successfully carried out. This was the first example in which 

substrate specificity of an extender PKS module has been altered using site-specific 

mutagenesis (Reeves et al., 2001). 

 
Two later studies used only computational tools to detect PKS domains present in protein 

sequences and then determine the specificity for each AT domain. Yadav and collaborators 

(Yadav et al., 2003) identified domains of modular PKSs based on their sequence similarity. 

As a method of determining similarity BLAST (Altschul et al., 1990) was used and domains 

from erythromycin synthase module 4 were used as queries for each domain type. The 

method gave in general good recognition of PKS domains (90-100 % accuracy) with most 

problems caused by the reduction domains, in particular the dehydratase (DH) domains, as 

well as the acyl carrier protein (ACP) domains. For prediction of the substrate specificity of 

AT domains, two fingerprints of the active site residues, which are believed to be involved in 

determining substrate specificity, were created. The fingerprint can identify AT domains 

specific for the two most common substrates, malonyl-CoA and methylmalonyl-CoA, with 

high probability. These fingerprints are an extension of previously identified specificity 

determining residues (Haydock et al., 1995; Lau et al., 1999) and were defined from a much 

larger sample, giving them much greater robustness and precision. The fingerprints were 

extracted from the alignment of PKS AT domains with the AT domain of Escherichia coli FAS 

in which residues involved in determining specificity were identified from 3D structure of the 
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respective E. coli AT domain (Serre et al., 1995). In the other paper dealing with 

computational analysis of polyketide sythases Minowa and collaborators (Minowa et al., 

2007) used similar methods. They identified PKS domains using homology search with 

Hidden Markov Model (HMM) profiles (Eddy, 1998) which is a more sensitive method than 

BLAST used by Yadav and co-workers (Yadav et al., 2003). From the multiple alignment of AT 

domains substrate subgroups were defined based on literature data. Conserved sites within 

the specific subgroup were extracted and from extracted residues HMM profiles were built 

using HMMER (Eddy, 1998). These profiles, containing only residues conserved within 

specific subgroup of AT domain, were then used to search all domains whose substrate 

specificity was unknown. In total 13 HMM profiles able to distinguish substrate specificity of 

AT domain were created and had 95 % correct predictions on a test sample. 

 
Other types of domains which contribute to the variability of synthesized polyketide are 

reductive domains, of which the KR domain, which reduces the keto group and then 

determines the stereochemical configuration of resulting hydroxyl group, is the best 

characterized one. Reid and collaborators (Reid et al., 2003) experimentally determined 

residues of the catalytic triad involved in reduction of the keto group and correlated some 

residues with the stereochemical outcome of the keto reduction. Later on Caffrey (Caffrey, 

2003) identified several conserved residues indicative for determining stereochemical 

outcome of the keto reduction based on the multiple alignment of both types of KR domains 

(-OH R and S configuration). Based on molecular modelling it was suggested that the KR 

domain also plays a role in determining the stereochemistry of methyl group (Starcevic et 

al., 2007) if propionate is incorporated into the polyketide chain. After the crystal structure 

of erythromycin ketoreductase (KR) domain was solved (Keatinge-Clay and Stroud, 2006) 

residues determining both stereochemistry of hydroxyl group as well as the stereochemistry 

of an α-substituent were identified. Based on those residues six motifs (fingerprints) can be 

created covering all possible outcomes of ketoreductase and epimerase activity. The 

dehydratase (DH) domain, which catalyzes dehydration and thus creates double bond 

between Cβ and Cα atoms, has after publication of its crystal structure again became a 

subject of interest. Previous studies on the prediction of activity of DH domains based on 

conserved motifs from a limited number of clusters were not applicable to all DH domains 

and often failed due to the high variability of DH domains (Tang et al., 1998). Based on 
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multiple alignment of DH domains from several clusters and the structure of erythromycin 

module 4 DH domain, Keatinge-Clay (Keatinge-Clay, 2008) identified several conserved 

motifs. Two of them are associated with catalytic residues and can be used to determine 

whether a DH domain is active. One is associated with the putative epimerisation function of 

the DH domain and one is thought to be involved in docking of the ACP domain. After 

dehydration the resulting polyketide can have either cis or trans conformation which was 

believed to be determined by DH domain. Analysis of both "cis" and "trans" DH domains 

failed to identify residues which might contribute to the resulting conformation. The current 

hypothesis is that the primary determinant whether a cis or trans double bond will be 

formed is the cooperating KR domain, i.e. the stereochemistry of the β-hydroxyl group 

(Keatinge-Clay, 2008). Although the structure of DH domain has been solved its exact 

functions, specificities and interactions are still surrounded by a shroud of mystery and need 

further investigations. 

 
The enoyl reductase (ER) domain is the last of the reduction domains regarding the timing of 

its action in the process of polyketide biosynthesis. It catalyzes reduction of the double bond 

(enoyl group) created by DH domain to an alkyl group. The mechanism of PKS ER reaction 

was deduced from FAS studies and involves 1,4-nucleophilic addition of the hydride ion from 

the coenzyme NADPH to the unsaturated thioester intermediate, followed by stereospecific 

protonation at the α-carbon. If propionate, or some other building unit with an alkyl group 

on the α-carbon is used as the extender unit, reduction carried out by ER domain determines 

the configuration of the Cα methyl (alkyl) group. Recently a tyrosine residue in the ER active 

site has been correlated to the chirality of the methyl branch that is introduced (Kwan et al., 

2008). The occurrence of the tyrosine residue implies the S configuration of the methyl 

group, its absence implies R configuration. Mutagenesis of this residue caused a switch from 

S to R configuration of the methyl group, but not in all cases which suggests some additional 

residues might be involved in determining the chirality of methyl group. Regarding the 

activity of the ER domain, up till now the motif used as a NADPH binding site has been 

identified and its mutagenesis caused ER to become inactive (Witkowski et al., 2004). 

However, the residues forming the active site have not yet been identified until now neither 

in PKSs nor in the animal FASs (Smith and Tsai, 2007). Experiments exploring substrate 

specificity of ER domains showed they exhibit relatively relaxed substrate specificity and that 
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ER domains can usually be freely swapped between various polyketide synthases (Khosla et 

al., 1999). Future experiments should show which approach is more profitable - domain 

swapping or site directed mutagenesis to obtain novel polyketides by engineering of the ER 

domain. 

 

1.1.5 Computational analysis of modular biosynthetic clusters 

 

Several platforms for the detection and analysis of modular biosynthetic cluster already 

exist. The de facto standard for the analysis of modular polyketide synthases is the 

SEARCHPKS program (Yadav et al., 2003). It does not have gene finding tools implemented in 

the program so it requires protein sequence as an input. Protein sequence is then searched 

using BLAST (Altschul et al., 1997) with PKS domains from erythromycin synthase used as 

queries. The only domain undergoing further analysis is the aclytransferase (AT) domain. 

Substrate specificity of AT domain is determined by extracting 13 specificity determining 

residues (Yadav et al., 2003) from its alignment with the crystal structure of AT domain from 

Escherichia coli FAS (Serre et al., 1995). Extracted motif is then compared with motifs from 

AT domains with known substrate specificity. If there is an identical match query the AT 

domain is assigned the same specificity as that of the matched AT domain. If an identical 

match cannot be found the program shows to the user extracted motif and motifs specific 

for known substrate. The program has motifs specific only for malonate and methylmalonate 

substrates. When all analyses are finished the program shows graphical representation of 

the entire cluster with domains, modules and linkers easily distinguishable and for each 

module it shows chemical structure incorporated by the module into polyketide. The 

chemical structure shows the reduction level for each block based on presence of reduction 

domains in the module but does not show which substrate is incorporated by the module. 

 

The other popular program used for analysis of modular polyketide synthases is the MAPSI 

system (Tae et al., 2009), the successor of ASMPKS system (Tae et al., 2007). It searches 

microbial genomes for modular PKS clusters and detects them using a similarity search 

implemented with BLAST (Altschul et al., 1997) against an integrated database of annotated 

polyketides. If MAPSI is unable to detect homologous PKS clusters in the genome sequence it 
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searches the remaining proteins with HMM profiles (Eddy, 1996) of all PKS domains and tries 

to put together a module based on rules for domain appearance in a module. It can also 

predict substrate specificity of AT domains thus enabling prediction of the synthesised 

polyketide chain. MAPSI (Tae et al., 2009) is a web application with a more complex 

structure than SEARCHPKS (Yadav et al., 2003) as its backbone consists of a database of all 

annotated polyketide clusters, which are used for identification of homologous clusters, as 

well as its "working part" storing information about currently analysed genomes. It also 

brings new functionality to PKS analysis software with a module for assembly of artificial 

polyketide synthases simply selecting modules with predefined domain composition and 

substrate specificity. 

 

One of the recent additions to the field of biosynthetic gene cluster analysis programs is 

CLUSEAN – a computer-based framework for the automated analysis of bacterial secondary 

metabolite biosynthetic gene clusters (Weber et al., 2009). It integrates standard analysis 

tools like BLAST (Altschul et al., 1997) and HMMER (Eddy, 1998), with tools specific for the 

identification of the functional domains and motifs in NRPS/type I PKS and the prediction of 

specificities of NRPS. It is designed as a modular framework of BioPerl (Stajich et al., 2002) 

scripts which combine and manage results obtained from all the methods used. Combination 

of BLAST and HMMER is used to identify homologous proteins and to identify domains while 

the prediction of specificity of adenylation domains is based on approach developed for 

NRPSpredictor (Rausch et al., 2005) 

 

1.2 Determining protein specificity/subgroups 
 
Within one protein family several subgroups can exists which share the same interaction 

interface and mechanism but have different interaction partners. The ability to discriminate 

between different subgroups is gaining greater importance with the development of 

genetic/enzyme engineering, as can be seen on the example of PKS acyl transferase domains 

where changing the subgroup (defined by substrate specificity) of the domain results in 

synthesis of novel products. To be able to discriminate subgroups of a particular protein 

family, the group under consideration must be analyzed with respect to some relationship 

between its elements (usually homology), which then leads to a division of the group into a 
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number of disjoint subgroups. This approach is often referred to as clustering. With the 

advance of sequencing methods intensive studies on sequence clustering methods were also 

started. This primarily refers to various graph–based procedures, where one divides a group 

of sequences – coming from a single genome – into a certain number of disjoint groups of 

homologues (Donald and Shakhnovich, 2005; Abascal et al. 2002). Clustering can also be 

performed by the phylogenetic analysis, with branches of the tree corresponding to a 

hierarchical clustering scheme (Felsenstein, 2004). 

 
Although clustering methods based on phylogenetic analysis are quite reliable in 

determining members of the subgroup, they lack the ability to determine amino acid 

residues determining this functional split. The other example in which phylogenetic analysis 

can fail is co-evolution of multiple features along with specificity in which other features can 

give a "stronger" phylogenetic signal than the desired specificity signal. With the increasing 

amount of genomic data a large number of methods which deal with this problem have been 

developed, of which only a few will be mentioned here. As a starting point they use the 

multiple alignment of the protein family in which they then, using various methods, search 

for residues specific for a subtype. It has to be pointed out that all of them require a set of 

predefined subgroups within the protein family in which then are able to recognise residues 

correlated with subgroup specificity. Hannenhalli and Russell (Hannenhalli and Russell, 2000) 

used relative entropy of the position (column of the multiple alignment) for each of the 

subtypes to estimate its role in determining the sub-type. For each position cumulative 

relative entropies for all subtypes were converted into Z-scores based on the distribution of 

entropies for an alignment. Z-scores are then used to assess each position's importance in 

determining the sub-types. Feenstra and co-workers (Feenstra et al., 2007) also used an 

entropy-based method, called Sequence Harmony, which is able to accurately detect 

subfamily specific positions from a multiple alignment by scoring compositional differences 

between previously defined subfamilies. Pazos and collaborators (Pazos et al., 2006) 

developed two methods for detecting positions which can incorporate external functional 

classification which may or may not coincide with the one implicit in the multiple sequence 

alignment (MSA). The Xdet method uses an external arbitrary functional classification 

instead of relying on the one implicit in the alignment to locate positions related to that 

classification. The MCdet method uses multivariate statistical analysis, based on vectorial 
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representation of sequences, residues and functions on related spaces, to locate positions 

responsible for each one of the functions within a multifunctional family. These methods are 

intended for protein families where a phylogeny/function disagreement is suspected. 

Wallace and Higgins (Wallace and Higgins, 2007) developed Between Group Analysis (BGA) – 

a supervised multivariate statistical method which can identify residues causing functionality 

change from families of proteins with different substrate specificities from respectable 

multiple alignment. The method is supervised in the sense that it requires sequences to be 

labelled as belonging to specific subgroups in advance. The BGA method is a graph method 

carried out in two steps. Firstly, the data set with defined different subgroups is ordered in 

vector space using either principal component analysis (PCA) or correspondence analysis 

(CA) so that similar objects are near each other and dissimilar further away. Secondly, the 

BGA finds linear combinations of the axes that maximise between-group variances and 

minimise within-group variances. The method has been successfully applied on a relatively 

small test set consisting of three protein families with results comparable to other methods 

but with an alternative method for viewing results (Wallace and Higgins, 2007). Kalinina and 

collaborators (Kalinina et al., 2004) introduced a method for automated selection of residues 

that determine the functional specificity of proteins with a common general function. Those 

residues are expected to be conserved within the orthologs (group assumed to have same 

specificity) and to vary between paralogs. The advantage of the method is taking directly 

into account nonuniformity of amino acid substitution frequencies and determining the 

thresholds automatically for each case. The SPEER method developed by Panchenko and co-

workers uses several criteria to distinguish specificity-determining residues (Chakrabarti et 

al., 2007). It has a scoring function representing a linear combination of scores based on 

physico-chemical properties, evolution rate and combined relative entropy of amino acids. 

Based on a benchmark containing 13 protein families the method outperforms other 

methods tested, especially for marginally conserved sites and sites conserved in one 

subfamily and variable in another. One interesting observation in the paper was that from all 

the criteria used, the prediction accuracy mostly depends on the level of conservation of 

physico-chemical properties within the subfamily and between them. 

 
A method capable of automatic protein subfamily identification and classification for the use 

in high-throughput applications has been recently developed by Brown and co-workers 
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(Brown et al., 2007). It is a pipeline which uses the Subfamily Classification in Phylogenomics 

(SCI-PHY) algorithm to automatically identify subfamilies and then to build a hidden Markov 

model (HMM) (Eddy, 1996) of the subfamily. SCI-PHY subfamilies closely correspond to 

functional subtypes defined by experts and to conserved clades found by phylogenetic 

analysis. Currently the PhyloFacts database (http://phylogenomics.berkeley. 

edu/phylofacts/) contains almost 60 000 family HMM profiles and more than 1,5 million 

subfamily-specific HMMs. 

 

1.3 Computational structure prediction and protein-protein docking 
 
As the function of a protein is defined by its structure, methods for determining protein 

structure from primary nucleotide/protein sequence are gaining greater importance since 

the next generation of annotation systems aims to integrate structural data into the 

annotation process (Reeves et al., 2009; Watson et al., 2005) as protein structure is much 

more conserved than the sequence during the evolution (Chothia and Lesk, 1986). The 

Structural Genomics Consortium started a project that aims to characterize the shapes and 

modes of action of the entire protein repertoire encoded within the genome. The plan is 

that with the advances in high-throughput X-ray crystallography and NMR methods to obtain 

a "dense set" of protein structures from which all other experimentally unsolved proteins 

would be in homology modelling range (http://www.thesgc.org/). Projects such as 

MODBASE (Pieper et al., 2009) are already carrying out this initiative through the combined 

use of PSI-BLAST (Altschul et al., 1997), for the identification and aligning of homologues and 

MODELLER (Eswar et al., 2007) for building of structural models. 

 
Computational structure prediction methods can be classified into two general approaches. 

The first one includes threading and comparative (homology) modelling and relies on 

detectable similarity (usually minimally 30 % identity) of the modelled sequence with at least 

one known structure. The second type are de novo or ab initio methods which predict the 

structure from sequence alone, without relying on similarity at the fold level between the 

modelled sequence and any of the known structures (Baker and Sali, 2001). Homology 

modelling methods use the alignment of the query protein sequence (target) to one or more 

proteins with known structure (template) as a foundation for predicting the structure. The 
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entire homology modelling idea is based on the premise that sequences having certain 

sequence identity will also have similar structural folds. The structure prediction process 

consists of finding known structures related to the sequence to be modelled (template), 

aligning the sequence with the templates, building a model and evaluating the model (Marti-

Renom et al., 2003). Templates for modelling are selected based on the sequence similarity 

with the target protein and the usual similarity search methods such as BLAST, PSI-BLAST 

(Altschul et al., 1990; Altschul et al., 1997) and profile HMMs (Eddy, 1998) are used. 

 
For sequences that have templates with highly similar structure (minimum of 50 % sequence 

identity) fully automated structure prediction methods can be used (Arnold et al., 2006), 

while for the more difficult or unusual modelling cases better results are obtained with 

nonautomated, expert use of various modelling tools (Marti-Renom et al., 2003). For targets 

that do not have significantly similar templates fold recognition methods are used to predict 

structure. These methods are based on the principle that every distinct protein fold has its 

own pattern of features with which its amino acid sequence must be compatible and the 

target sequence is checked for compatibility with each of the various known folds. Mostly 

used are so-called threading methods where the 3-D to 1-D profile is created for each unique 

fold in the protein Data Bank (PDB). In each fold's 1-D profile every amino acid position in 

the protein is coded with a description of its environment based on physico-chemical 

properties (Bowie et al., 1991). The popular threading program GenTHREADER uses a 

variation of the 1-D profile with energy potentials instead of environment description for 

each position (Jones, 1999). 

 
When there are no suitable templates the only possibility is to use de novo structure 

prediction methods which attempt to generate structural models solely on the basis of the 

principle of physics and chemistry. They start from the assumption that in the native state 

protein will be at the global free energy minimum and carry out a large scale search of 

conformational space for structures that are particularly low in free energy. Due to the 

vastness of conformational space that has to be searched most of the programs developed 

have had little success (Ginalski, 2006; Zhang, 2008). However,  the Rosetta program 

package, with a slight variation of this approach, achieved very promising results. The 

method divides a protein into short segments (3 and 9 residues) which are continually 
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sampled in all possible local conformations until combinations with low energy, buried 

hydrophobic residues and paired β-strands are found. The search is greatly accelerated as 

free energy calculations are reduced because the fragments used to build the structure are 

taken from conformations found in experimentally determined structures so local 

interactions are close to optimal (Baker, 2006). The accuracy of ab initio approach fully 

depends on the method used while the accuracy of the comparative models is related to the 

percentage identity with the template. For targets with sequence identity higher than 50 % 

high-accuracy comparative models with about 1 Å root mean square (RMS) error for the 

main chain can be made. Medium-accuracy comparative models with 1.5 Å RMS error for 

the main chain can be obtained with targets having 30 -50 % identity to template. For 

targets having less than 30 % identity to template usually only low accuracy models can be 

obtained. These low-accuracy models besides mistakes in side-chains, core distortions and 

loop modelling errors, may also have entirely incorrect folds (Baker and Sali, 2001). 

 
Protein-protein docking is the computational modelling of the quaternary structure of a 

protein complex starting from the individual structures of the individual proteins (Ritchie, 

2008). Approaches used in protein-protein docking are trying to determine how proteins 

interact. From the analysis based on known yeast protein interactions it is estimated that 

each protein has roughly 9 interaction partners and that there are around 10,000 basic 

protein interaction types (Aloy and Russell, 2004). Although the number of experimentally 

determined protein structures has significantly increased in the recent years only a small 

number of those structures represent protein-protein complexes and it currently seems 

unlikely that it will be possible to apply high-throughput structural genomics techniques to 

protein complexes (Russell et al., 2004). That leaves computational techniques for the 

prediction of protein-protein docking as one method that might close the gap. Older 

methods, although still used and regularly achieving nearly-native docking solutions in tests 

(Janin et al., 2003), treated interacting proteins as rigid objects. As proteins are not rigid 

object these methods fail if there are large conformational changes in the docking process. 

To compensate for that limitation flexible protein-protein methods able to model both 

backbone and side-chain movements were introduced (Andrusier et al., 2008). In this work 

(Fig. 2) rigid body protein-protein docking methods (Comeau et al., 2004; Chen et al., 2003;  
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Fig 2 Flow chart representing homology modelling and protein-protein docking process of in silico interaction 
simulation of proteins constituting the daunorubicin polyketide synthase. 
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Schneidman-Duhovny et al., 2005) were used as it was hypothesized that during interaction 

proteins do not go through large conformational changes. 

 
Some docking algorithms start by simplifying representation of the proteins by projecting 

each protein onto a regular 3D Cartesian grid, distinguishing grid cells based on their location 

(surface, core). Then a docking search is performed by scoring the degree of overlap 

between pairs of grids in different orientations. To speed up calculations by reducing the 

number of orientations to be searched a number of techniques are used, with Fast-Fourier 

Transform (FFT) correlation being the most popular. Besides grid-based FFT correlation 

algorithms the spherical polar Fourier (SPF) approach, that allows rotational correlations to 

be calculate rapidly, and the geometric hashing approach, in which the protein 

surface is scanned to create a list of critical points (pits, caps and belts) which are then 

compared in a clique-detection algorithm to create a small number of docking orientations 

for grid scoring, are also used (Ritchie, 2008). The methods mentioned above, generate a 

large number of docking solutions (from a few thousand up to tens of thousands) which 

should contain native (or near-native) solutions. Scoring functions implemented in these 

docking methods (desolvation, hydrophobicity, electrostatics) still have difficulties in 

distinguishing near-native solution within all the generated docking solutions. That is why 

some of the algorithms implemented a two step search and scoring procedure in which an 

initial list of docked solutions is re-scored using available biophysical information and 

information derived from analyses of existing protein-protein interfaces (Ritchie, 2008). The 

other approach that gave reasonable prediction, although not a scoring function, is the 

clustering of uniformly sampled low energy ab initio FFT docking solutions. 

 

1.4 Annotation of genomic sequences 
 
The process of identifying all genes that encode proteins for each genome as well as 

functional identification of as many proteins as possible is called genome annotation. 

Genome annotation is a two step process consisting of prediction of a gene's location in the 

genome based on characteristic sequence variations and identification of protein function by 

comparing it to already characterized proteins using various types of similarity searches. 

(Mount, 2004) These basic two steps of the annotation process can be carried out in various 
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modalities based on the direction of information flow, type of automatization, methods used 

to find genes and to infer their function and, most important, the organism which is being 

annotated. As the organisation of the prokaryotic and eukaryotic gene differs so differs the 

complexity of approaches used. Eukaryotic annotation systems have to deal with much more 

complex organisation of the gene as they have to predict correct intron-exon structure to be 

able to recreate coding sequences. For that purpose two programs have achieved best 

results - GeneWise and GeneScan. (Brent, 2005) GeneWise is the most important protein-to-

genome alignment program whose accuracy mostly depends on the identity between 

protein and the locus to which is aligned to. On the protein identity range from 85 - 95 % to 

targeted locus it achieves more than 90 % exact exon specificity and 75 % exact exon 

sensitivity. (Birney et al., 2004) On the other hand, GenScan is de novo gene predictor that 

uses Generalized Hidden Markov model (GHMM) for predicting genes and exon-intron 

structure (Burge and Karlin, 1997). GenScan is currently, due to its accuracy, used as a 

genefinder in the Ensembl annotation pipeline (Curwen et al., 2004). 

 
Concerning the flow of information in the annotation process the two approaches can be 

distinguished: bottom-up and top-down. More common is the bottom-up approach in which 

the individual base elements of the system are first specified in great detail and then linked 

together to form a larger subsystem which can be repeatedly linked until a complete top-

level system is formed. In the bottom-up approach all know components and interactions to 

the model system are basically integrated. The top-down approach is essentially breaking 

down a system to gain insight into its compositional sub-systems. In the top-down approach 

an overview of the system is first formulated, specifying but not detailing any first-level 

subsystems. Each subsystem is then refined in ever greater detail, sometimes at many 

additional subsystem levels, until the entire specification is reduced to base elements. The 

critical difference in the two approaches occurs when all components and interactions are 

not known (Fraser and Marcotte, 2004). Based on the automatization level of the annotation 

process three types can be distinguished: manual, automatic and semiautomatic. First 

annotations were done manually by experts and were accurate but covered a relatively small 

percentage of genes in the genome and were slow. Some annotations are still done 

manually, mostly for reference databases such as VEGA (Wilming et al., 2008) and 

UNIPROTKB/SWISSPROT (The UniProt Consortium, 2010) which require combination of 
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detailed, accurate and critically assessed annotations inferred from genomic sequence 

combined with the information from journal publications and serve as a gold standard 

dataset for automated annotations systems relying on homology. With the advances in 

genome sequencing and nearing completion of Human Genome Project the first automated 

annotation systems started to appear. With time they incorporated more programs, 

methods and manually curated databases into their pipelines that were used to predict gene 

structure and function. Examples of those systems are the Ensembl annotation pipeline 

(Curwen, 2004), UCSC genome browser (Karolchik, et al., 2008) and the NCBI annotation 

pipeline (Wheeler, et al., 2007). 

 
Most of the genes functions are inferred based on similarity with already annotated genes 

from manually curated databases. Various similarity search methods have been developed, 

the most notable one being BLAST (Altschul et al., 1990) which has been in use for the last 

20 years. In recent years more powerful methods such as PSI-BLAST (Altschul et al., 1997) 

and Hidden Markov Models (HMMs) (Eddy, 1996) have been developed capable of 

identifying more remote protein homologues. One of the implementations of profile hidden 

Markov models (profile HMMs) for biological sequence analysis is a program suite called 

HMMER and it was used as the main similarity search method in this work. Profile HMMs are 

statistical models of multiple sequence alignments which capture position-specific 

information about conservation of each column of the multiple alignments (Eddy, 1998). Per 

column of the multiple alignment there is one match (M) state which emits a single residue 

with a probability score determined by the observed frequency of specific residue in the 

corresponding column of the multiple alignment. Each match state has an insertion (I) and 

deletion (D) state associated with it -the group of three states (M/D/I) at the same 

consensus position in the alignment is called a node. Each state has a state transition 

probability for transition to the next state. Transitions are arranged so that at each node 

either M state, which emits a residue, or D state, which does not emit a residue-resulting in 

gap character (-), can be used. Insertion (I) states occur between the nodes which can have, 

unlike M or D states, a self-transition which enables one or more inserted residues between 

consensus columns (Eddy, 2003). 
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The HMM architecture used in the HMMER programme package (version 2) – called Plan7 

(Fig. 3), begins with dummy non-emitting begin state (B) and ends with dummy non-emitting 

end state (E). Between them is the core section of the model consisting of M, D and I nodes. 

This main model controls the data dependent features of the model while probability 

parameters are estimated from observed frequencies of residues and transitions in a 

multiple sequence alignment. The other states used in Plan7 (S, N, C, T, J) are control 

algorithm dependent features of the model (local alignment, multihit alignment etc.) and are 

set externally by the user rather than learned from the data (Eddy, 2003). HMMER is a 

program suite consisting of several programs from which hmmbuild, hmmcalibrate, 

hmmsearch, hmmpfam and hmmalign were used. 

 

 hmmbuild creates a profile HMM from a multiple alignment of a protein (or nucleic acid) 

family. It also controls alignment style during the building of the profile HMM and 

supports the following modes: "glocal" (ls) - global with respect to the profile and local 

with respect to sequence, "multihit Smith-Waterman" - local with respect to both model 

and the sequence, "Smith-Waterman" classic local alignment - single best alignment per 

target, "Needleman-Wunsch" classic global alignment - single best hit per target. 

 hmmcalibrate calibrates HMM search statistics by scoring a large number of synthesized 

random sequences to it, fits an extreme value distribution to the histogram of those 

scores and incorporates those data into the profile. Calibration of the profiles increases 

their sensitivity and makes detection of remote homologues more reliable. 

 hmmsearch reads a profile HMM and searches sequence file for significantly similar 

sequence matches. 

 hmmpfam reads a sequence file and compares each sequence in it against all the HMMs 

given to a program. 

 hmmalign aligns a set of sequences from file to a HMM file and outputs a multiple 

sequence alignment. 
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Fig. 3 The Plan 7 as implemented in HMMER. It consists of core section containing match (M), insert (I) and 
delete (D) states surrounded by two dummy non-emitting states - begin (B) and end (E). Core section and begin 
and end state make up the "main model" which controls the data dependent features of the model. Other 
states (S, N, J, C, T) are "special states" which control algorithm depended features of the model by parameters 
set externally by the user and not learned from the data. Image adopted from Eddy, 2003. 

 

1.5 Polyketide genes of Dictyostelium discoideum 
 
Dictyostelium discoideum is a species of social amoebae belonging to the eukaryotic phylum 

Mycotozoa, commonly called slime molds. Since D. discoideum has both single-cell and 

multicellular life stages it is used as a model organism for molecular mechanisms of cell 

motility, signal transduction, cell-type differentiation and developmental processes. In 

nature Dictyostelium inhabits forest soils where it feeds on bacteria and yeast which it tracks 

by chemotaxis (Eichinger et al., 2005). In times food abundance, Dictyostelium undergoes 

the vegetative cycle, preying upon bacteria in the soil and periodically dividing mitotically. 

With the depletion of food source, Dictyostelium enters the aggregation or social cycle. In 

the social cycle, amoebae aggregate by the thousands under the influence of a cAMP signal 

and form a motile slug, which moves towards chemoattractants such as light, heat and 

humidity. The cAMP and a polyketide derived differentiation-inducing factor (DIF) are 

involved in differentiation of the slug cells into prestalk and prespore cells. Ultimately the 

slug forms a fruiting body which consists of cellulose stalk and a spores-bearing sporangium 

(Fig. 4). Recently a third type of cells has been discovered – sentinel (S) cells with innate 

immune-like functions (Chen et al., 2007). Although mostly reproducing asexually, D. 

discoideum are under certain conditions (dark, humidity) capable of sexual reproduction. In 
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the sexual cycle, amoebae aggregate in response to cAMP and sex pheromones, and two 

cells of opposite mating types fuse, and then begin consuming the other attracted cells. 

Before they are consumed, some of the prey cells form a cellulose wall around the entire 

group, thus forming the giant diploid cell – macrocyst, which eventually undergoes meiosis 

and mitosis, and hatches hundreds of recombinants (http://dictybase.org/). 

 

 

Fig. 4 Schematic presentation of the possible lifecycles of Dictyostelium discoideum (Source the dictyBase) 

 

Except for its ability to alternate between unicellular and multicellular forms, D. discoideum 

is also noteworthy as representing one of the earliest branches from the last common 

ancestor of all eukaryotes. Although the taxonomical classification of D. discoideum has 

changed over time it is now believed that Dictyostelium diverged after the plant-animal split, 

but before the divergence of fungi (Bapteste et al., 2002). Despite the earlier divergence of 

Dictyostelium, many of its proteins are more similar to human orthologues than are those of 

Saccharomyces cerevisiae (Eichinger et al., 2005). Although plants, Metazoa, fungi and 

Dictyostelium all share 32 % of the eukaryotic Pfam domains, the majority of them are 

specific for certain group(s). Protein domains absent from plants and present in other groups 

are interesting as they probably arose after divergence of plants but before divergence of 

Dictyostelium. Most of the domains from this group of proteins are involved in cell cycle 

control and signalling (Eichinger et al., 2005). 
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The genome size of D. discoideum is 34 Mb and there are6 chromosomes. The genome is 

(A+T)-rich (77.57 %) and has a broadly uniform composition. On a finer scale there is a 

difference in A+T content of exons (73 %) and introns (88 %). The number of protein-coding 

genes in the genome is 13,605, from which 6,801 are represented by qualified ESTs 

(http://dictybase.org/). Interestingly in the Dictyostelium genome, unlike in human one, the 

number of genes was underestimated in the first analysis (8,000-10,000) and even at the 

time of publication of the genome sequence the number of genes was estimated as 12,500 

(http://genome.imb-jena.de/dictyostelium/; Eichinger et al., 2005). The introns range in size 

from 66 to 2,298 nucleotides with an average size of 146 nucleotides, and occur in more 

than two thirds of genes. The 5’ splice site has a /GTAAGT consensus sequence, with the 

dinucleotide/GT being completely conserved. The 3’ splice site has a ATAG/ consensus 

sequence, again with the dinucleotide next to the splice site (AG/) completely conserved. 

The branching site is not very conserved in Dictyostelium as only half of the introns had the 

conserved CTNA consensus element found in yeast and higher eukaryotes (Rivero, 2002). 

 
From the whole genome annotation a few gene families were found in great numbers, 

namely PKS and ABC transporters. Until now Dictyostelium is the organism with the highest 

number of PKS genes (Ghosh, 2008). However, the functional relevance of most of these 

genes remains quite obscure. Until now only two of the PKS genes have been functionally 

characterized (Steely1 and Steely2 - pks1 and pks37 in the dictyBase naming scheme 

respectively). Both of them are proposed to produce differentiation-inducing factors (DIFs) - 

compounds involved in orchestration of cell differentiation. DIFs and DIF analogs have 

recently attracted medical interest as it was shown they are able of inhibiting cell 

proliferation and induce differentiation of mammalian cells (Gokan et al., 2005). What 

initially attracted attention to these genes is their unusual organization – they resemble type 

I PKS genes, but, instead of a final thioeseterase domain (TE), they both end with a type III 

PKS (chalcon synthase). This is the first time that such PKS I-PKS III hybrid has been found. 

(Austin et al., 2006) Although the exact biosynthetic pathway is still not unambiguously 

elucidated it is believed that type I PKS part of the protein uses acetyl-CoA as a starter unit 

and malonyl-CoA as extender units to synthesize acyl-thioester intermediaries which are 

then passed to the type III PKS. Acyl intermediaries are used by the type III PKS as a starter 

unit upon which several elongation cycles (pks1 two and pks37 three elongation cycles) are 
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carried out. (Ghosh et al., 2008) All other Dictyostelium PKS genes structurally and 

organisationally resemble to the iterative type I PKS and most likely follow the biosynthetic 

logic of iterative type I PKS. 

 

1.6 Goals and work objectives 
 
To predict the compound synthesised by PKS genes is, until now, possible only for modular 

type I PKSs as, for the other classes, mechanisms controlling biosynthesis are still not fully 

understood. Modular type I PKSs function as assembly lines and by dissecting all of the 

components involved in that machinery one can predict the aglycon synthesized. Our group 

has been involved in development of a software package which was intended to predict the 

chemical molecule synthesized by the enzyme based solely on genetic information coding 

for it. To do that PKS gene(s) have to be firstly identified, all domains present have to be 

determined together with their respective activity and specificity (if one exists) and then all 

this data has to be assembled to allow prediction of all the building units incorporated into 

the polyketide chain, their respective reduction level of the keto group and finally the 

structure of the synthesized polyketide itself. 

 
In some cases a domain may have several potential substrates, for example, different PKS 

acyltransferase (AT) domains can incorporate different building units into the polyketide 

chain. To be able to distinguish the specificity of a domain several methods were already 

available. They split a protein family into subgroups, but do not define the residues causing 

this change of function, or are able to detect specificity determining residues (SDR) but only 

on a protein family already divided into subgroups. The aim was to develop a method  to 

cluster the family into functional groups without prior knowledge. 

 
The mechanisms controlling biosynthesis of type II PKSs are not fully understood and  it is 

not possible to predict the synthesized product. It is believed that interaction of the subunits 

of the PKS complex plays an important role but until now the only complex structure which 

has been solved is that of two ketosynthase subunits (KS and CLF). Using protein-protein 

docking simulations interactions between subunits of the complex will be investigated 

aiming to give information about all interacting partners and the complexes formed. 
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As the search for novel natural products remains one of the cornerstones of the quest for 

novel active compounds, new ecological niches and organisms more distant from the ones 

currently used as producers of natural products are being examined. Dictyostelium was the 

first of the slime moulds to have a genome sequence and it showed a genome especially rich 

in PKS genes. In comparison with the most popular producers of active compounds used by 

the pharmaceutical industry, the genus Streptomyces, it contained twice the number of PKS 

genes none of which has been assessed for medicinal purposes. The analysis of the PKS 

genes also showed errors done in automatic annotation of its genome due to the presence 

of introns. The other interesting characteristics of Dictyostelium were its position in the tree 

of life (phylogenetic tree), which showed certain incongruities based on the type of analysis, 

and its lifecycle, which shows high complexity for a unicellular life form, certainly giving hope 

that Dictyostelium might contain unique features not commonly present in other life forms. 

A more detailed analysis of the genes might reveal more information about their origins, 

functions and possible usefulness as producers of novel natural products. 
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2. Scientific papers 
 

2.1 Clustering of protein domains for functional and evolutionary 
studies 
 
Pavle Goldstein, Jurica Zucko, Dušica Vujaklija, Anita Krisko, Daslav Hranueli, Paul F. Long, 

Catherine Etchebest, Bojan Basrak and John Cullum. BMC Bioinformatics, 10, 335, 2009. 

 
Abstract: 
 
Background 

The number of protein family members defined by DNA sequencing is usually much larger 

than those characterised experimentally. This paper describes a method to divide protein 

families into subtypes purely on sequence criteria. Comparison with experimental data 

allows an independent test of the quality of the clustering. 

Results 

An evolutionary split statistic is calculated for each column in a protein multiple sequence 

alignment; the statistic has a larger value when a column is better described by an 

evolutionary model that assumes clustering around two or more amino acids rather than a 

single amino acid. The user selects columns (typically the top ranked columns) to construct a 

motif. The motif is used to divide the family into subtypes using a stochastic optimization 

procedure related to the deterministic annealing EM algorithm (DAEM), which yields a 

specificity score showing how well each family member is assigned to a subtype. The 

clustering obtained is not strongly dependent on the number of amino acids chosen for the 

motif. The robustness of this method was demonstrated using six well characterized protein 

families: nucleotidyl cyclase, protein kinase, dehydrogenase, two polyketide synthase 

domains and small heat shock proteins. Phylogenetic trees did not allow accurate clustering 

for three of the six families. 

Conclusions 

The method clustered the families into functional subtypes with an accuracy of 90 to 100 %. 

False assignments usually had a low specificity score. 
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Own contribution to the paper: 

Analysis of predicted specificity-determining residues and clustering for acyltransferase, 

dehydrogenase, ketoreductase, nucleotidyl cyclases and protein kinase protein families. 

Analysis of clustering stability based on motif length and comparison of clustering results 

with results obtained using phylogenetic methods. 
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Abstract

Background: The number of protein family members defined by DNA sequencing is usually much

larger than those characterised experimentally. This paper describes a method to divide protein

families into subtypes purely on sequence criteria. Comparison with experimental data allows an

independent test of the quality of the clustering.

Results: An evolutionary split statistic is calculated for each column in a protein multiple sequence

alignment; the statistic has a larger value when a column is better described by an evolutionary

model that assumes clustering around two or more amino acids rather than a single amino acid.

The user selects columns (typically the top ranked columns) to construct a motif. The motif is used

to divide the family into subtypes using a stochastic optimization procedure related to the

deterministic annealing EM algorithm (DAEM), which yields a specificity score showing how well

each family member is assigned to a subtype. The clustering obtained is not strongly dependent on

the number of amino acids chosen for the motif. The robustness of this method was demonstrated

using six well characterized protein families: nucleotidyl cyclase, protein kinase, dehydrogenase,

two polyketide synthase domains and small heat shock proteins. Phylogenetic trees did not allow

accurate clustering for three of the six families.

Conclusion: The method clustered the families into functional subtypes with an accuracy of 90 to

100%. False assignments usually had a low specificity score.
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Background
Rapid progress in DNA sequencing is generating large
numbers of deduced protein sequences. The prediction of
their function is an important problem in Bioinformatics.
This is tackled by comparing new sequences to known
sequences as high sequence similarity usually indicates
related function. It is possible to use similarity search
algorithms such as BLAST [1]. A more sensitive approach
is to use hidden Markov models (HMMs) to define pro-
tein families as implemented in HMMER suite of pro-
grams [2]. Such HMM profiles are used to define protein
families in the Pfam database [3]. In many cases, these
families consist of functional domains in larger proteins.

In many cases protein families can be split into sub-types
based on functional differences e.g. substrate specificity
such as for the malonyl-CoA- and methylmalonyl-CoA-
incorporating acyl transferase domains of modular
polyketide synthetases [4,5]. These differences usually
correlate with specific differences in amino acid sequence,
which help to understand the molecular basis of protein
function and serve as a basis for building prediction pro-
grams [6]. In order to identify such diagnostic amino
acids, it is first necessary to produce a multiple alignment
of the protein sequences to identify corresponding resi-
dues in different members of the family. This can be done
in various ways e.g. using an HMM-profile [2] or a multi-
ple alignment program such as ClustalW [7]. In some
cases, it is possible to identify diagnostic residues merely
by inspection of sequences (e.g. [8,9]), but this is difficult
or impossible in many cases.

An interesting approach that analysed the entropy associ-
ated with different residue positions was described by
Hannenhalli and Russell [10]. The biological idea behind
this approach is that amino acid residues that are impor-
tant in the determination of functional subtypes will have
different constraints depending on the subtype. In general
they will not be absolutely conserved, but evolution will
only allow limited variation and the pattern of variation
will be different for different subtypes. The functional
subtypes corresponding to each protein are input to the
program and the program uses an entropy measure to
identify residues that split the dataset between the func-
tional subtypes. The detection of specificity-determining
residues has been developed further [11-14]. The residues
identified by these methods can be used to assign new
sequences to the correct subtype. However, it must be
emphasized that all these methods rely on experimental
data about the subtypes of a sufficiently large collection of
proteins to identify the residues.

In many cases of interest there may not be enough exper-
imental data about subtypes, but there is usually a much
larger set of protein sequences (deduced from DNA

sequences) which have not been experimentally charac-
terised. In this paper we describe a method which divides
a set of protein sequences into subtypes based solely on
sequence data without any prior assignment of subtypes.
The method clustered six well-characterised protein fami-
lies into functional subtypes without any prior knowledge
of protein properties and identified specificity-determin-
ing amino acid residues.

Results and Discussion
Identification of subtypes

The starting point for the analysis was a multiple sequence
alignment of the protein family being analysed. We used
ClustalW and ClustalX [7,15] to align sequences [see
Additional file 1]. Any other method of generating multi-
ple alignments could be used e.g. with an HMM-profile of
the family as implemented in the HMMER suite of pro-
grams [2]. The program only considers columns in the
multiple alignment which contain amino acids for every
member of the protein family (i.e. positions with any gaps
are ignored). The program analyses the amino acids
present at a given position and performs a statistical test
to determine whether the distribution of the amino acids
is more compatible with a model that they cluster around
a single amino acid or with a model that they cluster
around two or more different amino acids; the number of
clusters is given to the program as a parameter. The two
amino acid model has proved most useful for the six cases
considered in this paper i.e. a binary split of the family
into two subtypes is attempted. The statistical test needs a
model for the substitution of amino acid residues and the
BLOSUM-50 matrix [16] was used, which represents the
observed substitutions in a large sample of proteins.
Although this model will not be strictly true for each
amino acid position, the success of the program shows
that it is adequate. An evolutionary split statistic was
defined (see Methods) that measures how well the posi-
tion fits the multiple amino acid model i.e. a large value
of the statistic indicates that the position should be
important in the discrimination between subtypes.

On the basis of the evolutionary split statistic, the user
selects a series of positions (a "motif") to be used for split-
ting the protein family into subtypes. These are typically
positions with the best scores, but other criteria (e.g. resi-
dues in a particular region or residues close to the active
site if a 3-D structure of a family member or a related pro-
tein is available) can be used. The clustering algorithm
used gives log likelihood values for each sequence that
show how well the "motif" assigns the sequence to a par-
ticular class. When a division into two subtypes is being
carried out, it is useful to use the "specificity score", which
is the difference between the log likelihoods for assign-
ment to the two classes. The specificity score is a measure
of how good the assignment to the class with higher like-
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lihood is. The user can experiment with different numbers
of motif positions to find a selection that gives good dis-
crimination. As we will show later, in most cases this
choice is not critical for the success of the method.

Performance of the program

The program was tested on six different protein families
[see Additional file 2]. Nucleotidyl cyclases have two func-
tional subtypes corresponding to use of the substrates ATP
or GTP respectively. We extracted 75 sequences (33 ade-
nylate cyclases, 42 guanylate cyclases) from the UniProt
database [17]. When the five positions with the best evo-
lutionary split statistic were used to divide the family into
two subtypes, the resulting groups were exactly the ade-
nylate and guanylate cyclases (100% accuracy). Five of the
ten best positions corresponded to amino acids that were
discussed by Hannenhalli and Russell [10] as important
in determining the functional subtype (Table 1).

The protein kinase family can be divided into serine/thre-
onine and tyrosine kinases. 215 kinase sequences (85 ser-
ine/threonine, 130 tyrosine) were extracted from the
protein kinase resource database [18]. When the 7 best
positions were used, the program divided the kinases into
subtypes with 100% accuracy. Seven of the best ten posi-
tions were identified previously as important for the sub-
type determination [10].

Lactate (LDH) and malate (MDH) are subtypes of a large
dehydrogenase family. They show considerable sequence
variability [19] making them a more difficult case than the
first two families. 183 dehydrogenase sequences (74 LDH
and 109 MDH) were extracted from the UniProt database
[17]. When the top 6 positions were used as a motif the
dehydrogenases were split into an LDH and an MDH
group with 5 wrong assignments (97% accuracy). The
wrong assignments all had low specificity scores (Figure
1).

The two residues with the highest evolutionary split scores
were discussed by Hannenhalli and Russell [10] as impor-
tant in determining the functional subtype. Experimen-
tally it has been shown that a major determinant of the
substrate specificity is the choice between glutamine or
arginine at residue 144 (residue 102 of [19]). This posi-
tion was the 14th best evolutionary split score in our anal-
ysis (Figure 2). The reason why it does not rank higher is
that arginine/glutamine exchanges are fairly common in
proteins (and have a score of +1 in the BLOSUM-50
matrix used by the program).

The acyl transferase (AT) domains of Type I modular
polyketide synthases (PKS) determine the substrate selec-
tion [4,5,20-23]. Most incorporate either a C2 unit (mal-
onyl-CoA substrate) or a C3 unit (methylmalonyl-CoA

Table 1: Nucleotidyl cyclases: residues with best evolutionary split scores.

Residue number in multiple alignment Substrate

Evolutionary split score This paper Hannenhalli
and Russell,

2000

ATP GTP

113 1509 - C V

110 1636 1020 W F

110 1634 1018 D C

109 1630 1014 K M

91 1517 919 I Y

86 1580 - F M

84 1533 935 E Y

83 1440 - M E

83 1497 - C Y

81 1656 - H Q

The ten residues with the best evolutionary split scores in the multiple sequence alignment of the nucleotidyl cyclases. When the residue had been 
detected in previous work [10] the corresponding residue number is given. The dominant amino acid for the two subtypes is shown.
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substrate). The choice of substrate can be deduced from
the chemical structure of the polyketide product. We
chose 177 AT domains (99 C2, 78 C3). We used the top 7
positions to define a motif and the program divided the
domains into C2 and C3 subtypes with only 5 wrong
assignments (97% accuracy). The wrong assignments all
had low specificity scores (among the lowest 6 scores of
the 177 sequences). The top 7 amino acid positions cho-
sen were positions previously recognized by Yadav and
collaborators [9] by inspection of the sequences. The top
30 amino acid residues were identified in the sequence of
Escherichia coli fatty acid synthase AT for which a 3-D pro-
tein structure has been determined ([24]; PDB ID 1MLA).
The top 7 residues are in the region of the binding pocket
where a direct effect on substrate binding might be
expected. The other residues are scattered on the surface of
the protein, too far from the substrate binding pocket to
have a direct effect.

Ketoreductase domains (KR) of Type I modular PKSs use
NADPH to stereospecifically reduce the initially formed
keto group to a hydroxyl group [25]. The stereospecificity
can only be deduced from the structure of the product for
cases in which further reduction steps have not occurred.
We used 72 KR domains for which the stereospecificity
was known (33 R and 39 S). In this case, most of the resi-
dues with the best values for the evolutionary split param-

eter were clustered in a region of the sequence, so we
chose the residues from positions 114 to 155 of the align-
ment to split the family into subtypes. This gave a 90%
accurate assignment of domains (7 domains were misclas-
sified). The motif residues included the residues that had
been recognized by Caffrey [8] as playing a role in stere-
ospecificity.

The final family that we examined was the small heat
shock proteins (sHSP), where it is not clear whether there
is a functional difference between different subtypes. We
analysed 214 sequences and on the basis of the best four
positions obtained a split between metazoan sHSPs and
the others (plants, fungal, eubacterial and archaebacte-
rial) (95% assignment) which corresponds to previously
reported phylogenetic results [26]. The four residues
(alignment positions 274, 292, 406 and 408) were local-
ized on the 3-D structures of sHSPs from Triticum aestivum
[27] and Methanococcus janaschii [28]. The four residues
are in a region of the protein that is involved in dimerisa-
tion. It is known that oligomerisation is important for the
function of the protein and this result suggests that the
two subtypes identified might differ in oligomerisation
properties.

The clustering algorithm allows a free choice of amino
acids alignment positions to include in the motif. This

Specificity scores for the dehydrogenase familyFigure 1
Specificity scores for the dehydrogenase family. The 183 LDH and MDH sequences are ordered according to specificity 
scores. The five wrongly assigned sequences are indicated in red.
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raises the question as to how sensitive the clustering algo-
rithm is to the exact choice of motif. We clustered the six
protein families using amino acid positions with the high-
est evolutionary split scores and varying the length of the
motifs from 5 to 30 positions. Table 2 shows that the

accuracy of the clustering does not depend strongly on the
number of positions chosen. This means that the algo-
rithm could be used for the automatic clustering of pro-
tein families using a standard length of motif chosen from
the best evolutionary split scores. In the case of the KR-
domains, choosing a segment of the protein on the basis
of specific knowledge, as done above, gave better results
than using the best evolutionary split scores. The assign-
ment of KR domains to subfamilies is complicated as they
also determine the stereochemistry of methyl groups [29]
and examination of 3-D structures of KR domains resulted
in their division into six subtypes [30].

The evolutionary split statistic allows the identification of
residues that are important for the determination of sub-
types. However, as it is calculated independently of the
clustering, it is not as good as methods that are based on
a known clustering. The subfamilies predicted by our clus-
tering algorithm can be used for such analyses [10-14],
which will give a more accurate identification of residues
important for division into subtypes. The omission of
sequences with low specificity scores should improve the
analyses by removing misclassified sequences.

The algorithm showed an efficient division into subtypes
for the six protein families tested. An alternative approach

Evolutionary split scores for amino acid residues of the dehydrogenase familyFigure 2
Evolutionary split scores for amino acid residues of the dehydrogenase family. The amino acid residues in the LDH/
MDH multiple alignment are ordered using the evolutionary split score. Residue 144 of the alignment (Q in LDH, R in MDH) is 
shown in red.
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Table 2: Effect of motif length on clustering performance.

motif length

5 10 15 20 25 30

Protein family false assignments No. sequences

Nucleotidyl cyclases 0 0 0 0 0 0 75

Protein kinases 0 0 0 0 0 0 215

MDH/LDH 5 6 5 5 4 4 183

AT-domains 2 3 4 4 5 5 181

KR-domains 20 18 20 17 10 9 72

sHSP 10 13 14 11 5 5 214

The amino acids positions with the highest evolutionary split scores 
were used to construct the motifs.
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to recognizing subtypes in the absence of functional infor-
mation is to use phylogenetic analysis. In order to have a
closer comparison with our clustering algorithm we con-
structed phylogenetic trees from the multiple alignments
of our six protein families using distances calculated from
a BLOSUM matrix [31] instead of the more common JTT
method [32]. For the nucleotidyl cyclases and protein
kinases, whose subtypes were recognised with complete
accuracy by our method (Table 2), the functional subtypes
do form separated clusters in the phylogenetic trees [Fig-
ure 3(A)) and 3(B)]. Division of the sequences into two
subfamilies implies choosing a rooting point in the tree so
that the subfamilies become clades in the rooted tree. In
neither case, is the choice of such a rooting point unam-
biguous. For the cyclases [Figure 3(A))] there are several
plausible rooting points, only one of which will give the
correct subfamilies. The kinases [Figure 3(B))] fall into
three clusters and the phylogenetic tree does not suggest
the correct split into the two functional subtypes. The
dehydrogenases [Figure 3(C))] also appear to split into
three clusters and the phylogenetic tree does not suggest a
division corresponding to the two functional subtypes,
whereas our clustering program recognises the functional
subtypes efficiently (Table 2). The AT-domains [Figure
3(D))] can be recognised as two groups using the phylo-
genetic tree with a similar degree of error to the clustering
algorithm. The subtypes of the KR-domains [Figure 3(E))]
cannot be recognised using the phylogenetic tree, whereas
the two subtypes of the sHSPs are clear in the phylogenetic
tree [Figure 3(F))]. Thus, in three of the six families, the
phylogenetic trees did not give a clear identification of the
functional subtypes. A further major advantage of the
clustering algorithm is that the specificity score identifies
sequences that are not well clustered by the algorithm so
that they can be removed or treated with caution in subse-
quent analyses. The tests with known families showed
that most wrong assignments involved such sequences.

In principle, the programs can also be used to cluster
sequences into three or more subtypes. We tested for a
clustering into three subtypes using two protein families:
92 serine proteases (67 trypsin-, 17 chymotrypsin-, 8 pan-
creatic elastase-subfamilies) and 59 AT-domains (28
incorporating methylmalonate, 18 malonate and 13
methoxymalonate). Clustering was undertaken using best
10, 20 and 30 positions for the evolutionary split statistic
(data not shown). The clustering did not show a strong
dependence on the number of positions. For the serine
proteases, the trypsin subfamily was split into two groups
and the chymotrypsin and pancreatic elastase subfamilies
clustered together giving wrong clustering of 42 of the 92
sequences. Similarly, 22 of the 59 AT-domains were
wrongly clustered. Thus, although the method works for
carefully constructed sets of test data, it does not seem to
be effective for real biological protein families. It is not

surprising that the method becomes less effective with
increasing number of subtypes. The potential of a column
to contribute towards a k-way split is estimated with the
evolutionary split statistic (formula 7) and increasing the
number of subtypes drastically increases dimensionality
of the parameter space; i.e. it is increasingly difficult to
distinguish between evolutionary noise and functionally
significant mutations. Thus, only exceedingly large sam-
ple sizes will provide sufficient power for the method to
work well. Clustering is most efficient when the different
subtypes are present in comparable numbers and the
examples analysed in this paper show that the known
sequences in natural protein families can often fall into
one or two major subtypes with other subtypes being rare.
Such situations can be analysed better by using binary
clustering and subsequently looking for rarer subtypes in
the sequences that have low specificity scores.

The method suffers from the drawback that it can only be
used in practice for dividing protein families into two sub-
types. This will cause problems for protein families with
several common subtypes and the method may not work
well for rare subtypes. Now that the feasibility of such a
clustering algorithm has been demonstrated it is likely
that improved algorithms can be devised to overcome
these problems.

An important practical advantage of our algorithm is that
it is computationally efficient allowing implementation
on a public server. Using a standard PC with a 2 GHz proc-
essor, it needs about 0.1 second per column to compute
the evolutionary split parameter (nearly independently of
the number of sequences) and about 1 minute to com-
pute the clustering into subtypes. It is therefore feasible to
experiment with different motifs and different selections
of the sequences to obtain optimal results. The method
offers a useful tool to detect previously unsuspected clus-
tering into subtypes. If experimental data for a limited
number of proteins are available, they provide an inde-
pendent test for the predicted clustering and the subtype
of previously uncharacterised proteins is predicted.

Conclusion
The programs cluster protein families into subtypes effec-
tively without any prior functional knowledge. The specif-
icity score identifies protein sequences that do not cluster
well into the defined subtypes: these may include further
rare subtypes. The programs are especially suitable for
detecting novel unsuspected subtypes where extensive
sequence data, but little experimental data are available.

Methods
Preparation of sequences

The amino acid sequences for 75 nucleotidyl cyclases, 183
dehydrogenases and 214 small heat shock proteins
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(sHSP) and 92 serine proteases were extracted from the
UniProt database release 53.0 or 57.0 [33]. The amino
acid sequences for 177 acyltransferase (AT) and 72 ketore-
duction (KR) domains from modular polyketide syn-
thases were obtained from the NRPS-PKS database
[34,35]. The amino acid sequences of 85 serine/threonine
and 130 tyrosine protein kinases were retrieved from the

protein kinase database [18]. All 59 AT-domains were
extracted from the following clusters: ascomycin, concan-
amycin, FK506, geldanamycin, herbimycin, niddamycin,
soraphen using the MAPSI database [36]. Multiple align-
ments of the sequences were constructed using ClustalW
and Clustal X [7,15,37]. These multiple alignments for
each family are shown in additional materials.

Phylogenetic trees of the protein familiesFigure 3
Phylogenetic trees of the protein families. The alignments of six protein families were used to construct phylogenetic 
trees from distances based on a BLOSUM matrix using a minimum evolution criterion. In each case, the branches correspond-
ing to one of the two subfamilies are coloured red. (A) nucleotidyl cyclases (guanylate red), (B) protein kinases (tyrosine red), 
(C) dehydrogenases (LDH red), (D) AT-domains (C3 red), (E) KR-domains (S stereochemistry red), (F) sHSPs (metazooan 
black, others red).
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Construction of phylogenetic trees

Phylogenetic trees were constructed from the multiple
alignments using the neighbour joining algorithm in ver-
sion 3.66 of the PHYLIP package [38]. The distances were
calculated with the Protdist program using the PMB
(Probability Matrix from Blocks) model [31].

A model of amino acid substitutions

Let A be the alphabet consisting of twenty standard amino
acids, and let q = (q1, ..., q20) be the stationary (marginal)
distribution of elements of A in some protein universe P.
We denote by ei = (0,...,1,...0) the i-th vector in the canon-
ical basis of Rn, with 1 at the i -th position, and zeros else-
where.

Definition 1 A substitution model for P is a family of distri-
butions ai, t, i ! A, t ! [0, " 8, that, for each i ! A, satisfies

Here q = (qj) is the vector of frequencies with which amino
acids occur in the family of proteins. For ai, t = (ai, t(1), ...
ai, t(20)), ai, t(j) is, by definition, the probability of amino
acid i mutating into j after time t; hence,

Let At ! M20(R) be defined by

so that At is the matrix with vectors (ai, t)T as columns, for
all t. If we assume that At, in addition to (1) and (2), sat-
isfies

then At is the matrix of transition probabilities of a
homogenous Markov process and can be written as

describing the evolution of elements of A within the class
P. There are several examples of such models in the con-
text of biological sequence analysis, most notably the
PAM series of matrices [39] - in the case of amino acid
evolution - and Jukes-Cantor or Kimura matrices [40] in
the case of DNA evolution. Now, we will present a simple
substitution model, based on the BLOSUM matrices [16]
- or, for that matter, on any substitution matrix - which

does not necessarily arise from an evolutionary Markov
process, but suffices for our purposes.

It is well known that the BLOSUM50 matrix is defined by

, where pi, j indicates the

probability of seeing amino acids i and j substitute each

other in a homologous sequence. This matrix can also be

written as

for s = loge2. Varying s in the above equation will, after
renormalisation and reparametrisation t = s-1 yield a fam-
ily ai, t as above. This way of obtaining transition probabil-
ities is clearly different and simpler than (5). However, it
will produce a rich class of probability distributions that
reflect relations between amino acids captured by BLO-
SUM scores.

Calculation of the evolutionary split statistic

In this section, we describe the evolutionary split (es) statis-
tic. It will be used to predict positions in the multiple
alignment that are potentially significant for functional
clustering.

Definition 2 Let D denote a column in a multiple align-
ment, and assume that D contains no gaps. Then

where b, bi are substitution distributions from Definition

1, , with #i$ 0 and k is the number of subtypes

that we are searching for. The algorithm was implemented

as a C program.

Remark Note that esk(·) compares the likelihood of the
data with respect to the optimal mixture of k substitution
models, with the likelihood under a single optimal
model. In practice, we used a discrete approximation of
the parameter space for the optimization. Also, a mild
sequence weighting scheme was applied, to correct for the
lack of independence in the sample (see [41]).

Clustering algorithm

Let us suppose that l columns (with no gaps) have been

selected from the multiple alignment. Hence, we are deal-

ing with n protein sequences y = {y1, ..., yn}, all of the same

length l, i.e , for all i. We want to define a
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model for dividing y into k subsets. Let I = (I1, ..., Ik) stand

for a partition of {1, ..., n} into k non-empty disjoint sub-

set. A model for our data set y = {y1, ..., yn} consists of two

components -- a partition I = (I1, ..., Ik) and the parametric

model M itself, which consists of k sequences of distribu-

tions from the substitution model, e.g. ,

for j = 1, ..., k. We obtain the clustering by optimizing the

following expression

where

Thus, we rely on the conditional likelihood to cluster our
data in k groups. By doing so, we effectively treat the par-
tition I = (I1, ..., Ik) as a (discrete) parameter in the model.

A more traditional approach is to consider the real likeli-

hood of the data with respect to the mixture model, and

treat the membership of the clusters as missing data. In

such a framework, the model M consists of parameters #i

! [0,1), with  and k sequences of distributions

from the substitution model as above. The model for the

data is obtained by maximization of the log-likelihood

where

Given the optimal model M = {(#i, Mi)}, we can obtain
the clustering using the following Bayesian criterion

Clearly the expression we need to optimize if we choose
the conditional likelihood is much simpler, although the
parameter space is somewhat more complicated. In either
case, finding the optimal model is a difficult problem. For
real-life data sets, the clustering will not differ if we choose
one approach or the other, but the conditional likelihood
procedure tends to reach the optimum much faster than
the standard deterministic annealing EM-algorithm [42].
In some applications it might be more reasonable to take

fully Bayesian approach and report posterior probabilities
for each clustering obtained. However, our aim in the
present paper was to obtain one useful partition of data
sets and we did not explore this point of view further. In
the rest of this section we describe a natural optimization
method for the conditional likelihood approach.

Let us now describe the optimization algorithm. A cluster-
ing of the data set y = {y1, ..., yn} will be denoted by I = (I1,
..., Ik) -- same as the associated partition, and let Mi, i = 1,
..., n denote the (parametric) model corresponding to the
i-th cluster. As already mentioned, the following algo-
rithm is a natural solution:

•Step1: choose an initial clustering (I1, ..., Ik)

•Step2: determine the optimal model Mi for the i-th
cluster, for all i

•Step3: for each yj, change cluster membership by set-
ting yj ! Il if and only if P(yj| Ml) $ P(yj| Mi), for all i

•Step4: goto Step2

It is easy to show that this procedure increases the value of

the likelihood function from (9), so will always reach a

(local) maximum (if a sufficient number of iterations has

been performed). In order to avoid local maxima, we use

smoothing, i.e. we use the uniform distribution

 to obtain modified model  as a con-

vex combination of Mj and u in Step2. Clearly, the amount

of smoothing should be reduced as the optimization

process progresses. Furthermore, we use simulated--

annealing like acceptance-rejection principle for the clus-

ter membership: the proposal in the Step3 is accepted

with probability

where T is the temperature, + " % T % 0. So, with these
additions, we get the following algorithm:

•Step1: choose an initial clustering (I1, ..., Ik)

•Step2: determine the optimal model Mi for the i-th
cluster, for all i

•Step2': Mi is replaced with , for all i

•Step3': for each yj, propose cluster membership

change by setting yj ! Il if and only if P(yj| Ml) $ P(yj|
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Mi), for all i, and accepting it with probability

; if proposal is rejected, the cluster mem-

bership is assigned randomly

•Step4: goto Step2

The algorithm was implemented as a C program.

Availability
The programs are offered on a web server at: http://comp
bio.math.hr/. Further details of the programs can be
obtained from PG.
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ABSTRACT

The program package ‘ClustScan’ (Cluster Scanner)

is designed for rapid, semi-automatic, annotation of

DNA sequences encoding modular biosynthetic

enzymes including polyketide synthases (PKS),

non-ribosomal peptide synthetases (NRPS) and

hybrid (PKS/NRPS) enzymes. The program displays

the predicted chemical structures of products

as well as allowing export of the structures in a

standard format for analyses with other programs.

Recent advances in understanding of enzyme func-

tion are incorporated to make knowledge-based

predictions about the stereochemistry of products.

The program structure allows easy incorporation of

additional knowledge about domain specificities

and function. The results of analyses are presented

to the user in a graphical interface, which also

allows easy editing of the predictions to incorporate

user experience. The versatility of this program

package has been demonstrated by annotating bio-

chemical pathways in microbial, invertebrate animal

and metagenomic datasets. The speed and conve-

nience of the package allows the annotation

of all PKS and NRPS clusters in a complete

Actinobacteria genome in 2–3 man hours. The

open architecture of ClustScan allows easy integra-

tion with other programs, facilitating further ana-

lyses of results, which is useful for a broad range

of researchers in the chemical and biological

sciences.

INTRODUCTION

Bioprospecting for lead compounds from nature continues
to be a corner stone in drug development. As well as iso-
lating microorganisms from unique environments or bio-
logical diversity ‘hotspots’, approaches are also being
developed to exploit the chemical diversity from> 98%
of uncultivable microbes living in the natural environ-
ment. There is now unprecedented opportunity to access
the natural diversity of small molecules made by such
microbes by the isolation of metagenomic DNA and het-
erologous expression of biosynthetic pathways in a fer-
mentable host. Discovery of novel biosynthetic gene
clusters is the first goal of this culture-independent
research that requires the application of molecular bioin-
formatics to identify DNA sequences of interest. We have
developed an integrated set of computer programs for this
task, which we call the ‘ClustScan’ (Cluster Scanner) pro-
gram package.

Many important secondary metabolites in bacteria are
synthesized on enzymes encoded by modular biosynthetic
gene clusters: polyketide synthase (PKS) clusters, non-
ribosomal peptide synthetase (NRPS) clusters, NRPS-
independent siderophore (NIS) synthetase clusters
or hybrid clusters (1–4). These secondary metabolites
include polyketide antibiotics (e.g. erythromycin),
immuno-suppressants (e.g. rapamycin) and antiparasitics
(e.g. avermectin) as well as peptide antibiotics (e.g. vanco-
mycin), immuno-suppressants (e.g. cyclosporin) and her-
bicides (e.g. bialaphos). Correlation of the chemical
structures of the products with cluster DNA sequences
shows that, in most cases, a defined series of catalytic
domains that can be grouped into modules are responsible
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for each round of chain elongation. Thus, synthesis fol-
lows a co-linear principle in which the gene sequences of
the individual modules determine the chemical outcomes
of successive chain extension reactions. Large-scale DNA
sequencing has revealed many gene clusters, whose pro-
ducts are not known (5–7). Predictions about the struc-
tures of the products based on the DNA sequences
encoding enzyme modules can help decisions about
which products may be interesting in the search for
novel drugs. Modules are composed of domains that
carry out the different reactions so that prediction of
module specificity can be built up from that of domain
specificity. In PKSs, each module usually contains an
acyl carrier protein (ACP) domain and an acyl transferase
(AT) domain, which is responsible for substrate selection
and transferring the substrate to the ACP domain. For all
modules except possibly the starter module (‘loading
domain’) there is also a ketosynthase (KS) domain
that performs condensation. Some AT domains select a
malonyl–CoA substrate which results in a two carbon
extension. However, other substrates can be used
(e.g. methylmalonyl–CoA, ethylmalonyl–CoA, methoxy-
malonyl–CoA) which result in the incorporation of more
carbon atoms. However, the backbone chain is always
extended by two carbon atoms and the other carbon
atoms occur as side chains (e.g. methyl groups). Amino
acid residues in AT domains that differ between malonyl–
CoA-incorporating and methylmalonyl–CoA-incorporat-
ing have been identified from multiple alignments of AT
sequences (8–12). There may be further reduction domains
that carry out a sequential reduction of the introduced
keto group: ketoreductase (KR) produces a hydroxyl
group, which may be acted on by a dehydratase domain
(DH) to produce a double bond that can be modified to a
completely reduced product by an enoyl reductase (ER)
domain. The stereochemistry of the addition step is also
important. This can arise when the KR domain introduces
a hydroxyl group and comparison of the sequences of KR
domains introducing different stereochemistry identified
specific residues correlated with this difference (13,14). A
second source of differential stereochemistry is the incor-
poration of an extender unit with more than two carbon
atoms resulting in a side chain with a choice of stereo-
chemistry. At one time it was assumed that the KS
domain was responsible for this choice. However, bioin-
formatic analyses could find no amino acid differences in
the KS domain correlating with the stereochemical out-
come and instead found correlations with the sequence of
the KR domain (15). Studies of the 3D structure of KR
domains provided mechanistic explanations of how the
stereochemistry of the hydroxyl group and the a-carbon
atom are controlled (16,17). The chirality of the a-carbon
is lost if reduction of the hydroxyl group to a double bond
on the b-carbon occurs, but this reduction may result in
a new stereochemical choice between the cis- and trans-
isomers that is probably determined by the DH domain
carrying out the reduction. A new chirality may be created
if full reduction occurs and is likely to be determined by
the ER domain responsible for the final reduction step.

The annotation of the DNA sequence of a PKS cluster
can be time-consuming because of the large number of

domains and the necessity of integrating data from
many sources. Several tools have been developed to
assist this process. Identifying domains poses few pro-
blems as the sequences are well conserved. A much more
difficult problem is predicting the activity and specificity of
domains. The NRPS–PKS database (18, http://www.nii.
res.in/nrps-pks.html), holds data on PKS and NRPS
gene clusters including module and domain structure
and chemical structures of the biosynthetic products. It
allows users to input protein sequences to be used in
BLAST (19) searches to identify domains and finds
the closest sequences in the database. This allows predic-
tion of whether an AT-domain uses malonyl–CoA or
methylmalonyl–CoA as a substrate (i.e. whether a C2
or C3 unit is incorporated into the polyketide). The
ASMPKS database (20, http://gate.smallsoft.co.kr:8008/
%7Ehstae/asmpks/index.html) uses a similar methodol-
ogy, but integrates it with a graphical display of the
domains in genes so that modules can be easily recognized.
It also allows the display of a predicted linear polyketide
chain product for which the user has to select starter and
extender units from lists. Minowa et al. (21) used an
approach based on the creation of hidden Markov
model profiles (22) to predict substrate specificity of AT
domains. The company ECOPIA has also developed a
software tool (23) DecipherITTM, which helps annotation
of new gene clusters based on comparison with a database
of known clusters. Although these approaches are useful,
they do not make predictions about the stereochemistry of
the products, which is extremely important for assessing
their promise. As these analyses are essentially based on
similarity to known clusters rather than identification of
functional residues, they are less effective for clusters from
novel organism groups. Another practical limitation is
that they do not export information about chemical struc-
tures in a format that can be used by standard programs
for further analyses.
In this paper, we describe a program that utilizes recent

advances in understanding the function of KR domains to
make knowledge-based predictions of activity and stereo-
chemical specificity for hydroxyl groups and a-carbon
atoms. This is combined with a fingerprint approach to
predict specificity of AT domains and more conventional
approaches for prediction of activity of DH and ER
domains. The program predicts the chemical structures
of products, which can be exported in a SMILES/
SMARTS format for further analysis by standard
Chemistry programs. The program is structured so that
it can easily be updated to incorporate new knowledge
about the specificity of domains. It has a convenient gra-
phical interface that allows the rapid semi-automatic
annotation of gene clusters encoding modular biosynthetic
enzymes by non-expert users.

MATERIALS AND METHODS

GeneMark (24) (version 2.5; http://opal.biology.gatech.
edu/GeneMark/) or Glimmer (25) (version 3.02; http://
www.cbcb.umd.edu/software/glimmer/) were used to
identify genes. HMMER (22) (version 2.3.2; http://
hmmer.janelia.org/) was used for identification of
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protein domains. Profiles from Pfam (26) as well as spe-
cially constructed profiles were used. The gene prediction
and protein domain prediction programs run on a Linux
server and each user has a password to allow access to
their own workspace. All user activities are performed
via the Java client, which was written in Windows,
MacIntosh and Linux versions.
To predict the specificity of AT or KR domains the

amino acid sequence was aligned with an appropriate
HMMER profile and the diagnostic amino acid residues
extracted (Supplementary Data 1 Tables 2S and 3S).
The diagnostic residues were compared to fingerprints cor-
responding to the different specificities (substrate specifi-
city for AT; activity and stereochemistry for KR). The
prediction of activity/inactivity of DH domains used a
HMMER-profile based on active actinomycete domains.
The prediction was based on the HMMER score. ER
domains were detected using a profile based on a mixture
of active and inactive domains.
To predict chemical structures, a table was constructed

(see Supplementary Data 1 Table 4S) that contained dif-
ferent chemical building blocks written as isomeric
SMILES (27). These were ordered on the basis of substrate
and degree of reduction. In cases, where stereochemical
prediction was not possible non-isomeric SMILES
were used. Generic units as SMARTS (http://www.day
light. com/dayhtml/doc/theory/theory.smarts.html) were
also included for cases where prediction was not possible.
The predictions were used to generate a description of the
product in an XML format (http://www.w3.org/TR/xml/)
organized in a hierarchical structure corresponding to
module and domain architecture. This XML description
was used to generate the chemical structure from
the table of SMILES. This description was also used to
generate a ring structure from the linear polyketide using
a simple cyclization rule. The SMILES description can
be drawn and displayed in ClustScan using Jmol
v. 11.2.14, 2006 (Jmol; http://www.jmol.org/) or exported.
Clustscan can be obtained by request from Novalis Ltd
(novalis@novalis.hr).

RESULTS

The analyses of the DNA sequence data are carried out on
a server and the results are cached so that each analysis
only needs to be carried out once. This is important as the
analysis of a whole Streptomyces genome may take several
hours, but this can occur unsupervised overnight. The user
accesses the results using a Java client that gives user-
friendly presentation of the data. There is a password-
protected workspace for each user on the server. The
client allows the user to upload DNA sequences to the
server and initiate analyses. The sequence is automatically
translated in all six reading frames to allow HMMER (22)
searches using a library of protein family profiles. The
standard libraries contain PKS and/or NRPS domains,
but it is possible to add other profiles if desired that
makes the program package generic. These can be profiles
from the Pfam (26) database or custom profiles created
with the HMMER package (e.g. we have used profiles to

find and annotate shikimic acid pathway genes; see
Performance of ClustScan subsection). Independently of
the search for protein patterns, the DNA can be analyzed
to find probable coding regions using GeneMark (24) or
Glimmer (25). GeneMark provides a library of models
based on different bacteria and the appropriate model is
chosen using a species related to the source of the DNA.
Glimmer can construct a model for coding regions using
long open reading frames (ORF) in the input sequence as
training data. This is less effective for short input
sequences. Also sequences with high G+C-content have
long non-coding random ORFs, which may reduce the
accuracy of coding sequence prediction. The program,
therefore, also allows the user to create a model by supply-
ing appropriate training data (e.g. the genome sequence of
a related species) and the model can be stored by the user
for future analyses.

The results of the analyses are presented both as lists in
the ‘workspace’ window (Figure 1A) and graphically in
the ‘annotation’ editor window (Figure 1B). The work-
space window shows the results in a tree format in
which branches can be opened up or collapsed to show
the genes and the protein domains. This is useful for
obtaining an overview and it is possible to navigate
through the thousands of genes present in a complete
genome. The graphical ‘annotation’ editor window
(Figure 1B) shows the positions of genes and protein
domains on the six reading frames and can be viewed at
different resolutions using a zoom function. It is possible
using the mouse to displace genes and domains above
and below the reading frames for better visualization of
overlapping regions. It is usual to keep both the work-
space window and the annotation editor window open
and clicking on a feature in either, marks the correspond-
ing feature in the other window. The protein domains
are identified by HMMER analysis using a cut-off score
that can be set to a stringent or relaxed value. This results
in some putative protein domains, which may not be gen-
uine. The user can choose to reject a protein domain so
that it is removed from the analysis; the program tracks
editing changes so that they can later be reversed if mis-
taken deletions occur. In many cases, the decision about
the protein domain is taken on the basis of whether it
occurs at an appropriate position with respect to other
domains, which is easily seen in the graphical view of
the annotation editor. To help the decision, the evidence
for the identification of the protein domains can be viewed
using the ‘details’ window (Figure 2). This shows the coor-
dinates of the protein domain in the DNA and protein
and the scores and E-values from the HMMER analysis.
In addition, the alignment of the protein with the profile is
shown. A prediction of the specificity of the protein
domain is also shown. For AT domains (Figure 2A) this
is the starter unit incorporated by the condensation reac-
tion. For KR domains (Figure 2B) it is predicted whether
the domain is active for reduction and, in addition, the
stereochemistry of the hydroxyl group and the a-carbon
atom are predicted. The predictions can be overridden if
the user has extra information in conflict with
the program’s prediction. For instance, Figure 2A shows
the (correct) prediction of propionyl as the starter unit
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for erythromycin. By clicking on the propionyl, a
drop-down list is shown that enables selection of an alter-
native unit.

On the basis of the results in the annotation editor,
the user can define a gene cluster covering a region of
adjacent genes. The annotation of the gene cluster is car-
ried out using the ‘cluster’ editor window (Figure 1C),
which shows the genes of the gene cluster in a simple
cartoon form, hence the term semi-automatic. When a
gene is selected, the protein domains are also shown.
Modules can be assembled by marking protein domains
and each module created is given a name. The program
suggests a biosynthetic order of the genes of a cluster.
For PKS clusters this is based on identifying a potential
loading domain (i.e. typically a module containing only
AT and ACP domains; Figure 1C) and looking for a
thioesterase domain as identifying the last module. If
there is ambiguity, it is assumed that the genes are used
in the pathway in the same order as they occur in the
DNA. This procedure identifies the correct biosynthetic
order in most natural gene clusters. The user can alter
the suggested order to incorporate any additional knowl-
edge available.

The complete annotation by ClustScan can be stored as
a file in an XML format so that it can be reimported into
ClustScan. The hierarchical nature of XML makes it well
suited for representing clusters in terms of genes, modules
and protein domains. We developed an XML format that
includes information about the biosynthetic order.
Although the XML format is primarily designed for the
internal use of ClustScan, it makes it easy for other appli-
cations to read or write ClustScan compatible files by
adding an appropriate XML parser. In addition to the
XML format, annotations can be exported as an EMBL
or GenBank file for use in other applications or for sub-
mission to databases; this results in loss of information on
biosynthetic order. In addition, the DNA or amino acid
sequences of genes, domains or modules can be copied to
the clipboard for further analyses with other programs.
The prediction functions for the activity and specificity

of protein domains are used to deduce module specificity
and, thus, to predict the chemical structure of the linear
polyketide chain product of the gene cluster. The struc-
tures are represented internally in the program as isomeric
SMILES (27), which can be copied to the clipboard
(Figure 3A) allowing export for use with standard

Figure 1. (A) The workspace window gives an overview of the analysis in the form of collapsible trees. Detected genes and protein domains are
shown. (B) The annotation editor window shows the location of genes (in red) and protein domains (in blue). In this case there are three genes on the
three different forward open reading frames. The genes have been displaced from the reading frames by the user to allow better visualization of the
domains. The annotation editor has been used for user definition of modules (shown as red curves below the open reading frames). (C) The cluster
editor window. The user can define a set of contiguous genes as a cluster. The cluster editor window shows the genes in a cartoon form with an
expanded view of the selected gene showing protein domains. Domains can be linked together to give modules. The modules are given identifying
names and the program suggests a biosynthetic order that can be accepted or altered by the user.
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chemical software. The user can define new module speci-
ficities and provide isomeric SMILES descriptions of the
extender units. It is possible to edit the prediction of
module specificity to allow incorporation of such novel

Figure 2. The details window allows the user to examine the evidence
for assignment of protein domains. The HMMER scores and E-values
as well as the alignment are displayed. The predictions of activity
and specificity are also displayed and can be modified by the user.
(A) The loading AT domain of the erythromycin cluster. The pro-
gram makes the correct prediction of a propionyl starter unit. By click-
ing on this choice, a selection window has been opened that allows
the user to override the automatic prediction and select an alter-
native choice. (B) The KR domain of module 3 of the erythromycin
cluster.

A SMILES:

[C@H](C)[C@@H](O)[C@@H](C)

[C@H](O)[C@H](C)C(=O)C(C)C

[C@@H](C)[C@H](O)[C@@H](C)

[C@H](O)C(C)C(=O)S

B 

C 

Figure 3. The molecules window. (A) The SMILES description for the
linear backbone of erythromycin predicted from the DNA sequence of
the cluster. The SMILES description can be copied to the clipboard for
export. (B) The 3D structure of the predicted linear chain is shown. The
mouse can be used to rotate the molecule. (C) The ring structure of the
erythromycin aglycone as predicted using the cyclization function of the
program.
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extender units. The program allows the user to display the
chemical structure of products in a 3D ‘molecules’ window
(Figure 3B) in which the molecule can be rotated. The
program can also produce a potential cyclic structure
from a linear molecule (Figure 3C). It is assumed that
the first hydroxyl or amino group introduced during
synthesis reacts with the terminal extender unit.

The program is designed to allow easy incorporation of
new knowledge. New or modified prediction of enzyme
activity or specificity can be implemented without chan-
ging program structure. It is also possible for sophisticated
users to write their own specific scripts to introduce spe-
cialized prediction functions.

Prediction of domain activities

The presence of any of the seven domains KS, AT, ER,
DH, KR, ACP or TE is detected using the HMMER
profiles. An extender module needs at least KS, AT and
ACP. AT determines the substrate selection for the exten-
sion reaction. The three reduction domains (KR, DH and
ER) may be absent or present as active or inactive
domains. ClustScan predicts whether domains are active
as well as predicting substrate specificity or stereochemical
outcome when several outcomes are possible (see
Supplementary Data 1 Table 1S).

The KR domain is the best characterized domain
in terms of structural determination of differential activ-
ities. Active KR domains determine the chirality of the
hydroxyl product and bioinformatic analysis identified
amino acid residues involved in this choice (13,14).
Bioinformatics also suggested that KR rather than KS
determined the stereochemistry of b-carbon groups,
when C3 or C4 units are incorporated (15). A comparison
of 3D structures of two KR domains of different specifi-
city gave more detailed information on amino acid resi-
dues involved in determining both hydroxyl and b-carbon
stereochemistry (17). In ClustScan, alignment with a KR
profile allows identification of all of these critical amino
acids (the ‘fingerprint’) and, thus prediction of the pro-
duct. The fingerprints used are shown in the
Supplementary Data 1 Table 2S. There are six possible
products (A1, A2, B1, B2, C1, C2), which correspond to
three possible ketoreduction outcomes (either hydroxyl
stereoisomer—A or B, or no reduction C) coupled with
two b-carbon chiralities (called 1 and 2). The accuracy of
prediction was tested using 49 KR domains for which the
structure of the polyketide product provides information
about activity and stereochemistry; if further active reduc-
tion domains are present, the product does not provide
any information about the stereochemistry of the KR
step. Ten of the KR domains processed 2-carbon extender
units so that only hydroxyl stereochemistry was relevant:
all 10 predictions were correct. Nine of the KR
domains processing 3- or 4-carbon extender units were
inactive: in eight cases the program predicted that the
domains were inactive for reduction and also predicted
the correct side chain stereochemistry. In one case the
inactive KR domain was predicted as active. The other
30 KR domains processing 3- or 4-carbon extender units
were active. In 25 cases the program predicted the correct

stereochemistry. In one case, the program predicted the
incorrect side chain stereochemistry (A1 instead of A2).
In the other four cases, the alignment with the profile did
not yield an amino acid fingerprint that fell into any of the
groups: in these cases the program indicates that no pre-
diction is possible. Thus, the KR prediction was correct in
88% of the cases, incorrect in 4% of the cases and the
program was unable to provide a prediction in 8% of
the cases.
Unlike the case of KR, structural information about AT

domains is not sufficient to help in substrate prediction.
The most common extender substrates are malonyl–CoA
and methylmalonyl–CoA. Comparison by eye of align-
ments of AT domain sequences identified 13 amino acid
residues, which differed significantly between domains
incorporating the two substrates (8–12). The amino acid
sequences of nine AT extender domains that incorporated
ethylmalonyl–CoA were examined. It was found that the
13 amino acid residues had a common pattern that dif-
fered from those of the malonyl–CoA and methylmalo-
nyl–CoA-specific AT domains. This information was
used for prediction of specificity in the program. A further
known extender substrate is methoxymalonyl–CoA and
specific residues associated with choice of this substrate
were identified in AT domains of the concanamycin
A cluster (28). Eleven methoxymalonyl-incorporating
AT domains were examined, but the 13 fingerprint resi-
dues used to characterize the other substrates did not
show a conserved pattern. It was noticed that most had
insertions with respect to the conserved alignment of all
AT domains, which caused problems in identifying poten-
tial fingerprinting residues. After using a specific align-
ment for methoxymalonyl–CoA-incorporating AT
domains, it was possible to use a modified form of the
published pattern (28) to predict methoxymalonyl–CoA
as a substrate.
The information about AT extender specificity was

implemented in ClustScan. The amino acid sequence of
the AT domain was aligned with a general AT-profile to
identify the 13 diagnostic amino acid residues. These were
compared to three fingerprints corresponding to the three
substrates. If the amino acids did not fit any of the three
fingerprints, the AT domain was aligned using a profile
derived from the 11 methoxymalonyl–CoA AT domains.
This alignment was used to test if one of the characterized
insertions was present. If no match was found, the AT
domain was assigned to an unknown substrate category.
In addition to AT domains in extender modules, there

are often AT domains in loading domains. A set of AT
domains that incorporate acetyl starters (nine domains),
propionyl starters (eight domains) or methylbutyryl
starters (three domains) were aligned with the general
AT profile and the 13 diagnostic amino acid residues
extracted. The fingerprints for acetyl and propionyl star-
ters were identical to those for acetyl and propionyl exten-
ders, respectively. The methylbutyryl starters showed a
different pattern, which was also used to construct a spe-
cific fingerprint. This information was incorporated into
ClustScan. When the user accepts the suggested biosyn-
thetic order or defines a different order the loading domain
is subjected to a special analysis. If an AT domain is
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present, the 13 diagnostic amino acids are extracted and
tested for acetyl, propionyl or methylbutyryl fingerprints.
All fingerprints for the specificity of AT starter and exten-
der units are shown in Supplementary Data 1 Table 3S. A
dataset of 196 known AT domains was analyzed with
ClustScan (95 malonyl–CoA, 79 methylmalonyl–CoA, 9
ethylmalonyl–CoA and 13 methoxymalonyl–CoA. The
remaining 25 were propionyl, acetyl, methylbutyryl and
some unusual ones from loading domain ATs). This
gave the correct prediction in 182 cases (93%), the
wrong prediction in 9 cases (5%) and assignment to an
unknown class in 5 cases (3%).
For DH domains, the prediction should distinguish

active and inactive domains. As insufficient structural
information was available to make predictions based on
knowledge of function, it was decided to use a profile
based on active domains to try to predict activity. The
profile was built using the sequences of 57 active domains
derived from actinomycetes. The profile was used to
screen the active domains used in its construction as well
as an additional 56 active and 46 inactive domains
(159 total). All domains with a high score (>300) were
active, whereas all with a low score (<200) were inactive.
About 80% of the domains with intermediate scores were
active, but the scores of inactive domains were distributed
through the range. These results were used to define a
prediction function with three outcomes: active (score
>300), 80% probability of activity (scores between
200 and 300) and inactive (score< 200). This prediction
function was tested on 159 domains (113 active and 46
inactive). Forty-six domains fell into the intermediate
region (36 active, 10 inactive) with a prediction of 80%
probability of activity. Sixty-seven domains were pre-
dicted to be active of which six were in fact inactive
corresponding to a 9% false prediction rate. In contrast,
the prediction of inactivity was less satisfactory: 43 DH
domains were predicted to be inactive of which 16 were
actually active. A closer examination of these false predic-
tions showed that only 1 of the 16 was an actinomycete
sequence, the other 15 being sequences from Gram-
negative bacteria. When attention was confined to actino-
mycete sequences, 13 DH domains were predicted to be
inactive of which only one was active.
Initially, a similar approach to that used for the DH

domain was attempted with the ER domains. A profile
was constructed using active actinomycete ER domains.
However, it was found that better prediction was achieved
with a profile based on a mixture of active and inactive
domains. Sixty-six known ER domains were tested. In all
cases the ER domain was detected. The HMMER score
did not prove useful in distinguishing between active and
inactive ER domains. However, there were only three
cases of inactive ER domains in the presence of an
active DH domain. There were four cases in which an
ER domain was detected, but the DH domain was inac-
tive. The program, therefore, predicts an active ER
domain if a domain is found and there are active KR
and DH domains present. This gives a false prediction
in the 3/66 (5%) cases of an inactive ER domain with
an active DH domain.

Performance ofClustScan

There are two main criteria for the usefulness of
ClustScan: the accuracy of prediction and the speed and
convenience of annotating large datasets. The accuracy of
prediction was tested on two well-known gene clusters: the
erythromycin gene cluster and the niddamycin gene cluster
(GenBank accession numbers AY771999 and AF016585).
For the erythromycin gene cluster, with one exception, all
the protein domains of the six extender modules were
accurately identified and the propionyl starter
(Figure 2A) was also predicted. The only exception was
that ClustScan was not able to predict the hydroxyl group
stereochemistry of the KR domain of module 4; the pre-
diction of the hydroxyl stereochemistry is flagged as
unknown. This does not have an effect on the final pre-
diction as an active DH domain forms a double bond.
However, the active ER domain recreates a chiral center,
which cannot be predicted with the current state of knowl-
edge. This resulted in two possible structures, where the
user can choose the correct chirality to obtain an accurate
prediction of the chemistry of the linear backbone
(Figure 3A and B). In this case, the cyclization was also
predicted correctly (Figure 3C) (see also Supplementary
Data 1 Figure 1S A and B). In the niddamycin gene clus-
ter, the five genes, the loading domain and the seven exten-
der modules containing 36 catalytically active domains
were all correctly predicted with the exception that the
substrate for module six was predicted as ethylmalonate
instead of the correct methoxymalonate. The inactive KR
in module 4 responsible for the b-carbon: S stereochemis-
try was predicted. The correct cyclization was also pre-
dicted (see Supplementary Data 1 Figure 2S A and B).
The results with ClustScan were compared with those
from the NRPS–PKS database prediction system
(SEARCHPKS), which is the most popular current ana-
lysis tool for PKS clusters (see Supplementary Data 2
Figures 1–4). SEARCHPKS (http://www.nii.res.in/nrps-
pks.html) requires protein sequences so the amino acid
sequences of the genes were extracted with ClustScan
and submitted. SEARCHPKS found two extra false
positive ACP domains in the erythromycin cluster
(Supplementary Data 2 Figure 1). The first at the end of
the eryAI gene did not affect the prediction as it was an
isolated ACP domain. The second occurred between the
KS and AT domains of module five and resulted in the
program predicting an additional module and making no
prediction of the chemistry of the two modules generated.
It is not possible to review the data behind the prediction
or to manually reject the false positives. SEARCHPKS
found all the other domains successfully, but does not
attempt to make predictions of the activity or stereochem-
istry of the reduction domains. In particular, this results in
the false prediction of an active KR domain in module
3 resulting in the prediction of a hydroxyl group rather
than the correct keto group. The substrate choice of the
loading domain was not predicted, but there was correct
prediction of a C3 unit for five of the six extender mod-
ules; no prediction of substrate was possible for module 5.
For niddamycin (Supplementary Data 2 Figure 2) there
was also a false prediction of an additional ACP domain
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in module 2. This results in a false positive prediction of
an additional module and an inability to predict the che-
mical structures associated with the two ‘modules’. In
module 4, the KR domain was incorrectly predicted as
active and the substrate for module 5 could not be pre-
dicted. Like ClustScan the wrong substrate for module 6
was predicted.

Eight further well-characterized clusters were anno-
tated. For the megalomycin, pimaricin and tylactone clus-
ters the predicted module activities were in full agreement
with the published results. For tylactone (Supplementary
Data 2 Figure 3) SEARCHPKS found all the domains,
but is unable to predict activity of reduction domains;
thus, it predicts a chemistry based on an active KR in
module 4, whereas ClustScan correctly identifies the
domain as inactive. Also, the starter unit is not correctly
predicted. The worst results for ClustScan were obtained
with the rifamycin cluster, where the stereochemistry of
three methyl groups could not be predicted and two
of eight DH domains were falsely predicted as active.
In comparison, SEARCHPKS falsely predicts five
DH domains and one KR domain as active and does
not attempt to predict the stereochemistry (see
Supplementary Data 2 Figure 4). For the other four clus-
ters (amphotericin, avermectin, nystatin and oleandomy-
cin) there were fewer errors (data not shown). Six
additional domains were identified, which were not pre-
sent in the published annotations. Two were TE domains;
as the presence of a TE domain does not directly affect the
structure of the compound, it is likely that previous anno-
tation work had not searched carefully for these domains.
The other four new domains were all DH domains with
significant deletions (a third to a half of the length). They
are, thus, predicted as inactive by ClustScan. Although
such partially deleted domains are not important for pre-
diction of product structure, they are interesting for stu-
dies on the evolution of clusters.

A major problem with annotations in DNA database
entries is that they are not uniform, but differ according to
the person carrying out the annotation. ClustScan helps
achieve a uniform annotation standard and we have rean-
notated published sequences to achieve a standard defini-
tion of domain boundaries and description of units.
ClustScan has been used to annotate successfully more
than 50 modular gene clusters from a variety of genomes
and metagenomes; full details are available on request.

The speed and convenience of ClustScan were assessed
using the genome sequences of Saccharopolyspora ery-
thraea (7) which is 8.2 Mb in size. A graduate student
was able to annotate the PKS and NRPS clusters in
2–3 h of work (the initial analysis using HMMER can
take several hours of run time on the server, but this
occurs unsupervised overnight). The ClustScan annotation
identified genes, modules and protein domains and
included prediction of activity, substrate specificity and
stereochemical outcome for PKS domains. The published
annotation (7) identified genes, modules and protein
domains and, in addition, the AT domains are assigned
to malonyl–CoA and methylmalonyl–CoA-incorporating
classes. However the stereochemistry and activity of
reduction domains are not annotated. The ClustScan

annotation agreed with the published annotation and
extended it with predictions of domain activity and stereo-
chemistry of products. ClustScan has been used to anno-
tate DNA sequences from a variety of bacterial species
including cyanobacteria.
ClustScan is mainly designed for use with bacterial

sequences. However, the more general utility of
ClustScan program package was demonstrated by the ana-
lysis of lower eukaryote sequences, where intron predic-
tion is often difficult. An example is provided by the slime
mould Dictyostelium discoideum which has 45 PKS genes
(29), which were annotated poorly by the standard anno-
tation methods used in the genome project. Using
ClustScan it was possible to use local HMMER profiles
for the protein domains, which are effective in recognizing
segments of the domains split by introns. When such an
analysis is carried out, a PKS gene shows a characteristic
signature with parts of protein domains in the correct
order with gaps due to introns in between. The view in
the annotation editor window allows easy recognition of
genes and the coordinates of the domain segments help in
detecting the intron boundaries.
ClustScan is mainly designed for the annotation of gene

clusters encoding modular biosynthetic enzymes, but it
can also be used for annotating other genes by loading
appropriate HMMER profiles. For instance, we have
used seven profiles to find and annotate shikimic acid
pathway genes in a marine organism (30). Recently there
has been intensive activity with metagenomic sequences.
The source organisms for sequences are not known, but
they contain genomes from a number of culturable and
non-culturable microorganisms. The contigs are often
fairly small and the quality of the sequence is sometimes
poor. These problems make an analysis using HMMER
local profiles attractive. We used ClustScan to analyze a
200 kb DNA sequence (AACY020563593) from the
J. Craig Venter Institute Global Ocean Sampling (GOS)
Expedition metagenomic dataset (31). This revealed a
potential PKS–NRPS hybrid gene cluster of about 50 kb
in size (Figure 4). It starts with an NRPS loading module,
followed by three PKS modules and seven NRPS
modules and ends with an NRPS thioesterase domain.
However, closer examination of the domain distribution
between reading frames reveals several cases where
domains forming a single module appear to be present
in different neighboring genes. This is due to three appar-
ent frameshifts and the anomalous occurrence of a
stop codon, which probably arise due to sequencing
errors. Thus, it seems likely that there are three genes
rather than the seven genes indicated by both GenMark
and Glimmer analysis. In the case of two of the potential
PKS modules, no AT domains are recognized, but there
are unassigned regions in the protein of appropriate sizes
and locations for AT domains (Figure 4). Thus, the
program allows rapid scanning of metagenomic datasets
and makes it easy to identify potential sequencing errors
and interesting features of clusters. With the growing
importance of metagenomic data for drug discovery pro-
grams ClustScan helps to eliminate a major bottleneck in
the analysis.
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DISCUSSION

ClustScan is easy to use and allows rapid annotation of
new gene clusters. This is very important for exploitation
of the rapidly accumulating data from large-scale DNA
sequencing projects. The facts that high-quality annota-
tion with traditional methods is very time consuming
and needs a high degree of experience have prevented
full exploitation of the extensive DNA database to identify
potentially interesting biosynthetic enzyme clusters.
Although ClustScan is easy to use, it also allows the user
to customize the result and override the automatic predic-
tions. It is also designed to allow easy incorporation of
new knowledge to improve predictive power. The server–
client architecture means that such improvements as well
as changes to reflect new versions of the standard analysis
programs are implemented on the server and do not need
changes in the client programs installed on users’ compu-
ters. An important goal in the design of ClustScan was to
give it an open architecture which would allow easy inte-
gration with other programs. The definition of an XML
format for full gene cluster description allows interchange
with other programs by simply adding an appropriate
XML parser. The export of annotation as EMBL or
GenBank formats and the export of chemical structures
as SMILES (27) facilitate further analyses of results gen-
erated by ClustScan.
Knowledge about PKS protein domains is used to make

predictions about chemical structure. In the case of the
KR domain (14) there is detailed knowledge about protein
structure and the role of the small number of amino acid
residues that control reductase activity and stereospecifi-
city. In the case of AT extender domains 13 amino acid
residues that correlate with the choice between malonyl–
CoA and methylmalonyl–CoA substrates were known
(8–12). We found that these 13 amino acids could also
be used to predict ethylmalonyl–CoA substrate. The
incorporation of methoxymalonyl–CoA substrates was
correlated with insertions. Initially, we tried to use a

method similar to that of Minowa et al. (21) based on
HMMER profiles of critical amino acids to predict AT
specificity. However, this approach gave lower accuracy
of prediction than the fingerprint method that we used
subsequently. For both the KR and AT domains, the fre-
quency of false prediction was low (4%). It was striking
that good results were obtained for both Gram-negative
sequences as well as for the majority of Gram-positive
actinomycete sequences. This supports the idea that the
diagnostic residues in AT domains are functional in sub-
strate specificity rather than being evolutionary accidents.
In contrast, the DH activity prediction, which was based
on an actinomycete profile was only efficient for actino-
mycetes. In particular, many active Gram-negative DH
domains were predicted to be inactive. This means that
the profile mismatch is caused by the evolutionary dis-
tance. Although it would be possible in the short term
to improve DH prediction using profiles for specific
groups of organisms, the identification of important func-
tional amino acid residues would give predictions less
dependent on evolutionary distance. In contrast to other
annotation programs (18,20,21,23,32), ClustScan predicts
the stereochemistry of products. The dependence on func-
tional residues in the KR and AT domains makes it espe-
cially valuable for novel gene clusters that are not closely
related to known gene clusters. Such clusters are especially
interesting in the search for novel drugs. We have not
implemented specificity predictions for NRPS protein
domains. However, there is some information available
to allow partial prediction (32). When the prediction
power is good enough it will be easy to add NRPS pre-
dictions to ClustScan and predict the chemical structure of
products. We compared the performance of ClustScan to
that of the SEARCHPKS prediction program of the
NRPS–PKS database (18). This is less convenient to use
as the genes must be identified and the deduced protein
sequence input to the program. The output of predicted
chemistry is not available in a standard chemical format.
SEARCHPKS often predicts additional ACP domains

Figure 4. Annotation editor window showing the analysis of a potential PKS–NRPS hybrid cluster from a marine metagenomic sequence. The
following coloring is used: genes (red), PKS protein domains (green) and NRPS protein domains (blue). Although seven genes are shown, the
distribution of domains between genes suggest that sequencing errors have occurred. The three boxes indicate the positions of the probable genes.
The first gene has one frameshift, the second gene has two frameshifts and the third gene has an anomalous stop codon (ringed in black) in it. The
positions where two AT domains would be expected are also ringed (in yelow).
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that prevent accurate prediction of product chemistry. We
also observed that BLAST (19) searches often gave pro-
blems in identifying ACP domains, whereas no problems
were encountered with HMMER (22); this is probably
because of the short length of ACP domains. The predic-
tion of the specificity of extender AT domains is relatively
good; this probably reflects the fact that AT specificity
correlates well with phylogenetic trees (33) so that, in addi-
tion to critical functional amino acids, there are other
amino acids that differ for evolutionary reasons. As the
BLAST program does not weight residues according to
conservation, it works best when differences at many resi-
dues correlate with activity. SEARCHPKS does not give
good prediction of loading module specificities. It does not
attempt to predict activity or stereochemistry of domains.
As these predictions involve a small number of critical
residues, they could not be effectively implemented using
a BLAST-based approach. The ASMPKS database (20)
could not be meaningfully compared to ClustScan as it’s
gene prediction for clusters with high G+C-content was
very poor and it requires a DNA input. This is because it
uses the Glimmer (25) program to predict genes and builds
an HMM-model from input data. In ClustScan, we imple-
mented the use of custom HMM-models to overcome this
difficulty for subgenomic sequences. As the ASMPKS
implements a similar approach to the NRPS–PKS data-
base, it is likely that similar results would be found if this
technical problem were overcome.

There are at least 15 known starters used by different
modular PKSs. In many cases there is no AT domain in
the loading domain. Acetyl, propionyl and methylbutyryl
starters can be loaded by AT domains and it was found
that they could be distinguished using diagnostic amino
acid residues. It was striking that the acetyl and propionyl
starter AT domains showed the same patterns as
the malonyl–CoA and methylmalonyl–CoA extender
domains. It is known that in some cases an acetyl starter
is derived from decarboxylation of a malonyl–CoA sub-
strate, but in other cases acetyl–CoA is the substrate (34).
The fact that the commonest extenders’ AT domains are
closely related to starter AT domains suggests that it
might be possible to evolve new PKS gene clusters from
truncated clusters that have lost the starter module.

Most polyketides undergo cyclization. In ClustScan we
have implemented a simple rule of cyclization by interac-
tion of the first hydroxyl or amino group with the terminal
group. This applies to many natural polyketides and raises
the hope that a simple rule-based method can make cor-
rect predictions in many cases. Prediction of cyclization is
important to obtain the full benefit of product prediction.

The ability to rapidly acquire knowledge of new gene
clusters from their DNA sequence has a variety of impli-
cations in the search for pharmacologically relevant com-
pounds. The identification of novel gene clusters with
interesting and unusual product chemistry will direct the
choice of targets for lead discovery. Another application
of the new sequences is to use them to construct new
polyketides based on known modules in silico; i.e. use
them as input for a program such as the Biogenerator
program (35). ClustScan will help eliminate the bottleneck
posed by the annotation of DNA sequences and allow the

full utilization of the rapidly increasing DNA sequence
data. Studies on the evolution of secondary metabolite
clusters (36) can reveal biological constraints on the struc-
tures that can be attained; such studies are greatly assisted
by the ability to rapidly and accurately annotate new
clusters.
We used a top-down approach based on HMM models

to annotate gene clusters encoding modular biosynthetic
enzymes. We showed that by choice of appropriate pro-
files, ClustScan could also be used for annotating other
primary and secondary metabolic pathways in a variety
of microbial and invertebrate organisms. It seems likely
that extensions of this approach could be useful for more
general annotation tasks.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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Abstract: 

 
Aklanonic acid is the first enzyme free intermediate in the biosynthesis of daunorubicin and 

doxorubicin, two of the most widely used anticancer agents. Aklanonic acid is synthesised on 

a type II polyketide synthase (PKS) composed of 8 proteins that catalyze the condensation 

between a propionate starter unit and 9 malonate extender units. This type II PKS is unique 

in that it contains a type III ketosynthase (DpsC) that chooses the starter unit and a putative 

malonyl/acetyl transferase (DpsD) whose role seems obscure. We have investigated the 

network of protein interactions within this complex using a yeast two hybrid system, co-

affinity chromatography and by computer aided protein docking simulations. Our results 

suggest that the ketosynthase (KS)  and β subunits interact with each other and that the 

KS  subunit (DpsA) also probably interacts with DpsD forming a putative minimal synthase. 

We speculate that DpsD may physically inhibit the priming reaction allowing the choice of 

propionate rather than acetate as the starter unit. We also suggest a structural role for the 

cyclase (DpsY), perhaps maintaining the overall structural integrity of the complex. This 

represents the first study attempting to analyze in vivo protein interactions forming a type II 

PKS. 
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Homology modelling and rigid protein-protein docking simulations of enzymes involved in 

biosynthesis of polyketide daunorubicin. 
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SUMMARY

Aklanonic acid is synthesized by a type II polyketide

synthase (PKS) composed of eight protein subunits.

The network of protein interactions within this com-

plex was investigated using a yeast two-hybrid sys-

tem, by coaffinity chromatography and by two differ-

ent computer-aided protein docking simulations.

Results suggest that the ketosynthase (KS) a and b

subunits interact with each other, and that the KSa

subunit also probably interacts with a malonyl-CoA:

ACP acyltransferase (DpsD), forming a putative min-

imal synthase. We speculate that DpsD may physi-

cally inhibit the priming reaction, allowing the choice

of propionate rather than acetate as the starter unit.

We also suggest a structural role for the cyclase

(DpsY) in maintaining the overall structural integrity

of the complex.

INTRODUCTION

The diversity of biological processes is due to dynamic associa-

tions between cellular components, including noncovalent pro-

tein-protein and protein-ligand interactions (Parrish et al., 2006).

For a number of metabolic pathways, several enzymes that

catalyze sequential reactions often associate noncovalently to

form a multienzyme complex. Such complexes afford increased

reaction rates and protect labile intermediates from decomposi-

tion by channeling intermediates directly from one active site to

another. Studies on enzyme complex formation and substrate

channeling are essential for a better understanding of metabo-

lism. To achieve this, we need to know the reactive groups

involved at the active sites of the enzymes, the amino acids in-

volved in surface binding sites, the specific order in which the

large protein complexes are assembled, and the overall topology

of the complex. Polyketides are a large and structurally diverse

group of natural products that display an impressive range of

biological activities of major economic importance to the phar-

maceutical and agrochemical industries. These compounds are

synthesized by large multienzyme systems called polyketide

synthases (PKSs) that catalyze the sequential decarboxylative

condensation between short chain coenzyme A (CoA)-derived

carboxylic acids by a mechanism analogous to fatty acid bio-

synthesis. The growing carbon chain backbone then undergoes

regio- and stereoselective modification to give the final natural

product.

Type II PKSs consist of several discrete, monofunctional pro-

teins that form a dissociable complex, usually leading to the

biosynthesis of aromatic polyketides (Hertweck et al., 2007). A

minimal type II PKS is formed on association of a ketosynthase

(KS), termed KSa, a KS homolog lacking the active site cysteine,

often referred to as the chain length factor (CLF) or KSb, and an

acyl carrier protein (ACP). This minimal system controls starter

unit selection, chain length, and the first cyclization of the nascent

polyketide chain. A fourth enzyme, malonyl-CoA:ACP acyltrans-

ferase (MCAT), may be required for substrate loading in vivo

(Revill et al., 1995; Summers et al., 1995), although the demon-

stration of an inherent malonyl transferase activity of the type II

ACP indicates that MCAT may not be needed in vitro (Hitchman

et al., 1998; Matharu et al., 1998). Additional enzymes, such as

ketoreductase (KR), cyclase (CYC), andaromatase (ARO), associ-

ate with the minimal complex to generate aromatic natural prod-

ucts (McDaniel et al., 1995; Kramer et al., 1997; Funa et al.,

1999; Petkovic et al., 1999). There is currently very little detailed

information about the three-dimensional (3D) organization of

type II PKS complexes, a factor that undoubtedly limits the ratio-

nal design of novel polyketides in these systems. Much more in-

formation is available on individual protein structures associated

with type IIPKSs.TheX-raystructureof theheterodimericKS/CLF

fromStreptomyces coelicolor has been solved and the cavity that

determines chain length identified (Keatinge-Clay et al., 2003). A

number of solution structures for PKS ACPs are available (Crump

et al., 1997; Findlow et al., 2003; Li et al., 2003), although, as yet,

the exact nature of the protein-protein interactions between the

carrier protein and the KS/CLF heterodimer that allow the forma-

tion of an active minimal complex remain to be identified. Several

auxiliary enzymes that may interact either with the minimal com-

plex or the ACP component of the complex have also been struc-

turally characterized. These include the KR from S. coelicolor

(Hadfield et al., 2004; Korman et al., 2004), the methyltransferase

fromStreptomyces peucetius (Jansson et al., 2004), and the CYC

fromStreptomyces nogalater (Sultana et al., 2004),Streptomyces

glaucescens (Thompson et al., 2004), andStreptomyces galilaeus

(Sultana et al., 2004). The CYC may be particularly important for
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the stability of the overall complex, as its addition eliminates the

production of shorter polyketides as well as increasing the turn-

over of the complex (Yu et al., 1998).

Daunorubicin (DNR) and the C-14 hydroxylated derivative,

doxorubicin, are among the most widely used antitumor anthra-

cyclines (Minotti et al., 2004). Both anthracyclines are produced

by S. peucetius through a pathway involving a type II PKS (Kea-

tinge-Clay et al., 2004). This PKS catalyzes the condensation

between a propionyl-CoA starter unit and nine malonyl-CoA ex-

tender units, producing a 21 carbon decaketide. Aldol conden-

sation followed by C-12 oxidation of the decaketide leads to the

formation of the first enzyme-free intermediate, aklanonic acid.

The gene cluster encoding DNR biosynthesis consists of eight

genes, designated dpsA, -B, -C, -D, -G, -E, -F, and -Y (Grimm

et al., 1994). Genes dpsA and -B encode the KS and CLF en-

zymes, while the ACP is encoded by dpsG, unusually positioned

6.8 kb upstream of the position seen in other type II PKSs. This

PKS is also unusual in the choice of a propionate rather than

an acetate starter unit (Rajgarhia and Strohl, 1997), with the en-

zymes encoded by dpsC and -D playing a crucial role in the

specification of this starter unit (Bao et al., 1999a, 1999b). The

enzyme encoded by dpsC is a homolog of the b-ketoacyl: ACP

synthase III (KASIII) responsible for the condensation between

the starter unit and the first extender unit, while dpsD encodes a

proposed MCAT (Rajgarhia and Strohl, 1997). The genes dpsC

and -D are rare, and equivalent enzymes have only been de-

scribed in this and other type II PKS clusters that utilize nonace-

tate starters (Bibb et al., 1994; Piel et al., 2000; Raty et al., 2002).

Their role in starter unit selection is not, however, entirely clear,

as deleting dpsC but not dpsD shifted starter unit selection

from propionate to predominantly acetate (Rajgarhia and Strohl,

1997), suggesting that dpsC and not dpsD contributes to, but

does not dictate, starter unit selection. The dpsE gene product

is a KR, with dpsF coding for an ARO (Meurer et al., 1997).

Although initial studies failed to identify the function of dpsY (Lo-

movskaya et al., 1998), it was known to be essential for the pro-

duction of DNR in S. peucetius, as its deletion leads to the forma-

tion of aberrant cyclization products. Its function as a CYC was

later confirmed (Wohlert et al., 2001). To date, few of the type II

DNRPKSenzymes havebeen expressed andpurified; none have

been structurally characterized. In this article, we extend our

initial studies (Castaldo et al., 2005) to obtain further information

on the in vivo protein-protein interactions involved in the bio-

synthesis of aklanonic acid.

RESULTS AND DISCUSSION

Investigating Protein-Protein Interactions

Using a Yeast Two-Hybrid System

To investigate interactions between proteins forming theminimal

aklanonic acid-producing PKS (Grimm et al., 1994; Hutchinson

and Colombo, 1999), the genes encoding the KS subunits (a,

dpsA; b, dpsB), the ACP (dpsG), the KASIII (dpsC), and MCAT

(dpsD) were cloned and assayed as both prey and bait using

a matrix of all possible protein interactions (Table 1). All potential

interactions were tested independently three times along with

the relative controls. Strong interactions were assessed by nutri-

tional selection using ADE2 and HIS3 markers. The results from

these assays (Table 1) suggest that DpsA (KSa) interacted with

DpsB (KSb or CLF). Such an interaction between the KS subunits

has been described for many complexes. It has also been known

for some time that, if the equivalent subunits from other type II

PKS systems are expressed and purified, they coelute, suggest-

ing strong, noncovalent interactions (Carreras and Khosla, 1998;

Matharu et al., 1998). These interactions can be identified from

the crystal structure of the actinorhodin KS/CLF heterodimer

(Keatinge-Clay et al., 2004). The assays also suggest that KSa

(DpsA) interacts strongly with itself, in contrast to the actinorho-

din KSa, which is monomeric (Keatinge-Clay et al., 2004). Struc-

tural studies of the actinorhodin KSa-KSb have demonstrated

that these two proteins form an amphipathic tunnel, with polyke-

tide synthesis at the heterodimer interface (Keatinge-Clay et al.,

2004). This structure is thought to predict overall chain length

as well as partially specifying correct first-ring cyclization. The

aklanonic acid-producing KSa-KSb proteins also show strong

interactions and, by analogy with the actinorhodin system, may

dictate chain length and correct cyclization in a similar fashion.

It has been suggested that the actinorhodin KSb acts as a ma-

lonyl-CoA decarboxylase, thereby generating the acetyl-ACP

starter for this biosynthetic pathway (Bisang et al., 1999). This

has not been unanimously accepted, with the KSa implicated

as the alternative source of the decarboxylase activity (Dreier and

Khosla, 2000), nor has such an activity been identified in KSb

(DpsB). It is known that acetyl-CoA can act as a starter unit in

Table 1. Matrix of Possible Protein-Protein Interactions for the Entire Daunorubicin/Doxorubicin-Producing PKS Measured Using

a Y2H Assay

Prey

Bait

A (KSa) B (KSb) C (KSIII) D (MAT) G (ACP) E (KR) F (ARO) Y (CYC)

A (KSa) AA++ AB++ AC AD AG+ AE AF+ AY+

B (KSb) BA BB BC BD+ BG+ BE+ BF+ BY

C (KSIII) CA CB CC CD CG+ CE+ CF+ CY+

D (MAT) DA++ DB+ DC DD DG+ DE++ DF+ DY+

G (ACP) GA GB GC GD GG GE+ GF GY+

E (KR) EA EB EC ED+ EG+ EE EF+ EY+

F (ARO) FA+ FB FC FD+ FG+ FE+ FF+ FY+

Y (CYC) YA++ YB++ YC+ YD++ YG YE++ YF YY++

ACP, acyl carrier protein; ARO, aromatase; CYC, cyclase; KR, ketoreductase; KS, ketosynthase; MCAT, malonyl-CoA:ACP acyltransferase. ‘‘++’’

indicates strong interactions revealed by nutritional selection, while ‘‘+’’ indicates weak interactions revealed by LacZ b-galactosidase assay.
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anthracycline biosynthesis, suggesting that decarboxylation by

either of the KS subunits would be unnecessary (Rajgarhia and

Strohl, 1997). Decarboxylation has not been ruled out, however,

and the weak interactions between ACP and both of the KS sub-

units suggest that this may still be a possibility.

Interestingly, the nutritional selection assays also revealed a

strong interaction between KSa (DpsA) and the MCAT, DpsD,

but its role in aklanonic acid biosynthesis is not clear, as deletion

of dpsD from the gene set does not affect compound production

(Grimm et al., 1994). In addition, initial experiments involving

heterologous expression of all of the genes involved in aklanonic

acid production, but excluding dpsC and dpsD, seemed to result

in synthesis of the correct tricyclic 21 carbon intermediate (Raj-

garhia and Strohl, 1997). However, the polyketide SEK43 was

produced in subsequent in vitro studies, indicating the use of

acetyl, and not propionyl-CoA, to form this aberrant cyclized

product (Meurer et al., 1997). The anthracycline, feudomycin D,

could also be isolated from the dpsC and dpsD mutant (Rajgar-

hia and Strohl, 1997). This anthracycline is formed via desmethy-

laklanonic acid, again an acetate-initiated polyketide, with mis-

cyclization to SEK43 prevented by the presence of additional

cyclases. DNR is also produced in this system, but only at 40%

of control levels. The correct propionate starter could only be en-

sured if dpsC (though not necessarily in tandem with dpsD) was

present, confirming the suggestion that the dpsC gene product

specifies propionyl starter unit selection (Grimm et al., 1994; Raj-

garhia et al., 2001). It has been suggested that KASIII (DpsC),

along with KSa (DpsA) and KSb (DpsB), are together responsible

for this process, so it is surprising that KASIII (DpsC) does not ap-

pear to interact strongly with the KS subunits, nor does it interact

with MCAT (DpsD), suggesting that these are not a tandem pair

of enzymes. The MCAT (DpsD) does not appear to select the

CoA-derived polyketide starter, and its absence in vivo still leads

to the production of aklanonic acid. In vitro, however, extracts

containing all of the PKS genes, except MCAT (DpsD), failed to

produce any polyketide products irrespective of whether pro-

pionyl- or acetyl-CoA were provided to initiate the biosynthesis

(Rajgarhia et al., 2001), suggesting a structural role within the

complex. This has also been observed for other type II systems

that contain an MCAT (DpsD) homolog (Tang et al., 2004), sug-

gesting instability in the PKS complex that may be compensated

for in vivo by other cellular components. Indeed, crosstalk be-

tween the S. coelicolor FAS malonyl transferase and the actino-

rhodin PKS complex has previously been suggested (Summers

et al., 1995; Raty et al., 2002). Alternatively, MCAT (DpsD) may

act as an acyl-ACP thioesterase, which selectively hydrolyzes

acetyl groups, thereby favoring propionyl starter selection. This

activity has been described for ZhuC, a homologous enyzyme

to MCAT (DpsD), which acts as part of the initiation module from

the R1128-producing PKS (Tang et al., 2003).

No strong interactions between the dpsG gene product (the

ACP), and either the KS subunits (DpsA and B), or KASIII (DpsC)

orMCAT (DpsD), could be detected, suggesting that interactions

between the ACP and these components of the complex are

weak or transient. No phosphopantetheinyl (PPT) transferase

(PPTase) has yet been identified that is involved in secondary

metabolism in Saccharomyces cerevisiae (Wattanachaisaeree-

kul et al., 2008). It has been demonstrated that heterologous ex-

pression of the 6-methylsalicylic acid synthase from Penicillium

patulum in S. cerevisiae does require coexpression of an exoge-

nous PPTase to convert apo-ACP to its holo form (Kealey et al.,

1998; Wattanachaisaereekul et al., 2008). PPT phosphate may

well be a major binding-energy contributor, so it is feasible that

no strong interactions between the ACP (DpsG) and the other

domains were observed because the ACP (DpsG) was in the apo

form when expressed in S. cerevisiae for the yeast two-hybrid

(Y2H) assay. For this reason, and in order to investigate poten-

tially weaker interactions between the proteins of the minimal

DNR PKS, LacZ assays were performed on combinations where

no interactions could be observed by nutritional selection (shown

in Table 1). When no interactions were detected either by nutri-

tional selection or by lacZ assay, Western blots confirmed pro-

tein expression in the yeast heterologous host (data not shown).

Using the lacZ assay, weak interactions were observed between

the ACP (DpsG) and both of the KS subunits, aswell as the KASIII

homolog (DpsC) and the MCAT (DpsD). A homodimeric interac-

tion between two ACPs was not observed. Such an interaction

has been described for several type II PKS ACPs (Hitchman

et al., 1998; Matharu et al., 1998; Florova et al., 2002), an interac-

tion that facilitates the inter-ACP transfer of malonate. It is pos-

sible that, in the aklanonic acid-producing PKS, this acyl transfer

is performed by another component of the complex, possibly

MCAT (DpsD). ACPs are known to be essential for polyketide

production in a number of type II minimal systems (McDaniel

et al., 1995; Matharu et al., 1998), and it has been shown that the

levels of ACP may be a limiting factor in the production of these

secondary metabolites (Decker et al., 1994; Matharu et al.,

1998). A model for the S. coelicolor actinorhodin minimal PKS

complex has been described where the ACP dissociates from

the KS/CLF after each round of condensation (Dreier andKhosla,

2000). This model would also be consistent with the observation

that the ACP interacts weakly with the other components of the

minimal complex. The weak interaction between the ACP and

KASIII (DpsC) supports the hypothesis that the KASIII homolog

acts in the priming reaction catalyzing the condensation of the

starter unit, propionyl-CoA, to a malonyl-CoA extender unit with

the product transferred to the 40-phosphopantetheine thiol of the

ACP. No homodimeric interactions involving KASIII (DpsC) were

observed, as supported by previous studies (Bao et al., 1999a,

1999b), although this appears to be a unique feature in the akla-

nonic acid-producing PKS, since other KASIII-like proteins—for

example, the FabH of Escherichia coli (Qin et al., 2001; Qiu et al.,

2001) and ZhuH in R1128 biosynthesis (Pan et al., 2002)—show

a homodimeric structure.

Finally, the proteins involved in auxiliary processing of the

growing polyketide carbon chain, the KR (DpsE), the ARO (DpsF),

and the CYC (DpsY) were investigated. As before, initial screen-

ing was performed by nutritional selection to indicate the stron-

gest interactions, while weaker interactions were highlighted

using the LacZ assay. Results, shown in Table 1, revealed that

the CYC (DpsY) interacts strongly with the two subunits of the

KS (DpsA and DpsB), with the MCAT (DpsD), and with the KR

(DpsE). The CYC also interacts strongly with itself, suggesting

either a dimeric or tetrameric arrangement, quaternary struc-

tures that have also been observed for the tetracenomycin F2

CYC fromS. glaucescens (Thompson et al., 2004) and for SnoaL,

the enzyme catalyzing the last cyclization step in S. nogalater

(Beinker et al., 2006). A stronger interaction was also observed
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between MCAT (DpsD) and the KR (DpsE). For DpsE, there

appears to be no indication of a dimeric form, which has been

described for the actinorhodin KR (Hadfield et al., 2004; Korman

et al., 2004).Weak interactions between all of the enzymes tested

were observed, with the exception of KSa (DpsA) with KR (DpsE),

and KR (DpsE) with itself.

As with all techniques, the interpretation of the results must

take into account the limitations of the methods used, and the

Y2H approach has a number of well-documented disadvan-

tages. False-positive interactions are possible through autoacti-

vation of the bait fusion. False-negative interactions may also

arise through incorrect folding of either the bait or prey chimeric

proteins. Many proteins also require posttranslational modifica-

tions in order to attain the correct structure and full biological

activity, and the Y2H assay may fail to detect proteins whose

interactions depend on such modifications. The necessity for

phosophopantetheinylation of the ACP in order to generate the

active form is well documented (Mootz et al., 2001), although co-

valent modifications have also been identified for other type II

PKS enzymes. Some are subjected to proteolytic processing,

while others show a combination of truncation and covalent

addition (Gramajo et al., 1991; Hesketh et al., 2002). TheY2Hsys-

tem may also be unsuitable for the detection of interactions with

membrane proteins, which may be improperly folded due to

exposed, highly hydrophobic patches. This may be a particular

problem for the KS, as this enzyme, which is central to the PKS

minimal complex, may be membrane associated (Gramajo

et al., 1991).

Investigating Protein-Protein Interactions Using

Tandem Affinity Purification

From the Y2H results, KSa (DpsA) appeared to be central to the

formation of a ‘‘minimal’’ PKS, which we speculate to be a homo-

dimer composed of a head-to-tail arrangement of KSa (DpsA),

KSb (DpsB), and MCAT (DpsD). Tandem affinity purification

(TAP) (Rigaut et al., 1999) was used to investigate this associa-

tion further, with the TAP tag fused at the N terminus of KSa

(DpsA). This technique allows purification of protein complexes

under native conditions by using two different affinity purification

steps. Expression of theminimal PKSwith the hybrid protein TAP

tag-DpsA was performed under the control of the strong consti-

tutive promoter ermE*p (Carreras and Khosla, 1998) using the

heterologous host S. coelicolor A3(2). Transcription of dpsA,

dpsB, dpsC, dpsD, and dpsG were detected by RT-PCR. The

presence of hybrid protein TAP tag-DpsA was detected by im-

munoblotting using IgG antibody that binds the ProtA epitope lo-

cated at the N terminus of the TAP tag. Subsequent analysis of

the protein eluates collected at the end of the purification step

by SDS-PAGE revealed the presence of only KSa (DpsA) and

KSb (DpsB), which was confirmed by mass spectrometry. Pro-

teins corresponding to KASIII (DpsC), MCAT (DpsD), or the

ACP (DpsG) could not be detected by SDS-PAGE followed by

staining with Coomassie brilliant blue (a one-dimensional [1D]

SDS-PAGE gel is shown in the Supplemental Data available

online—see Figure S1).

Strong interaction between KSa (DpsA) and KSb (DpsB) was

not unexpected, since similar interactions had been predicted

from the X-ray crystal structure of KSa/KSb from the actinorho-

din-producing PKS (Keatinge-Clay et al., 2004) and by copurifi-

cation of these proteins by gel chromatography as an a2b2 het-

erotetramer (Carreras and Khosla, 1998). Comparison with the

crystal structure of the actinorhodin KSa/KSb complex would

suggest that the N terminus of KSa (DpsA) is sufficiently exposed

and not involved in crucial interactions with KSb (DpsB). How-

ever, the presence of the TAP tag in this region of the protein

might have impaired the interaction with the other ‘‘minimal’’

components, such as MCAT (DpsD). Failure to recover KASIII

(DpsC) and the ACP (DpsG) might have been expected, since

these proteins were found to form only weak interactions with

the minimal PKS by the lacZ assay in the Y2H screen. This has

also been suggested by the proposed mechanism of action of

KASIII in type II fatty acid biosynthesis (Jackowski et al., 1989)

and the ACP in the biosynthesis of thiolactomycin by E. coli

(White et al., 2005).

Investigating Protein-Protein Interactions

by Computer Simulation

ClusPro (Comeau et al., 2003) is a fully automated, Web-based

program for docking protein structures. It is designed as a multi-

stage protocol, which first performs rigid body searches using

ZDOCK (Chen et al., 2003). ZDOCK uses fast Fourier transform

to search all possible binding modes for the proteins. Its scoring

functions combine shape complementarity, desolvation energy,

and electrostatics in its calculations. Docked structures are then

filteredusingdistance-dependent electrostatics andanempirical

potential representing desolvation. The 2000 conformations re-

tained after filtering are clustered based on pairwise root-mean-

square deviation (rmsd), which is the measure of the average

distance between the backbones of the superimposed proteins.

The representative conformations from the30 largest clusters are

selected and refined using a brief CHARMm minimization

(CHARMm is a program within ClusPro for macromolecular en-

ergy, minimization, and dynamics calculations). In our docking

simulations, the first 10 cluster representatives were retained.

As second docking simulations, PatchDock (Schneidman-

Duhovny et al., 2005), in conjunction with FireDock (Mashiach

et al., 2008), were used to evaluate the results obtained by

ZDOCK. PatchDock (Duhovny et al., 2002) is a geometry-based

molecular docking algorithm. The PatchDock algorithm divides

the Connolly dot surface representation of the molecules into

concave, convex, and flat patches. Complementary patches are

then matched in order to generate candidate transformations.

Each candidate transformation is further evaluated by a scoring

function that considers both geometric fit and atomic desolva-

tion. FireDock (Andrusier et al., 2007) is a method for the refine-

ment and rescoring of the rigid-body docking solutions. Each

candidate generated by the rigid-body docking method was re-

fined using a restricted interface side chain rearrangement and

by soft, rigid-body optimization. Refined candidates are then

ranked by the binding score, which includes atomic contact en-

ergy, softened van der Waals interactions, partial electrostatics,

and additional estimations of the binding free energy. The output

is a ranked list of all the input solutions. For docking simulations,

PatchDock was used with default settings, and the first 100

solutions were refined using Firedock. The top 10 results from

FireDock were retained.

The use of docking algorithms to investigate protein interac-

tions requires knowledge of the tertiary structure of the putative
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interacting proteins. However, the number of structurally charac-

terized proteins is extremely low compared with the annotated

primary structure of proteins present in databases (Zuiderweg,

2002; Bairoch et al., 2005). Comparative modeling is widely rec-

ognized as a reliable method to generate a 3D model of a target

protein from its primary structure (Tramontano andMorea, 2003;

Moult, 2005). An essential requirement for this method is the

identification of at least one experimentally solved 3D structure

of a protein homolog that can be used as the template.

Solutions could only be reasonably computed for interactions

between DpsA/DpsB, DpsA/DpsD, DpsAB/DpsD, DpsAB/DpsY,

DpsD/DpsY, and DpsD/DpsE. An interaction between KSa

(DpsA), KSb (DpsB), and the ACP (DpsG) could not be predicted

using a monomeric model of KSa (DpsA) and KSb (DpsB). Iden-

tifying the residues involved in the crucial interaction between

the ACP and KS subunits will be a matter of important future re-

search that will require more sophisticated biophysical methods

(e.g., electron microscopy). Both programs returned solutions

for KSa (DpsA) and KSb (DpsB) models that matched the pre-

dicted 2.0 Å X-ray crystal structure of the KS subunits from the

actinorhodin-producing PKS (Figure 1). It was the first solution

from FireDock and the second from ClusPro. The Ca rmsd of

superimposed solutions was 0.42 Å. Stroud and coworkers

(Keatinge-Clay et al., 2003) reported that the two KS subunits

interact via tight complementary contacts that bury over one-

fifth of the surface area of each monomer, forming an amphi-

pathic tunnel. The cavity at the interface of the two monomers

Figure 1. Computational Docking Simulat-

ing theProtein-Protein Interactionsbetween

DpsAB and DpsD

The DpsA (green)/DpsB (red) interaction matches

the predicted 2.0 Å X-ray crystal structure of the

KSsubunits from theactinorhodin-producingPKS.

The simulation also supports the Y2H (Table 1)

results where a strong interactions between DpsA/

DpsB and DpsA/DpsD were observed. These

results also suggest that the failure to pull down

an intact DpsAB/DpsD complex could be due to

the design of the coaffinity chromatography, as

discussed in the main text. DpsD is shown in

yellow.

is where the polyketide backbone is syn-

thesized, and its 17.0 Å length influences

the chain length of the growing polyketide

(Keatinge-Clay et al., 2004). A ‘‘grasping

loop’’ structure formed between the a7

helix of the KSa and a8 helix of the KSb

is responsible for the tight interactions

between the two subunits. In particular,

Tyr118 of KSa and the Phe116 of KSb,

were found to be involved in establishing

close interactions. The active sites of the

KSa, Cys169 and Phe116 are thought to

represent the gating residues that regu-

late chain length marking the beginning

and the end of the amphipathic tunnel,

respectively (Keatinge-Clay et al., 2004).

Tyr118 is conserved in the same position in the amino acid se-

quence of KSa (DpsA), whereas Phe116 of KSb is substituted

by leucine on position 118 (Leu118) in the model (position

Leu138 in the primary sequence) of KSb (DpsB). With the substi-

tution of Phe with Leu, the length of the amphiphatic tunnel is in-

creased to�19 Å, possibly reflecting the difference in acyl chain

length between actinorhodin and daunorubicin polyketides. In

a similar fashion to the actinorhodin system, we can speculate,

based on the docking simulation using the predicted 3D struc-

tures of KSa (DpsA) and KSb (DpsB), that the aklanonic acid

backbone is also synthesized in a polyketide tunnel, the length

of which is determined by the distance between the two resi-

dues, Cys169 on DpsA and Leu118 on DpsB (Phe116 on act

CLF). The docking simulation with twoDpsAmonomers revealed

a complex that was comparable with the crystal structure of the

actinohrodin KS-CLF complex and predicted DpsA-DpsB com-

plex. This was the first solution from both docking methods. The

Ca rmsd of superimposed solutions was 1.92 Å.

The proposed orientation (Figure 1) for the interaction between

DpsAB/DpsD showed that docking of DpsD occurs in a pocket

on DpsA created between helices a2 Pro57-Ala60, a3 Ala64-

Arg69, a6 Thr111-Ser122, and the loop formed from residues

Ser38-Arg46, which is located between helices a1 and a2. In

this interaction, DpsD is involved with two a helices from small

subunit a8 (Gly149–Asn15) and a9 (Val174–Leu184) and the N

terminus of helix a10 (Pro203-Thr219), from which Pro203 and

Met204 are involved in establishing hydrophobic interactions

Chemistry & Biology

Type II Polyketide Synthase Structural Studies

1160 Chemistry & Biology 15, 1156–1165, November 24, 2008 ª2008 Elsevier Ltd All rights reserved

                                                                                                                                                         Scientific papers

61

Jurica
Line



with Phe55 from the loop connecting helices 1 and 2 on DpsA. It

is possible that flexible docking would show closer interactions

with the conformational change in the loop connecting helices

1 and 2 in the DpsA. In the Y2H assays, KSa (DpsA) was found

to establish homotypic interactions. In order to investigate

whether this association would have any influence on the orien-

tation of the interaction with MCAT (DpsD), a docking simulation

was also performed between KSa (DpsA), as a homodimer, and

MCAT (DpsD), and the DpsA monomer with DpsD. In both

simulations, matching complexes were the first solutions from

both programs.

The proposed orientation for the docking between MCAT

(DpsD) and the homodimer of the CYC (DpsY) revealed an inter-

esting interface between these two proteins (Figure 2). This was

the eighth solution in Firedock and the third solution in ClusPro.

The MCAT (DpsD) appeared to interact mainly via interactions

established with the C terminus of helix a10 (Pro203–Ser218),

the N terminus of helix a11 (Leu240–Leu252), and the loop con-

necting these helices (Thr219–Gln239). DpsY interacts with both

of its subunits, with DpsD helix a10, penetrating into a pocket

between the monomer subunits. The b1 sheet (Met6–Glu8) and

loop connecting b sheets 2 and 3 from one DpsY monomer,

and the loops connecting sheet b4 and helix a2, and sheet b6

and helix a3 from the second DpsY monomer are involved in the

interaction.

The simulation for the docking between the MCAT and KR

(DpsD/DpsE) revealed a particular interface chosen from the first

solution of FireDock and the second of ClusPro with a Ca RMSD

of 1.92 Å (Figure 2).MCAT (DpsD) takespart in the interactionwith

the helices a3 (Arg54–Asp60), a4 (Ala63–Asp67) and the loop

connecting helices a2 and a3 (Asp40–Leu53). This corresponds

to the region between the small subunit and helical flap of MCAT.

The KR (DpsE) contributes to the interface with the C-terminal

region of helix a8 (Glu205–Lys215), a6 (Ala150–Leu170), small

helix a5 (Thr140–Gly142), and the loop connecting helices a5

and a6 (Lys143–Gly149). Hydrophobic amino acid residues are

also likely to be involved in establishing the interaction. The sim-

ulation for thedockingbetween theKS-CLF/CYC (DpsA-B/DpsY)

showed an interesting complex where DpsY dimmer positions

itself on DpsA in the proximity of the entrance to the amphipathic

tunnel. The selected complex was the first solution in FireDock

and the fifth in ClusPro. The DpsY dimer in this solution interacts

with both KS and CLF. DpsY takes part in the interaction mostly

with loops used in subunit binding that interact with helix a16

(Lys314–Tyr333), C terminal of helix a11 (Pro202–Ala210) and a

loop connecting sheet b6 and helix a14 (Asn271–Gly282) on

DpsA, and with helix a7 (Pro126–His128), helix a4 (Lys66–Gln71)

and loop connecting helix a5 and sheet b4 (Ser90–Glu99) on

DpsB. This arrangement of proteins would be favorable to reduc-

ing spontaneous cyclization, and is also in close proximity to the

amphipathic tunnel (Figure 3). This represents what is, to our

knowledge, the first study attempting to analyze in vivo protein

interactions forming a type II PKS. A better understanding of

the protein-protein interactions within the type II PKS complex

should allow us to formulate new design rules for the synthesis

of aromatic polyketides through combinatorial biosynthesis.

SIGNIFICANCE

Using a yeast two-hybrid (Y2H) screen, the core components

forming the polyketide synthase (PKS) complex were the ke-

tosynthase (KS) subunits, predicted to be a heterotetramer

with the two KSa (DpsA) polypeptides interacting strongly

with each other, and with KSb (DpsB). The heterodimeric

core was further extended to include two malonyl-CoA:ACP

acyltransferase (MCAT) (DpsD) polypeptides, again inter-

acting strongly with KSa (DpsA). Correlating our data with

those of previous in vivo and in vitro experiments (Rajgarhia

et al., 2001), we propose that, within the complex, the MCAT

(DpsD) might act in a structural role; perhaps its physical

position prevents chain initiation using an acetate starter.

The cyclase (CYC) (DpsY) was found to interactwith all of the

proteins forming the complex, which may indicate a signifi-

cant structural role,maintaining the complex in abiologically

active configuration, as has been suggested for post-PKS

modifying activities of other type II complexes (Petkovic

et al., 1999; Perić-Concha et al., 2005). From the Y2H assays,

KSa (DpsA) was predicted to play a key role in the proposed

head-to-tail arrangement of the ‘‘minimal’’ PKS and, there-

fore, was chosen as the target protein to fuse to the tandem

affinity purification tag. The ‘‘pulldown’’ experiments re-

sulted in the purification of the KSa (DpsA) and KSb (DpsB)

Figure 2. Superimposed Computational Docking Solutions for the

Protein-Protein Interactions between DpsD/DpsE and DpsY/DpsD

DpsE (blue) docks in a region between the small subunit and helical flap of

DpsD (yellow). The DpsY subunits (in different shades of green) interact planar

to DpsD.
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subunits, but failed to copurify theMCAT (DpsD),which, from

the previous Y2H results, was predicted to interact strongly

with KSa (DpsA). Both programs used for docking simula-

tionswere also able to predict a docking orientation for KSa/

KSb (DpsA/DpsB), similar to that observed for the solved

crystal structure of the actinorhodin KSa/KSb heterodimer

(Keatinge-Clay et al., 2004). The docking simulations also

suggest that the MCAT (DpsD) might have a structural role

in bringing the active sites of the ketoreductase (DpsE) and

the CYC (DpsY) in to close proximity, allowing the proteins

to carry out adjacent modifications of the aklanonic acid

backbone in conjunction with the CYC/aromatase (DpsF).

EXPERIMENTAL PROCEDURES

Y2H Experiments

Each dps gene was subcloned by PCR using the plasmid template

pWHM1012. All the forward primers were designed incorporating an NdeI

site upstream of the translational start codon, while all the reverse primers

were designed with an EcoRI site downstream of the translational stop codon

(Table S1). The amplified products were purified from agarose gels using

QIAEX II following the manufacturer’s instructions (QIAGEN GmbH, Hilden,

Germany). The purified fragments were then cloned via NdeI/EcoRI recogni-

Figure 3. Computational Docking Simulat-

ing the Protein-Protein Interactions be-

tween DpsAB and DpsY

The location of the docking site is in the proximity

of the entrance to the amphipathic tunnel (shown

yellow on DpsAB surface). The entrance to the

cavity containing active site of DpsY is also in the

proximity of the entrance to the amphiphatic

tunnel (Thompson et al., 2004). The surface of the

DpsAB complex is colored based on hydrophobic

properties of the residues using the Kyte-Doolittle

scale. Colors range from blue, for the most hydro-

philic residues, through white, and then to red for

the most hydrophobic residues.

tion sites into the polylinker of both Y2H plasmids

pGADT-7 (prey) and pGBKT-7 (bait). The con-

structswere sequenced to check that thedpsgene

inserts were in frame with Gal4-AD (pGADT-7) and

Gal4-BD (pGBKT-7). Y2H experiments were per-

formed in S. cerevisiae AH109 using procedures

described by the manufacturer (BD Biosciences/

Clonetech, Palo Alto, CA). Triplicate yeast trans-

formations, using each dps gene in combination as

both prey and bait, were plated out on both SD-2

(Trp- and Leu-) and SD-4 (Trp-, Leu-, Ade-, and

His-) media and incubated at 30�C for up to 14

days. Colony lift LacZ assays were also performed

on yeast cells grown onSD-2medium to verify pro-

tein interactions. Protein expression was checked

where no interactions were observed. Protein ex-

traction was performed using 1ml of SD-2 cultures

(1 3 107 cells mlÿ1) with trichloroacetic acid. Pre-

cipitated proteins were resuspended in 300 ml of

SU buffer (5% w/v SDS, 8 M urea, 125 mM Tris-

HCl, pH 6.8, 0.1% EDTA, 15 mg/ml DTT, and

0.005% w/v bromophenol blue). The proteins

were separated by 10% SDS-PAGE and electro-

blotted onto nitrocellulose membranes for West-

ern blot analysis. The antibodies used to performWestern blots were obtained

from Abcam Limited (Cambridge, UK). The primary antibodies were mouse

monoclonal anti-c-Myc and mouse monoclonal anti-HA tag. The secondary

antibody was a rabbit polyclonal to the mouse IgG H&L horseradish peroxi-

dase-conjugated anti-IgG. Detection was performed using 3,30,5,50-tetrame-

thylbenzidine, as specified by themanufacturer (Sigma Aldrich, St. Louis, MO).

TAP

Plasmid designated pNC147 is a derivative of pWHM1012 encoding the genes

dpsA, dpsB, dpsC, dpsD, nd dpsG, which translates a TAP tag fused to the

N terminus of DpsA. Details of the cloning strategy to construct pNC147, in

five steps, are described in Figure S2. Expression of proteins encoded by

pNC147 used the heterologous host S. coelicolor A3(2) grown in 50 ml of

YEME medium supplemented with thiostrepton (15 mg/ml) as described by

Kieser et al. (2000). The mycelium was collected by centrifugation and washed

twice with 0.09 M Tris-Cl, pH 7.9. The TAP tag procedure followed was as de-

scribed by Rigaut et al. (1999). Proteins were separated by 1D SDS-PAGE and

digested in-gel with trypsin. The peptide digests were extracted from each gel

band and separated by nanoRP-LC (Micromass CapLC, Waters) before MS

analysis using aQ-TOFUltimaGlobal (Waters). Themass spectrometric acqui-

sition was performed in a data-dependent manner, with a 1 s MS survey scan

followed by MS/MS scans (1 s) on the 3 most abundant multiply charged ions.

The rawMS/MS spectrawere processed to ‘pkl’ files usingMassLynx software

version 4.1 (Waters) and analyzed using GeneBio Phenyx Software (Geneva,

Switzerland).
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Computer Docking Simulations

Two sets of models were built. One using Swiss-Model (Arnold et al., 2006;

Guex and Peitsch, 1997) and the other using MODELER 9.4 (Fiser and Sali,

2003). Both sets were evaluated using DOPE function (Shen and Sali, 2006)

fromMODELER 9.4 and Verify3D (Mashiach et al., 2008).Models with themost

favorable energy profile and profile score were selected for protein-protein

docking simulations. For Swiss-Model 3D templates were chosen based on

the results obtained using GenTHREADER (McGuffin et al., 2000), Modbase

(McGuffin et al., 2000) and Predict protein (Rost et al., 2003). Templates used

in MODELER were selected by scanning the query sequence against a library

of sequences extracted from known structures in Protein Data Bank (PDB),

which was obtained from MODELER (http://salilab.org/modeller/). Alignments

were created with MODELER, unless stated otherwise. The DpsA model was

built using the ‘‘Automated Mode’’ in Swiss-Model with 1TQYA as a template

which has 62.5% sequence identity to DpsA. The DpsB model was built using

the ‘‘Automated Mode’’ in Swiss-Model with 1TQYB as a template which has

57.75% sequence identity to DpsB. The DpsCmodel was built using the ‘‘Pro-

ject Mode’’ in Swiss-Model with 1HNJA as the template which had 22.3% se-

quence identity to DpsC. The model was built based on an mGenTHREADER

(McGuffin et al., 2000) sequence alignment and optimized using the SWISS-

MODEL server (Arnold et al., 2006). TheDpsDmodelwas built usingMODELER

9.4. As templates, 1MLAA (30% identity), 1NM2A (34% identity) and 2CUYA

(32% identity) were used. The DpsE model was built using MODELER 9.4;

1X7GA (59% identity) and 2PH3A (41% identity) were used as templates.

The DpsF model was built using MODELER 9.4 with 2RERA as the template,

which had 23.2% sequence identity to DpsF. The model was built based on

an mGenTHREADER sequence alignment. The DpsG model was built using

MODELER 9.4; 1NQ4A (40% identity), 1OR5A (38% identity), and 1AF8A (38%

identity) were used as templates. The DpsY model was built using MODELER

9.4 with 1R61A as the template, which had 24.9% sequence identity to DpsY.

The model was built based on an mGenTHREADER sequence alignment; the

model was built as a dimer. Sequence alignments are available upon request

to the corresponding author.

These proposed models cover the KSa (DpsA) amino acid sequence from

Arg3 to Arg419, with the expected structural characteristics including the po-

sition of the catalytic Cys169. The model for KSb covers amino acid sequence

from Arg26 to Ala424, with the highly conserved Gln161 of the actinorhodin

homolog occupying position 183 in the primary sequence of KSb (DpsB). The

homodimer of KSa (DpsA) was obtained by docking simulation using Patch-

Dock/FireDock. The heterodimer of DpsA/DpsB was obtained by docking

simulation using PatchDock/FireDock (first solution). The putative models for

the MCAT (DpsD) and KR (DpsE) cover their entire primary structure. A 3D

structure for the CYC (DpsY) was modeled using the deposited structure of

a predicted metal-dependent hydrolase from Bacillus stearothermophilus as

a template (PDB accession code: 1R61). This template was chosen based on

mGENthreader results. The model for the CYC (DpsY) covers its amino acid

sequence from Thr12 to Glu272. Protein docking simulations between each

pair of predicted 3D structures were performed using PatchDock and ClusPro.

PatchDock was used with default settings and the best 100 solutions were

refined using FireDock. The first 10 solutions were returned as results. ClusPro

was used with default settings, and ZDOCKwas used as the docking program.

The top 10 solutions were returned as results. Solutions that were found by

both programs were chosen for analysis of the interface. Docking simulation

between the two KS subunits (DpsA and DpsB) were performed using KSa

(DpsA) as receptor and KSb (DpsB) as ligand, based upon the published crys-

tal structure for the actinorhodin orthologs. Docking simulation between KSa/

CYC (DpsA/DpsY) were performed using the dimer of the CYC (DpsY) as re-

ceptor and KSa (DpsA) as ligand. A docking simulation between KSb and CYC

(DpsB/DpsY) was performed in a similar fashion. The docking between the two

subunits of the KS dimer (DpsA/DpsB) and the homodimer of the CYC (DpsY)

was performed using the KSa/KSb (DpsA/DpsB) dimer as receptor and the

CYC (DpsY) homodimer as ligand. Docking simulation between the KSa and

MCAT (DpsA/DpsD) was performed using KSa (DpsA) as receptor and MCAT

(DpsD) as ligand. Docking between homodimer of KSa (DpsA) and MCAT

(DpsD) was also performed using the KSa (DpsA) homodimer as receptor and

MCAT (DpsD) as ligand. For the KR/CYC (DpsE/DpsY) simulation, the homo-

dimer of the CYC (DpsY) was the receptor and KR (DpsE) was the ligand.

The MCAT/CYC (DpsD/DpsY) docking was simulated using the homodimer

of the CYC (DpsY) as receptor and MCAT (DpsD) as ligand. The MCAT/KR

(DpsD/DpsE) docking was simulated using MCAT (DpsD) as receptor and

KR (DpsE) as ligand.

SUPPLEMENTAL DATA

Supplemental Data include one table and seven figures and can be found

with this article online at http://www.chembiol.com/cgi/content/full/15/11/

1156/DC1/.
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3Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA,
4The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK, 5Department of

Genetics, University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany and 6Department of Anatomy

and Cell Biology, Columbia University, 630 West 168th Street, 10032 New York, USA

Received on May 15, 2007; revised on July 9, 2007; accepted on July 10, 2007

Advance Access publication July 27, 2007

Associate Editor: Dmitrij Frishman

ABSTRACT

Motivation: The genome of the social amoeba Dictyostelium

discoideum contains an unusually large number of polyketide

synthase (PKS) genes. An analysis of the genes is a first step

towards understanding the biological roles of their products and

exploiting novel products.

Results: A total of 45 Type I iterative PKS genes were found, 5 of

which are probably pseudogenes. Catalytic domains that are

homologous with known PKS sequences as well as possible novel

domains were identified. The genes often occurred in clusters of 2–5

genes, where members of the cluster had very similar sequences.

The D.discoideum PKS genes formed a clade distinct from fungal

and bacterial genes. All nine genes examined by RT–PCR were

expressed, although at different developmental stages. The promo-

ters of PKS genes were much more divergent than the structural

genes, although we have identified motifs that are unique to some

PKS gene promoters.

Contact: dhranueli@pbf.hr

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The amoebae of Dictyostelium discoideum live in the soil and

feed on a variety of bacteria and fungi. When the food is

exhausted, the amoebae collect into mounds and then produce

fruiting bodies. Many laboratories study the chemotaxis, the

cell motility and the differentiation that are involved in fruiting

body formation (Kessin, 2001). The genetics of the organism is

well developed and it is possible to introduce genes and to

knock-out genes. The genome sequence was recently completed

showing about 12 500 genes in a relatively small AT-rich

genome of 34Mb (Eichinger et al., 2005). The organism is

exceptionally rich in polyketide synthases (PKS) with 43

putative genes spread singly and in clusters on all six

chromosomes being reported in the initial annotation

(Eichinger et al., 2005). The only known polyketide product

is differentiation inducing factor (DIF), which induces a

particular subset of stalk cells during the complex development

of the organism. The laboratory of Rob Kay characterized DIF

and showed that its PKS is unusual in possessing a novel

chalcone synthase domain (Austin et al., 2006 and references

therein). DIF has also been suggested to have mitochondrial

uncoupling (Shaulsky and Loomis, 1995) and antiproliferation

properties (Akaishi et al., 2004; Kubohara et al., 2003). There

may well be further PKS genes involved in cell–cell commu-

nication, but it is also likely that some of them encode products

to achieve competitive advantages in the soil (e.g. antibiotics).

Polyketides are ubiquitous in nature and have been isolated

from microorganisms, plants and invertebrates. They have

found widespread use in the pharmaceutical, agrochemical and

biotechnology industries. PKSs are large multienzyme protein

complexes that contain a coordinated group of catalytic sites

(Hranueli et al., 2005). Type I PKSs are multifunctional

proteins composed of all the active sites required for polyketide

biosynthesis, which are contained in a series of domains in the

proteins. Biosynthesis occurs as a stepwise process using simple

carboxylic acid CoA esters as substrates. The minimal

requirements for a PKS are the three domains: acyl carrier

protein (ACP), acyltransferase (AT) and ketosynthase (KS).

These are usually present in the order KS-AT-ACP in the

protein and result in incorporation of a keto group. However,

there are often one or more additional reduction domains

present between AT and ACP: ketoreductase (KR), dehydra-

tase (DH) and enoyl reductase (ER), successively reduce the

keto group to a hydroxyl group, a C¼C double bond or a fully

reduced product. Fatty acid synthases (FAS) belong to the PKS

family and have all three reduction activities (Schweizer and

Hofmann, 2004). When present, the reductive domains are in

the order DH-ER-KR. There may also be a methyl transferase*To whom correspondence should be addressed.
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domain (MT) between DH and ER. It is common for inactive

domains to be present, so that the presence of a domain does

not prove that the corresponding activity occurs. The

possibility to undergo none, one or more of these reduction

reactions at each biosynthesis step contributes to the huge

structural diversity seen in this class of natural products. The

level of chemical complexity is further increased by incorporat-

ing stereo-isomers of different starter and extender units, as well

as post PKS modifications, such as glycosylation, hydroxyla-

tion or methylation (Weissman and Leadlay, 2005). In bacterial

systems, modular PKSs are common in which each biosynthetic

step is carried out by a different module with its own KS-

AT-ACP domains, which results in very large multi-modular

proteins, e.g. for erythromycin biosynthesis (Khosla et al.,

2007). In contrast, most fungal Type I systems are iterative so

that a single module carries out several biosynthesis steps,

e.g. for lovostatin biosynthesis (Schumann and Hertweck,

2006). In this article, we extend the analysis performed for

this gene family by Eichinger et al. (2005). In collaboration

with the curators at dictyBase (Chisholm et al., 2006), we have

characterized the PKS genes of D.discoideum and shown that

they are probably Type I iterative PKSs. However, many of the

genes contain extra sequences that may be novel domains and

there is an intriguing clustering of closely related genes in the

chromosome. The PKS genes are differentially regulated, which

is mirrored by divergence of the promoter regions.

2 METHODS

2.1 Identification and annotation of PKS genes

dictyBase version 2.5 (http://dictybase.org/; Chisholm et al., 2006) was

used as a starting point for the analysis. The DNA sequences of the six

chromosomes were translated using Transeq (Rice et al., 2000). BLAST

searches used the NCBI server (http://www.ncbi.nlm.nih.gov/BLAST/;

Altschul et al., 1990). Multiple alignments used the Clustal W service at

EBI (http://www.ebi.ac.uk/clustalw; Thompson et al., 1994). Bacterial

PKS domain sequences were obtained from the NRPS-PKS database

(http://203.90.127.50/nrps-pks.html; Ansari et al., 2004). For profile

analysis, HMMER version 2.3.2 (http://hmmer.janelia.org/; Eddy,

1998) and release 20 of the Pfam database (http://www.sanger.ac.uk/

Software/Pfam/; Bateman et al., 2002) were used. Artemis (Rutherford

et al., 2000) was used for annotation.

2.2 Phylogenetic analysis

KS and AT domain protein sequences were obtained for bacterial

(Jenke-Kodama et al., 2005) and fungal PKSs (Ansari et al., 2004).

Phylogenetic analysis was performed using the MEGA3 software

package (Kumar et al., 2004). Uniform substitution rates at all sites

were assumed and 100 or 500 replicates were used for bootstrapping.

Trees were constructed with distance methods (neighbour-joining or

minimal evolution) with two choices of distance model (Poisson

correction or the Jones–Taylor–Thornton model). In addition, max-

imum parsimony was also used. Bacterial fabF and fabD genes or the

chicken and human FAS genes were used as outgroups to root the trees.

The sequences used are in the Supplementary Material.

2.3 Analysis of promoter regions

Motifs were detected with the program MEME (Bailey and Elkan,

1994). Motif combinations specific for PKS genes were detected using

the program MAST (Bailey and Elkan, 1994). The selected motifs were

matched with known motifs in the TRANSFAC (Wingender et al.,

1996) database and sequence logos (Schneider and Stephens, 1990)

were constructed. The program AlignACE (Hughes et al., 2000;

Roth et al., 1998) was also used to find motifs.

2.4 PKS gene expression

Cell harvesting and RNA extraction were carried out with TRIZOL

according to the recommendations of the manufacturer and as

described in Van Driessche et al. (2005). Quantitative RT–PCR

experiments were performed using syber-green real-time PCR on an

Opticon system as described in Huang et al. (2006). Results were

normalized to the transcripts of a constitutive gene, IG7. Gene-specific

primer pairs were constructed for the following genes: stlA (pks1), pks2,

pks3, pks10, pks18, pks24, pks25, pks26, stlB (pks37). The primer

sequences are given in Supplementary Material.

3 RESULTS

3.1 Identification and domain structure of PKS genes

In dictyBase version 2.5, there were 46 sequences annotated as

putative PKS genes as well as two genes annotated as putative

fatty acid synthases. For our studies, the DNA sequence of

each chromosome was translated in all six reading frames.

Many of the putative PKS genes could be identified using

BLAST with a standard KS domain (module 4 of erythromy-

cin), but this did not show if a complete PKS gene was present.

Therefore, HMM-profiles were constructed for the domains

KS, AT, DH, ER, KR and ACP starting from well-

characterized domains from bacterial modular PKS clusters

and the sequences were analysed using the HMMER program

package. The occurrence of typical PKS domains in the

expected order adjacent to each other indicated the presence

of a PKS gene. The newly identified domains from

D.discoideum were used to refine the HMM-profiles to improve

identification of PKS genes. This was particularly important for

the DH domains, where the refined profiles recognized domains

of the expected size in most of the genes, whereas the initial

profile missed many DH domains. Methyl transferase (MT)

domains are common in fungal PKSs (Schumann and

Hertweck, 2006). MT domains were identified in many of the

genes using an HMM-profile from the Pfam database

(accession number PF08242). This initial analysis identified

45 putative PKS genes (pks1–pks45) (Supplementary Material).

We did not rename the previously designated genes stlA

(corresponding to pks1) or stlB (corresponding to pks37).

This analysis showed considerable differences to the annotation

in dictyBase version 2.5. In 14 cases, the previous annotation

had recognized short sequences with resemblance to single PKS

domains, but they did not have the structure of complete genes.

In 12 cases, two different parts of a single PKS gene had been

annotated as distinct PKS genes. There were 13 genes that had

not been previously recognized as PKS genes and four new

PKS genes. Although this analysis identified putative PKS

genes, some sequences contained stop codons or had split

domains into coding regions in different reading frames. This

could either be because a pseudogene was present or because an

intron had not been detected during the initial annotation. The

predicted protein sequences were aligned with known PKS

protein sequences using the CLUSTAL W program. In some

J.Zucko et al.
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cases, it was clear that plausible intron splice sites would give

rise to a protein sequence in good alignment with known

domains. Forty of the 45 PKS genes had a structure compatible

for expression. The five genes pks4, pks11, pks12, pks20 and

pks43 are probably pseudogenes as they contain stop codons

that cannot easily be explained by the presence of introns and in

two cases also have an aberrant structure: pks4 lacks an ACP

domain and has incomplete ER and KR domains, while pks12

has a 500 bp inversion with an adjacent 200 bp deletion. These

changes have been coordinated with the curators of dictyBase,

who have access to the original sequencing reads, and are now

included in this online resource (Chisholm et al., 2006).

Among the 40 probably expressed genes, 2 were the

previously described stlA (pks1) and stlB (pks37), which have

chalcone-like domains. The other 38 genes all have the

following set of predicted domains: KS, AT, ER, KR and

ACP. Thirty seven of these genes have a DH domain of the

correct length (Supplementary Material), whereas pks21 has a

short DH domain, which is probably not functional (94 instead

of 154–187 amino acids in the other cases). Most genes (30/38)

also contained an MT domain. Two genes that lacked the MT

domain were pks16 and pks17, which were suggested to be FAS.

The DH and MT domains lie between AT and ER. However, in

all 38 PKS genes there were also one or two substantial regions

(286–838 amino acids) of no known function between AT and

ER. This is shown for a typical gene (pks15) in Figure 1. Some

of the sequences in this region are conserved between PKS

genes. However, they do not give significant hits with BLAST

to sequences in other organisms. Some of the sequences

contribute to profiles in the Pfam-B database, but all members

of the families are in the D.discoideum genome. Most known

PKS proteins in other organisms end with the ACP domain.

It was striking that 17 of the 38 predicted PKS proteins in

D.discoideum had 288–501 additional amino acids after the

ACP domain (Fig. 1 and Supplementary Material). These

additional C-terminal regions did not resemble the chalcone-

like domains at the C-terminals of stlA and stlB. Although

there are conserved sequences between some of the genes, there

was no detectable similarity to proteins in other organisms. The

detailed structures of each PKS gene are given in the

Supplementary Material. No Type II or modular Type I PKS

genes were found. No non-ribosomally encoded peptide

(NRPS) genes were found using BLAST or appropriate

profiles.

3.2 Phylogeny of D.discoideum KS and AT domains and

gene clusters

The amino acid sequences of the KS domains of the

D.discoideum PKS genes were aligned with selected bacterial

and fungal domains and used to construct a phylogenetic tree

(Fig. 2) with neighbour-joining method using the Poisson

correction distance model. Different tree construction methods

were tested (Jones–Taylor–Thornton distance model, minimal

evolution, maximum parsimony), but they did not result in

significant changes in the tree (see Supplementary Material).

The 45 D.discoideum PKS genes formed a clade (bootstrap

value of 92%) distinct from the bacterial and fungal sequences.

The genes stlA (pks1), stlB (pks37) and the two putative fatty

acid synthase genes (pks16 and pks17) were distant from the

other 41 genes, which formed a clade (bootstrap value 91%).

A phylogenetic tree was also constructed for the AT domains of

the D.discoideum PKS genes (Supplementary Material). This

tree showed an almost identical branching of the PKS genes

compared to the KS tree. The D.discoideum AT-domains

grouped with domains that incorporate C2 building blocks.

Examination of the sequences showed that they contained

C2-specific motifs (Haydock et al., 1995).

The protein sequences of the 38 D.discoideum PKS genes that

are probably functional and possess all the domains KS, AT,

DH, ER, KR and ACP were aligned with selected bacterial and

fungal sequences that posses all the domains and used to

construct a phylogenetic tree. The use of different tree

construction methods (as for the KS trees) did not result in

significant changes in the tree (see Supplementary Material).

The D.discoideum PKS genes formed a clade distinct from the

bacterial and fungal sequences. The phylogeny of the whole

genes was little different from that of the KS and AT domains

alone.

The genes are distributed over the six chromosomes.

However, many of the genes are clustered. There are 10 pairs

of genes (pks11/pks12, pks16/pks17, pks22/pks23, pks24/pks25,

pks27/pks28, pks33/pks34, pks35/pks36, pks38/pks39, pks40/

pks41 and pks42/pks43), which are not only adjacent on the

chromosome, but which are very closely related in sequence as

shown by the phylogenetic trees (Fig. 2). There are also clusters

of three (pks19/pks20/pks21), four (pks29/pks30/pks31/pks32)

and five (pks5/pks6/pks7/pks8/pks9) PKS genes; in these cases,

the KS and AT sequences of members of the clusters are always

very closely related. Although some clusters contain genes of

similar structure (e.g. pks22/pks23) there are also cases where

the domain structure is different (e.g. pks24 lacks an MT

domain that is present in pks25). There are also 13 genes that do

not appear to be clustered and these do not have any other PKS

genes that are very closely related to them (Fig. 2). Four of the

probable pseudogenes occur in clusters. The cluster pks11/

pks12 consists of two pseudogenes. As pks43 seems to be a

pseudogene, the cluster pks42/pks43 would contain only one

functional gene. pks20 seems to be a pseudogene, but pks19/

pks21 could still form a functional cluster.

Most of the introns in the PKS genes occur in the KS

domains. In order to compare the positions of introns in

different genes, the deduced protein sequences were aligned to

ACP

453 aa 326 aa 321 aa 183 aa 84 aa

KRERATKS

172 aa 137 aa

DH MT

Fig. 1. Deduced protein structure of a typical PKS gene (pks15). The gene was not identified in the original genome annotation reported in dictyBase

version 2.5. It is 9.453 kb in size and located on chromosome 2. In addition to the known domains, there are three amino acid regions of unknown

function between the DH and MT domains, between the MT and ER domains and after ACP.
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Fig. 2. Phylogenetic tree of the amino acid sequences of KS domains from bacterial, fungal and D.discoideum PKSs. The D.discoideum sequences

form a distinct clade (bootstrap value 92%) which is expanded in this figure. Clades carrying the introns N110 and C100 are indicated. The scale is

percentage of amino acid distance.

J.Zucko et al.
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Pfam HMM-profiles for the N-terminal (accession number

PF00109.16) and C-terminal (accession number PF02801.12)

parts of KS. The amino acid number of the profile at the intron

position was used to localize the intron. Four intron positions

were each found in 10 or more genes. The 10 PKS genes with an

intron at position C100 form a clade (Fig. 2; bootstrap value

99%); the intron at position N205 shows an identical

distribution except that an intron is also present at this position

in pks2. The intron at amino acid positions N110 was present in

all genes which contain C100 as well as pks42 and pks43; these

genes are also a clade (bootstrap value 47%). The intron C248

is present in 34 of the PKS genes. Eight of the genes which lack

this intron are more distant in the KS tree (stlA, stlB, pks16,

pks17, pks11, pks12, pks44 and pks45). However, it is striking

that it is also missing from three genes, whose neighbours all

possess the intron (pks10, pks15 and pks19), which suggests that

the intron has been lost in these cases.

3.3 The transcription of PKS genes

Examination of expressed sequence tags in dictyBase version

2.5 indicated that most of the PKS genes (32/45) were

transcribed. Two of the probable pseudogenes (pks4 and

pks20) have ESTs. Although the presence of EST clones

proves transcription of the genes, it gives little information

about timing and level of expression. A number of PKS gene

sequences exist on standard microarray chips (G.Shaulsky,

personal communication). These data, which can be found in

the dictyBase version 2.5, indicate that the genes are

transcribed. However, the high similarity of some

Dictyostelium PKS genes would cause extensive cross hybridi-

zation. As a result, there is little correlation of expression

patterns with more discriminating quantitative RT–PCR

experiments.

The kinetics of expression of 9 PKS genes were followed

using real time PCR. The results were normalized to the

transcript of a constitutive gene, IG7 (Huang et al., 2006).

Starvation was initiated at the start of the time course. After

�6 h cells begin to aggregate and spores and fruiting bodies are

formed after �24 h. Expression patterns could be divided into

four categories. Gene pks18 was expressed during growth but

mRNA disappeared within 3 h of starvation. Genes represent-

ing a second transcriptional class (pks24, pks25, pks26) were

expressed during early development after 3 h of starvation, but

their expression had fallen by 6 h. Within this class there were

detailed differences in kinetics (e.g. pks25, pks26; Fig. 3). Levels

of gene expression for a third transcriptional class (pks2, pks3,

pks10, stlB¼ pks37), peaked after �6 h (Fig. 3) as the cells

began to aggregate. A final category represented by a single

example (pks1¼ stlA) was transcribed preferentially in late

development, up to the formation of spores and fruiting bodies

after 24 h (Fig. 3). The absolute levels of transcription varied

with the measured peak levels differing �80-fold between the

highly expressed gene pks3 and the weakly expressed gene stlA.

These results suggest that the PKS genes examined were

differentially expressed during different growth stages of

D.discoideum.

The differential expression of the different PKS genes ought

to be reflected in their promoter sequences. In order to examine

the probable promoters, a sequence of 1 kb upstream of

the start codon was examined for each of the 45PKS genes.

Initial analysis showed that, although the sequences of the

coding regions of the PKS genes are highly conserved and can

easily be aligned with each other, the similarity usually breaks

off upstream of the start codon. Little is known of promoter

structure in D.discoideum, which are very AT-rich (495%),

so the upstream sequences of the PKS genes were analysed to
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Fig. 3. Quantitative time course analysis of the gene expression of four PKS genes using real time PCR. The transcript levels were normalized using

the constitutively expressed gene IG7.
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identify motifs corresponding to possible binding sequences

for transcription factors. The MEME program (Bailey and

Elkan, 1994) was used to find 800 motifs of 6–17 bp long.

After filtering out very similar motifs, further analysis was

carried out using the remaining 676 motifs. The number of

conserved motifs was calculated for each pair of PKS genes and

most pairs showed little similarity. However, five pairs of genes

had very similar upstream sequences (pks8/pks35, pks4/pks23,

pks9/pks36, pks38/pks39 and pks30/pks32). Only the last two

pairs belong to clusters and the members of other clusters do

not show many conserved motifs. However, a single conserved

binding site would be enough to allow coordinated expression.

The results with the PKS upstream regions were compared to a

set of genes that would be expected to have conserved promoter

regions (29 actin genes) and to a set of 47 randomly chosen

D.discoideum genes. The 1 kb upstream regions of these genes

were analysed to identify possible conserved motifs. On

average, conserved motifs occurred 33 times in each actin

gene upstream region compared to 3 times for the random

genes. For the PKS genes the motifs occurred 12 times on

average so that the upstream regions were much more similar to

each other than those of the random genes. A similar picture

was obtained with the numbers of common motifs between

pairs of promoters: for the actin gene pairs common motifs

occurred 10.6 times on average, compared to 0.6 times for the

random genes and 2.6 times for the PKS genes.

The MAST program (Bailey and Elkan, 1994) was used to

look for the PKS motifs in the upstream regions of all identified

(14102) D.discoideum genes. This was used to identify motifs

and combinations of 2 or 3 motifs that were specific for PKS

genes (present in at least 5 PKS genes and present in less than

30 non-PKS genes). This identified 6 single motifs, 16 motif

pairs and 53 motif triples containing 28 different motifs. None

of the six single motifs showed any similarity to known

regulatory sequences in the TRANSFAC database (Wingender

et al., 1996). The motifs present in each PKS promoter region

and the matches with the TRANSFAC database are shown in

the Supplementary Material. The program AlignACE, which is

based on a Gibbs sampling procedure (Hughes et al., 2000;

Roth et al., 1998), was also used to find motifs. The PKS

promoter regions were analysed using a range of parameter

values to mimic the parameter space considered by the MEME

program. The 28 PKS-specific motifs identified with MEME

were compared with those of the same length found with

AlignACE by calculating the average Pearson correlation

between base frequencies for all positions in the two motifs.

The locations of the AlignACE motif with the highest

correlation score were compared with those of the correspond-

ing MEME motif. Twenty of the motifs showed the same

locations in the promoter regions (median distance between the

MEME and AlignACE motifs not more than 2 bp). Thus, most

of the MEME motifs were also found by AlignACE.

A comparison of the MEME and AlignACE motifs is shown

in Supplementary Material.

4 DISCUSSION

Forty-five PKS genes (including five probable pseudogenes)

were identified distributed between the six D.discoideum

chromosomes. In comparison to the genome annotation in

dictyBase version 2.5, 17 PKS genes were added and 20

suggested PKS genes were removed. It is not surprising that

an automatic annotation system is relatively inefficient in

recognizing genes encoding complex multi-domain proteins

when introns are present. The use of HMM-profiles and

alignment with known genes helped to identify probable

introns. All the genes had a structure typical of Type I iterative

PKS genes. In addition to known domains, there were

substantial protein coding regions between the AT and ER

domains and sometimes after the ACP domain. These may be

additional domains of unknown function. Determining the

activities of new domains will require an investigation of

the chemical structures of the polyketide products as no

similarities to known proteins were found.

Phylogenetic analysis of the protein sequences showed that

the D.discoideum PKS genes formed a discrete group separate

from fungal and bacterial sequences (Fig. 2). The chalcone-like

genes (stlA and stlB) and the probable FAS genes (pks16 and

pks17; Eichinger et al., 2005), were more distant from the

others. A very unusual observation is that the genes occur in

clusters of 2, 3, 4 or 5 very similar genes. This suggests that the

clusters arose from duplications after evolutionary separation

from the other PKS genes. In other organisms, PKS genes are

usually present in single copies and the proteins are probably

homodimers. Although there are some fungal systems

(e.g. lovostatin) in which there are two PKSs involved, these

PKSs have distinct activity and differ a lot in sequence

(Schumann and Hertweck, 2006), unlike the case in

D.discoideum. It is tempting to speculate that gene pairs allow

the formation of heterodimers, which could perhaps extend the

biosynthetic repertoire of Type I iterative genes by dividing

successive synthesis steps between the two polypeptides.

However, it is not clear why this would occur so often in

D.discoideum and not be observed in other species. It will be

interesting to see if this pattern is repeated in other related

organisms. This unusual feature of the PKS genes will make it

very interesting to characterize their gene products and to see if

all the genes in a cluster are needed for successful biosynthesis.

Many of the genes had ESTs in the database. Thus, most of

the genes are transcribed and it is likely that most are also

translated. Two of the probable pseudogenes also have EST

clones. It is conceivable that trans complementation between

domains occurs as has been reported in other PKSs (Simunovic

et al., 2006). Each of the nine PKS genes tested showed

characteristic kinetics of expression. Most of them were

induced by starvation, which supports the idea that the PKS

genes may be involved in activities such as signalling between

cells or protecting the differentiating organism from competi-

tors and predators. In contrast to strong conservation of the

protein sequences, the regions upstream of the PKS genes

showed little conservation. Potential transcription factor-

binding motifs were identified, but more experimental data on

expression levels and kinetics are necessary to narrow down the

significant motifs.

No genes encoding Type I modular PKSs (Weissman and

Leadlay, 2005) or Type II PKSs (Petkovic et al., 2006) were

identified. Similarly no non-ribosomal peptide synthetase genes

were found. The genomes of several other Dictyostelid species

J.Zucko et al.
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are about to be sequenced, including D.purpureum,

Polysphondylium violaceum and D.citrinum (Baylor College of

Medicine/Rice University/Joint Genome Institute) and

D.mucoroides (G.Gloeckner personal communication.). These

genomes may reveal yet greater varieties of PKS or non-

ribosomal peptide synthetase genes. The potential genetic

diversity of natural products in Dictyostelid populations,

which are ubiquitous in forest and cultivated soils, is very

high. We infer from the fact that these large genes have

maintained their ORFs in the face of genetic drift that they are

critical to the survival of the organisms whether, as in the case

of DIF, they are used as developmental signalling molecules or

to control potentially harmful bacteria, fungi or nematodes.
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3. Discussion 
 

Through time humankind was struggling for survival and continuation of the species by 

supplementing its physical deficiencies using its "superior" knowledge and intelligence. 

Today humankind is still facing various hazards most of which are a direct result of our own 

"ingenuity" such as unsustainable population growth, overexploitation of natural resources 

and pollution. During the last 30 years, with the appearance of bacteria resistant to 

antibiotics, we are also facing medical challenges. Today we are faced with a shortage of 

antibiotic drugs as currently only a handful of antibiotics can still be effectively used in 

human medicine. The causes for developing resistance in bacterial species to popular 

antibiotics are mostly caused by human misdoings like unnecessary and uncontrolled usage 

by humans, usage as animal feeds, in agriculture, etc. The other reason lies in the pull-out of 

big pharmaceutical industries from this field of research, due to its high risk and low profit 

return, which is now mostly done by smaller pharmaceutical companies and various 

University groups (Demaine, 2009). Natural products are major players in the field of 

antibiotic drugs with non ribosomal peptides and polyketides making up majority of them. 

Traditional methods for discovery of novel natural products involved their purification and 

elucidation from microbial fermentations. With advances in understanding mechanisms of 

biosynthesis and availability of microbial genomes new approach - genome mining arises 

(Lautru et al., 2005; Zucko et al., 2010). 

 
To speed-up and make the"hunt" for modular biosynthetic clusters easier we have 

developed a program package called ClustScan. In it a top-down genome mining approach 

was implemented to search the nucleotide sequences, having either genomic or 

metagenomic origins, for modular polyketide synthase (PKS) and non ribosomal synthetase 

(NRPS) biosynthetic clusters. When a cluster is identified, based on gene prediction 

implemented using Glimmer (Delcher et al., 2007) and/or Genemark (Besemer and 

Borodovsky, 2005) programs, the similarity search executed using HMMER (Eddy, 1998), and 

cluster organisation and biosynthetic order reconstructed by the user, the program is able to 

predict the chemical compound synthesised by the modular biosynthetic cluster. To be able 

to generate a chemical product of the biosynthetic cluster all components (domains) of the 
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system with all their properties (activity, specificity) have to be determined and 

hierarchically organised. Until now the program is able to predict chemical structure only for 

modular PKS gene clusters as the specificity for NRPS adenylation (A) domains in not 

implemented yet due to large number of amino acids (groups) used as substrates. However, 

this process is currently under way. The domain identification is obtained using HMM 

profiles for respective domains found in PKSs and NRPSs using HMMER (Eddy, 1998) as a 

search tool. HMM profiles were built using domains from curated complete bacterial PKS 

and NRPS clusters. This process is independent from the gene finding results as it is done 

directly on all 6-reading frame translation of genomic sequence, thus increasing probability 

of finding all genes of interest which might be skipped if only ORFs recognised by gene 

finding software would be used for function determination (similarity search). This approach 

was also tested on annotation of PKS genes in D. discoideum, which contain introns. 

 
Compared with the published annotation of the D. discoideum genome project 

(http://dictybase.org) the tested method was shown to be superior in identifying PKS genes 

and had made significant changes to more than three quarters of previously identified PKS 

genes. Initially HMM profiles used in Dictyostelium PKS annotation were built from bacterial 

type I modular PKSs but to increase the sensitivity of the profile they were refined by 

curated PKS domains from D. discoideum. Using a combination of local and global HMM 

profiles was sensitive enough not just to define the position of PKS domains within the 

genome but also to locate almost exact location (position) of introns within the domains (Fig. 

5). The question arises why Pfam (Finn et al., 2008) profiles were not used for similarity 

search when they were already available for majority of PKS domains? There were several 

reasons why custom-made profiles were used. One lies in the sensitivity of custom made 

profiles. Although Pfam profiles are built using proteins from wide range of organisms they 

do not deal well with organism specific deviations (exceptions), and D. discoideum is also 

evolutionary distant from the majority of organisms (Bapteste et al., 2002) which might 

cause problems with sensitivity of the profiles. Pfam profiles do not always cover the whole 

length of the domain. Such an example was the keto synthase (KS) domain whose Pfam 

profile was more than 50 amino acids (more than 10% of total length of the domain) shorter 

than KS domains from the literature (Kroken et al., 2005, Jenke-Kodama et al., 2005). The 

last reason is that HMM profiles were intended only for annotation of polyketide genes in D. 
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discoideum, and not as a general profiles, so it was logical to make them as sensitive as 

possible for the selected organism. 

 

 

 
Fig. 5. ClustScan window showing analysis of the D. discoideum pks29 gene. ORFs found by Glimmer are shown 

as green bars while PKS domains found by HMMER are represented as blue bars. Highlighted with yellow box is 

a KS domain consisting of four exons split by three introns. Shown below are four Details windows with the 

results of similarity searches obtained by HMMER using local HMM profile for the KS domain. From these data 

it is possible to reconstruct the entire KS domain – a principle used in annotation of the D. discoideum PKS 

genes. After the ACP domain (first HMMER hit from the left), there is a region without known function, typical 

for most of PKS genes found in D. discoideum. 

 

The annotation process of D. discoideum discovered interesting results concerning the 

structural organisation of its PKS genes – large regions of the gene did not show similarity to 

known proteins. From the two regions between AT and ER domains one upstream from ER 

appears to be a structural KR domain (Keatinge-Clay and Stroud, 2006). This domain appears 

to be conserved structurally while on the sequence level is quite diverged, which is a reason 

why it was not found before the crystal structure was solved. The region downstream of AT 

domain as well as the region after the ACP in some of the genes still has not been 

functionally identified. The region downstream of the AT domain is present in the majority of 

PKS genes and may play a role in structural positioning of the entire complex. Until now 
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Dictyostelium is the only organism harbouring PKS genes that have substantial region after 

the ACP domain without known function. Purely speculatively, two scenarios explaining this 

might be possible - this is either a previously uncharacterised domain specific for 

Dictyostelium PKS genes or that these regions might have been chalcon synthases, still 

present in stlA and stlB genes, which have lost their function during the evolution and were 

degraded over time. 

 
Phylogenetic analysis of the KS domains and whole PKS genes positions Dictyostelium in a 

clade distinct from fungal and bacterial sequences. Although the phylogenetic tree does not 

support relatedness with fungal PKS, the organisation of genes tends to put D. discoideum 

PKS genes closer to fungal than bacterial PKSs. One reason lies in biosynthetic gene 

organisation - type I fungal PKSs are iterative, while bacterial type I PKSs are modular. Some 

D. discoideum PKS genes appear clustered on a chromosome, resembling modular PKSs, but 

it appears that clustering observed at a DNA level is not transferred into the biosynthetic 

pathway. Up to now it was proven that the PKS/chalcone hybrid genes (stlA and stlB) follow 

an iterative biosynthetic logic (Austin et al., 2006; Ghosh et al., 2008), and the same is 

assumed for the remaining PKS genes. The other reason is the occurrence of methyl 

transferase (MT) domains. This domain rarely appears in type I modular bacterial PKS while 

it is quite common in type I iterative fungal PKSs - with almost 80% of PKS genes harbouring 

a MT domain. Clustering of PKS genes on a chromosome and high sequence similarity of, 

usually neighbouring, PKS genes would support the theory of PKS gene evolution by gene 

duplication (Jenke-Kodama et al., 2005; Ridley et al., 2008). Also interesting is the 

occurrence of clade-specific introns which favours the idea of gene duplication rather than 

the possibility that introns were introduced by independent events. 

 
In the annotation of D. discoideum, a manual annotation approach was used as we only 

aimed on annotating one gene family in a single organism. The next logical step was 

automation of the process which was implemented in the ClustScan program package. As 

ClustScan is intended to be used for annotation of modular biosynthetic enzymes from 

various organisms profile HMMs used for domain identification were not refined with 

domains from a single organism, like the ones used for D. discoideum annotation. Instead 

domains from curated complete modular PKS/NRPS gene clusters spanning through various 
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bacterial families were used for building HMM profiles. Such an approach increased the 

sensitivity of HMM profiles, allowing detection of remote homologues and domain families 

with more divergent members. This was shown to be more successful compared with 

methods relying on BLAST [SEARCHPKS (Yadav et al., 2003), ASMPKS (Tae et al., 2007)] for 

identification of PKS domains, especially for DH and ACP domains. 

 
When domains are recognised using HMM profiles the next step is to determine activity or 

specificity, which is until now implemented only for PKS domains. KS and ACP domain are, if 

found, considered to be active, as they form a minimal PKS module. One more domain 

forming the minimal PKS module – AT is assumed to be active if present but is used to 

determine its specificity. A method similar to Minowa and collaborators (Minowa et al. 

2007) was tested as one possibility to determine specificity. Although the method was able 

to discriminate between various substrate specificities of AT domains statistical parameters 

returned by HMMER were inadequate to be used in an automated computer-based decision 

making. Instead a method giving simple yes or no answers based on comparison of extracted 

motif assembled from specificity determining residues of query domain with libraries of 

motifs characteristic for specific substrate was used. A similar approach was also used for 

the KR domain while for the DH and ER domains, a method based on the alignment score of 

the domain with an HMM profile was used. The reason for this approach was insufficient 

structural information for PKS reduction domains, except for KR, which would allow 

prediction of activity. In the case of the DH domain the other problem, which will remain 

when structural information is available, is the high divergence within the protein family, 

thus, making the alignment and extraction of activity-determining residues unreliable. For 

the ER domain there were no data about amino acids affecting its activity and a HMMER 

scores alone were not enough to discriminate between active and inactive domains, so a 

combination of score and module structural/organisation information were used. As ER is 

the last domain in the biosynthetic pathway it requires presence and activity of preceding 

reduction domains. This property was used to achieve correct activity prediction of the ER 

domain in 95% of cases in the test sample. In the case of ClustScan, the combination of 

methods for determining activity/specificity of domains based on motif extraction, similarity 

search statistics and rules following the biosynthetic logic was the best solution which at the 

end was able to achieve correct predictions in a range from 80 to 95% for all domains. 
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Compared with other solutions (programs) for annotation and analysis of PKS/NRPS clusters 

ClustScan was shown to be superior in detecting PKS domains due to use of more sensitive 

similarity search method (HMM profiles) and filtering of results using two cut-offs (srict and 

relaxed) based on statistical parameters returned by HMMER. Another major advantage of 

ClustScan is the detailed implementation of recent advances in deciphering function and 

specificities of components making up biosynthethic clusters which enabled it to mimic 

biosynthetic pathway in silico and to predict the chemical structure (compound) synthesised 

with high accuracy. Comparing with published annotations of tested clusters ClustScan gives 

predictions almost identical to experimentally determined structures. The majority of 

differences arise due to wrong prediction of the activity of reduction domains and the 

inability to predict the stereochemistry of hydroxyl and/or methyl groups. In a few cases, 

wrong predictions for substrate specificity of AT domains are given. This mainly affected AT 

domains incorporating rare substrates (e.g. methoxymalonyl-CoA, ethylmalonyl-CoA) for 

which data were scarce, with roughly only 10 domains for each substrate. With an increased 

number of ATs specific for those substrates, the motifs used for prediction can be modified 

to better reflect observed pattern in a larger number of clusters, thus increasing its accuracy. 

 
The ClustScan program package was also tested on a metagenomic dataset where it 

identified a fairly large PKS/NRPS hybrid cluster, whose product was not predictable due to 

the presence of NRPS modules. The analysis of metagenomic sequences also showed 

dependence of analysis results on the quality of input DNA sequence. As modular 

biosynthetic clusters are large, with clusters larger than 100 000 nucleotides being not 

uncommon, to be able to make relevant predictions, the input DNA sequence must contain 

the entire cluster which must be of high quality, in terms of sequence. In the metagenome 

data set (Rusch et al., 2007) which was used for screening only 119 successfully assembled 

contigs larger than 100 000 nucleotides were present from more than 7 million sequences 

deposited in the dataset. 

 
To be able to detect specificity determining residues (SDR) we have been involved in 

developing of an algorithm that would be able to perform clustering of protein sequences 

into two or more functional subgroups within a family. The method starts from a multiple 

alignment (MSA) of the family and ranks columns of the MSA according to the “strength of 
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the signal” for functional split. The probabilistic model used for ranking columns is a rough 

approximation of a process describing protein evolution based on a BLOSUM matrix. It gives 

each column a value which describes how good it models clustering around two or more 

amino acids rather than a single amino acid (Fig. 6). When ranking is complete, the user 

selects a motif from the top ranked columns. The exact number of relevant positions varies 

from family to family, so the user is able to define the number of positions to be used for 

motif construction. However, the length of the motif used does not affect strongly the 

accuracy of clustering, as was shown with varying length of the motif, but rather the 

strength of the signal encoded within each column of the MSA. The motif is then used for 

clustering of the family into subtypes. 

 

 

 

Fig. 6: Models describing possible evolutionary process of amino acids within one column of the multiple 

alignment. Amino acids are represented as lines with distance corresponding to distance described by BLOSUM 

matrix. A: model describing ancestral split into two clusters of related amino acids – observed in clustering of 

malyonyl/methylmalonyl specific AT domains among top ranked positions, B: example of three-way split with 

"evolutionary noise" from unrelated amino acids. C: pattern seen in conserved columns usually corresponding 

to active site or structurally important residues, D: pattern common for column not under selective pressure 

 

Since the only input for the method is MSA of the protein family it is important to emphasise 

that the quality of the analysis depends on the quality of given alignment. If there are 

inaccuracies or misalignments, especially in the core regions for determining specificity, the 

alignment should be remade from either only conserved regions within the protein family or 

with a reduced subset of "non problematic" sequences. Such an example of a problematic 

multiple alignment was the protein kinase family used in testing of the method. When all 
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members of the serine/threonine and tyrosine subfamilies were extracted from a reference 

database (http://pkr.genomics.purdue.edu/pkr/), the multiple alignment created contained 

only a few columns without gaps, which could be used by the program. The resulting analysis 

was unable to determine any meaningful clustering from the given data. After highly 

diverged and short sequences causing the problem have been removed, the analysis 

clustered members of the family with 100 % accuracy into respective subfamilies. 

 
The results obtained by the method were promising as it clustered the test protein families 

into biologically relevant subgroups based only on their respective multiple alignments. Also 

it is important that the length of the motif used for clustering does not have a strong 

influence on the accuracy of clustering for the majority of families. This simplifies the 

automation of the method as it is possible to define a default length of the motif to be used 

for clustering without strongly effecting accuracy. The protein family which showed the 

highest dependence of clustering accuracy on motif length was the PKS ketoreductase 

domain. The reasons for this discrepancy might lie in the functional duality of ketoreductase 

domain reflected in controlling activity and stereochemistry of ketoreduction as well as 

stereochemistry of methyl groups. This multifunctionality is also reflected at a sequence 

level with higher divergence within columns of the multiple alignment (more evolutionary 

noise) thought to be important for determining subtype than in other tested families. The 

other tested family of special interest was the PKS AT domain for which prediction of 

substrate specificity was implemented in ClustScan. As a test sample, the two largest 

subgroups were used – AT domains specific for malony-CoA and methylmalonyl-CoA. 

Previously published positions (Yadav et al., 2003) involved in substrate specificity were also 

identified by our method and were among 30 highest ranked positions. Depending on the 

length of the motif used for clustering, the error was between 1 % and 3 % which is slightly 

better than predictions implemented in other software for analysis of modular PKS. Testing 

with more subgroups (3) has not yielded satisfactory results with more than third of test 

sample falling into the wrong cluster. This is not unexpected as members of each subtype 

were, due to limited number of AT domains specific for those substrates with specificity 

experimentally determined, not well balanced – with two of the groups being 

underrepresented. In order for the method to be able to reliably calculate significant 

positions in the sample it has to contain roughly 30 members of each subtype (P. Goldstein 
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personal communication). Another logical possibility for such a high number of wrongly 

clustered domains might be that residues determining the specificity of AT domains 

incorporating larger substrates are not the same as ones determining the functional split for 

malonyl/methylmalonyl subgroups. This assumption is strengthened by the residues 

indicative for methoxymalonyl-specific AT domains. Motif used in ClustScan for identification 

of methoxymalonyl incorporating AT domains is not the same as the motif used to identify 

specificity of malonyl/methylmalonyl AT domains. To add further confusion, phylogenetic 

analysis of AT domains shows relatedness with methylmalonyl specific AT domains as they 

form a joint clade, separate from malonyl specific AT domains (Yadav et al., 20003; Jenke-

Kodama et al., 2005). The underlying principle for evolutionary split statistics is based on 

BLOSUM 50 matrix and it is possible that it is inadequate for this specific case where 

sequences are highly similar and evolutionary closely related. 

 
While some residues are important in discriminating between subtypes of protein domains 

other residues play a role in interaction between domains. Interactions within proteins 

forming the type II PKS complex responsible for biosynthesis of daunorubicin and 

doxorubicin in S. peucetius (Grimm et al., 1994) were investigated using protein-protein 

docking simulations. The purpose of docking simulations of type II PKS enzymes was to 

compare with experimental data obtained using the yeast two-hybrid system about 

interactions of PKS complex subunits, as well as to obtain, if possible, information about 

structural organisation of entire complex. As none of the proteins constituting doxorubicin 

PKS had their crystal structure solved they had to be modelled using computational tools to 

enable us to carry out docking simulation. As all of the proteins had orthologs with already 

solved structures homology modelling was chosen to obtain near-native, biologically 

relevant structures. To minimise method errors two programs for homology modelling were 

used – MODELLER (Eswar et al., 2007) and Swiss-Model (Arnold et al., 2006). Models 

obtained from both methods were evaluated and ones with more favourable energy profiles 

were used for docking simulations. To rule out uncertainty and unreliability associated with 

blind docking methods two pipelines for protein – protein docking were used – PatchDock 

(Duhovny et al., 2002) and ClusPro (Comeau et al., 2004). These methods were chosen as 

both are rigid body docking algorithms and they both incorporate methods for filtering and 

clustering of docked solutions which significantly reduces the number of relevant docking 
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solutions, thus enabling manual comparison. Docking scenarios from both methods were 

compared and if the RMSD was smaller than 4 Å it was treated as correct docking scenario. 

 
Results of protein docking confirmed most of the interactions observed in the yeast two-

hybrid system. Those involved interactions of KS subunits, cyclase and ketoreductase 

subunits. Interactions not confirmed by computational methods are those involving the ACP 

domain. Although the ACP domain is a part of minimal PKS none of the simulations returned 

docking solutions common for both methods. It has been hypothesised that ACP forms weak 

and transient interactions with other members of the minimal PKS (Hertweck et al., 2007) 

and such interactions would probably not be detectable using docking algorithms. The other 

reason why interactions involving this domain were not observed with computational 

docking methods might lie in the decision to use a rigid body docking algorithm instead of a 

flexible docking algorithm. If the protein undergoes significant conformational changes 

during the interaction, a rigid body docking algorithm won’t be able to compensate for it and 

will fail in finding a correct docking solution. As rigid body algorithms were able to predict 

correct docking solutions even for proteins making tight complementary interfaces (KSα-

KSβ) (Keatinge-Clay et al., 2004) it is unlikely that the choice of docking algorithm was wrong. 

It seems that interactions involving ACP protein are elusive for computational docking 

approaches and further experiments are necessary. 
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4. Future prospects 
 

In this thesis PKSs have been used as a test bench for bioinformatic methods ranging from 

gene finding and identification, specificity determination to protein modelling and docking. 

The next logical step was to deal with a question how these huge biosynthetic clusters arose 

and evolved over time. Which processes induced such vast diversity both of synthesised 

products as of genetic makeup and organisation with retaining the same mechanism of 

biosynthesis? With routine genome sequencing more cluster sequences are becoming 

available thus allowing evolutionary studies of these enzymes. 

 
Pioneering work in phylogenetic studies of PKSs suggested that modular PKSs share a 

complex evolutionary history with iterative PKS and animal and bacterial FAS (Kroken et al., 

2003; Jenke-Kodama et al., 2005). Evolutionary mechanisms that play an important role in 

evolutionary diversification of modular PKS are believed to be: gene and module duplication, 

homologous recombination and horizontal gene transfer (Ridley et al., 2008). The primary 

mechanism responsible for evolutionary diversifications of PKSs is believed to be module 

duplication. These finding are based on phylogenetic analysis of KS domain which showed 

higher similarity of KS domains within the cluster than with KS domains from other clusters 

(Jenke-Kodama et al., 2006). The AT domains, on the other hand, are clustered in 

phylogenetic trees based on their substrate specificity. Therefore, AT domains with different 

substrate specificity are more similar to AT domains from other cluster having the same 

substrate specificity than to AT domains of the same cluster having different substrate 

specificity (Yadav et al., 2003; Jenke-Kodama et al., 2005; Jenke-Kodama et al., 2006). Based 

on phylogenetic analysis of KS and AT domains it was hypothesised that modular PKS 

clusters evolved by duplication of an ancestral module followed by recombination events 

that replaced the AT and reduction domains to generate different module specificities 

(Jenke-Kodama et al., 2006). 

 
We have applied another approach. Instead of collecting domains from unrelated 

(individual) clusters, or clusters from a single organism, we have searched the literature and 

sequence databases for orthologous clusters. Orthologous clusters were defined based on 

similarity of cluster sequence, cluster organisation and the synthesised product. In total 6 
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groups of orthologous clusters containing 17 modular PKSs, were found and later used for 

phylogenetic analysis. As expected, in many cases, domain pairs from orthologous clusters 

clustered together as the most similar pairs. However, gene conversion appeared to be 

common as, in some cases, domains within the cluster were more closely related. This was 

observed for all the domains but with falling frequency based on domain’s position within 

the cluster. 

 
The other currently undergoing part of research is dealing with the conservation of 

metabolic pathways within a range of organisms. For that purpose the presence of enzymes 

constituting shikimic acid pathway was investigated in the predicted proteomes of almost 

500 prokaryotes, which were deposited at NCBI’s genome database 

(http://www.ncbi.nlm.nih. gov/sites/genome), using HMM profiles. Enzymes of the shikimic 

acid pathway play an important role as they are responsible for supplying precursors for 

aromatic amino acid biosynthesis, as well as for synthesis of other aromatic compounds. This 

pathway has been found in bacteria and plants (Herrmann, 1995) and recently in certain 

apicomplexan parasites (Roberts et al., 1998), but is not present in animals and they must 

obtain these compounds from dietary sources. In bacteria, the shikimate pathway serves 

almost exclusively for synthesis of aromatic amino acids while in higher plants mostly as 

precursors for secondary metabolites such as pigments, defence compounds, UV protectors 

etc. (Herrmann, 1995). Preliminary results had confirmed the presence of the complete 

shikimic acid pathway in most free living bacteria. Most of the host-associated bacteria (both 

symbiotic and pathogenic), on the other hand, have an incomplete shikimic acid pathway. 

Although this finding questions the conventional belief that shikimic acid pathway is 

essential in prokaryotes, it is possible that organisms missing full pathway substitute it by 

either from parasitized host or from symbiotic relationship as was found in Nematostella 

vectensis (Starcevic et al., 2008). 

 
Also continued is the development of the method for clustering of protein domains 

(Goldstein et al., 2009). Currently method calculates the evolutionary split statistic for each 

column of the multiple alignment and gives higher values when amino acid distribution 

within the column is better described by an evolutionary model that assumes clustering 

around two or more amino acids. To give more relevant information about the importance 
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of each position, a statistical method based on Bonferroni correction (Cabin and Mitchell, 

2000) has been implemented and is currently being tested. The method returns for each 

position the percentage of significance in respect to evolutionary model describing the 

clustering. Current results show only a slight improvement in clustering accuracy, mostly on 

protein families which had a higher error rate in previous work, but make selection of 

positions used for motif building much easier and more uniform. 
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5. Abstract 
 

With the development of new high capacity DNA sequencing techniques the use of a 

computational approach in biology is gaining even greater importance. In this thesis several 

of the bioinformatic methods have been employed on one class of enzymes – polyketide 

synthases (PKSs) - which were used to decode information stored in DNA into its more useful 

form - a chemical compound synthesised by the enzyme. 

 

To get the information about the chemical compound synthesized by the enzyme, DNA 

sequences coding for modular biosynthetic clusters first have to be identified. For that 

purpose a top-down approach relying on Hidden Markov Model (HMM) profiles, describing 

all type I PKS domains was used. HMM profiles were chosen due to superior sensitivity 

coming from capturing information from multiple members of the protein family. Another 

advantage of HMM profiles is their robustness which was demonstrated in annotation of PKS 

genes in the genome of Dictyostelium discoideum where profiles were “retrained” in several 

steps with organism-specific sequences and were able, at the end, to accurately detect all 

deviations within the sequence, as was the case with introns occurring within domains. 

 

When all domains constituting PKS are identified their activity and/or specificity has to be 

determined. In this thesis several methods were used - comparison of motifs consisting of 

specificity-determining residues, the statistical parameters of similarity search or predefined 

rules based on existing knowledge, depending on the type of the domain. After all existing 

components of the system (all PKS domains) were found and their properties 

(activity/specificity) determined they were organised into a "functioning system" which is 

able to predict the chemical entity synthesised by the system. 

 

In addition to the information about protein function and specificity/activity, information 

about the structure of the protein as well as its interactions can also be extracted from the 

DNA sequence. Structures of polypeptides constituting the daunorubicin PKS were built from 

their DNA sequences using homology modelling methods. These structures were later used 

for rigid body docking simulations which revealed interacting partners and revealed some 

information about the overall structure of the complex. 
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5.1 Zusammenfassung 
 

Mit der Entwicklung neuer Hochleistungs-DNA-Sequenzier-Technologien gewinnt die 

computergestützte Informationsverarbeitung in der Biologie immer größere Wichtigkeit. In 

dieser Doktorarbeit wurden mehrere bioinformatische Methoden auf eine Klasse von 

Enzymen, die Polyketidsynthasen (PKS) angewandt. Dies ermöglichte es uns, die in der DNA 

verschlüsselte Information in eine nützlichere Form umzuwandeln - die chemische 

Verbindung, die vom Enzym synthetisiert wird. 

 

Um diese Information zu erhalten, müssen zunächst die DNA-Sequenzen identifiziert 

werden, die für modulare Biosynthese-Cluster kodieren. Zu diesem Zweck wurde hier ein 

top-down-Ansatz mit Hidden Markov Modell (HMM)-Profilen verwendet, die alle Typ I-PKS-

Domänen beschreiben. HMM-Profile sind anderen Ähnlichkeitssuchmethoden aufgrund 

ihrer höheren Empfindlichkeit überlegen, da sie Informationen von vielen Mitgliedern einer 

Proteinfamilie verwenden. Ein weiterer Vorteil von HMMs  ist ihre Robustheit, wie bei der 

Annotation von PKS-Genen im Genom von Dictyostelium discoideum gezeigt wurde, wo 

Profile mit organismus-spezifischen Sequenzen „trainiert“ wurden und nach mehreren 

Trainingsschritten im Stande waren, alle Abweichungen innerhalb der Sequenz zu 

identifizieren, z. B. Introns, die innerhalb der Domäne vorkommen. 

 

Wenn alle Domänen, die zur PKS-Familie gehören, identifiziert sind, muss ihre Aktivität 

und/oder Spezifität bestimmt werden. In dieser Arbeit wurden je nach Domänentyp 

verschiedene Methoden angewendet – der Vergleich von Motiven, die aus 

spezifitätsbestimmenden Aminosäuren bestehen, statistische Parameter der 

Ähnlichkeitssuche oder vordefinierte Regeln, die auf schon vorhandenem Wissen über diese 

Domänen beruhen. Nachdem alle vorhandenen Bestandteile des Systems (alle PKS 

Domänen) gefunden und ihre Eigenschaften (Aktivität/Spezifität) bestimmt waren, wurden 

sie in ein "Funktionssystem" organisiert, das im Stande ist, das von diesem System 

synthetisierte Produkt vorauszusagen. 
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Aus der DNA-Sequenz kann man außer Information über die Funktionalität  und die 

Spezifität/Aktivität des kodierten Proteins auch noch Information über seine Struktur und die 

Wechselwirkungen mit anderen Proteinen gewinnen. Strukturen von Polypeptiden, die die 

Daunorubicin-PKS bilden, wurden aus ihren DNA-Sequenzen über Homologie-Vergleiche 

modelliert. Diese Strukturen wurden anschließend für „rigid body docking“-Simulationen 

verwendet, die Interaktionspartner identifizierten und Information über die Gesamtstruktur 

des Komplexs lieferten. 
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