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Abstract—Fast and accurate positioning and swing min-
imization of the containers and other loads in crane ma-
nipulation are demanding and in the same time conflict-
ing tasks. For accurate positioning, the main problem is
nonlinear friction compensation, especially in the low speed
region. In this paper authors propose position controller
realized as hybrid controller. It consists of the conventional
linear state feedback controller with additional friction self-
learning neural compensator in the feedforwad loop. Self-
learning compensator is based on the B-spline artificial
neural network which consists of the one hidden layer of the
B-spline second order functions. The experimental results
show that friction compensator is able to remove position
error in steady state.

Index Terms—Single Pendulum Gantry, Neural Network,
Friction Compensation, B-spline network, on-line network
learning.

I. INTRODUCTION

Translational gantry cranes are widely used for the
heavy loads transfer in modern industrial systems. The
problem faced in load transfer is a negative influence
of the crane acceleration required for the motion. Any
change of the reference position causes an undesirable
load swing, having negative consequences on the system
control and safety performances.

In order to achieve acceptable system performances for
a fast load positioning (i.e. minimal load transfer time),
the swing of the suspended load should be controlled as
well. This conflicting control demands can be solved with
state feedback controller, designed according to linear
quadratic optimum criteria, [3]. This design technique is
imposed as a logical solution and it is used by several
authors for solving similar control tasks.

Although the load swing problem is generally nonlinear
most of the solutions are based on the linearized math-
ematical model. Typical control approaches are adaptive
(gain-scheduling logic with optimal controllers used by
Corriga, Giua and Usai in [3]), optimal (Wang and
Surgenor in [13]) or robust (G. Bartolini et al. in [1]),
applied on the similar types of the electromechanical
systems.

Due to crane system complexity and the fact that lin-
earised mathematical model only partially represents the
real system, some authors used fuzzy controller, [8], [6],
[10]. Controller based on fuzzy logic can partially solve
an undesirable effects caused by the system nonlinearities,
[10]. However, neither of proposed techniques provide

Fig. 1. Single pendulum gantry (SPG) electromechanical model as
experimental model of gantry crane

solution for the main problem of accurate positioning
- friction. Due to its highly nonlinear characteristics
complex nonlinear behavior like limit cycle may occur
if the controller includes the integral action. In order to
reduce or eliminate the impact of friction, a self-learning
compensator is proposed as additional feedforward loop
to conventional linear state feedback controller. It is based
artificial neural network with one hidden layer of the B-
spline second order functions.

II. MATHEMATICAL MODEL OF THE SINGLE
PENDULUM GANTRY

The single pendulum gantry mounted on the linear cart
is presented in the Fig.1, [4]. When facing the cart, a
positive direction of the cart motion is to the right and
a positive sense of the pendulum rotation is defined as
counter clockwise. Also, the zero angle, corresponds to a
suspended pendulum vertical rest down position. Single
pendulum gantry can be represented as a system with one
input u (motor voltage), and two outputs: α (pendulum
angle) and xc (cart position). Mathematical equations of
the system motion can be derived via Lagrange equations,
by defining total potential and kinetic energy of the system
as a functions of generalized coordinates: cart position xc

and pendulum swing angle α. The result is the nonlinear
model represented by equations (1) and (2).

After linearisation around pendulum angle α = 0, the
linear model, given by equations (3) and (4), is obtained.
The parameters of the single pendulum gantry linear
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Rmr2
mp

+ (Ip + Mpl2p)
ηgKgηmKt

Rmrmp
Um)

(Mc + Mp)Ip + McMpl2p + M2
p l2p sin2(α)

(1)

α̈ =
−(Mc + Mp)Bp · α̇−M2

p l2p sin(α) cos(α) · α̇2 + Mplp cos(α)Beq · ẋc
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Rmr2
mp

−Mplp cos(α)ηgKgηmKt

Rmrmp
Um)

(Mc + Mp)Ip + McMpl2p + M2
p l2p · sin2 (α)

(2)
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model are given in Table I.

TABLE I
PARAMETERS OF THE SINGLE PENDULUM GANTRY SYSTEM

Parameters Description
Beq = 5.4[Nms/rad] Equivalent viscous damping

coefficient as seen at the mo-
tor pinion

Bp = 0.0024[Nm/s] viscous damping coefficient
as seen at the pendulum axis

ηg = 1 Planetary gearbox efficiency
ηm = 1 Motor efficiency

g = 9.81[m/s
2] Gravitational constant of

earth
Jp = 0.0078838[kgm

2] Pendulum moment of inertia
Jm = 3.9e− 7[kgm

2] Rotor moment of inertia
Kg = 3.71 Planetary gearbox gear ratio

Km = 0.0076776 Back electro-motive force
(EMF) constant

Kt = 0.007683 Motor torque constant
lp = 0.3302[m] Pendulum length from pivot

to center of gravity
Mc = 1.0731[kg] Lumped mass of the cart sys-

tem, including the rotor iner-
tia

Mp = 0.23[kg] Pendulum mass
Rm = 2.6[Ω] Motor armature resistance

rmp = 0.00635[m] Motor pinion radius

A. Friction effect
Above presented mathematical model of the Single

Pendulum Gantry does not include friction model. How-
ever, friction is almost unavoidable effect in mechanical
systems and it may seriously degrade the performance of
the control system. This problem is specially significant
when high precision positioning is required. Friction

Ff

v

Fig. 2. Typical friction characteristic

characteristic is generally highly nonlinear and may also
vary with time. In addition, identification of the friction
characteristic is complex task. Typical friction character-
istic is shown in Fig. 2. It can be seen that friction force
reaches its peak value at very low speeds (v ≈ 0) and this
portion of the friction characteristics is usually regarded
to as a static friction. Such the increase in friction force
when velocity approaches zero is the main cause of the
steady state error in positioning systems. It is important to
note that augmentation of the controller with an integral
action cannot eliminate such the error. Moreover, it may
result in complex nonlinear effect known as stick-slip
motion which can significantly reduce the life cycle of
the system components (e.g. actuators, gears). Therefore,
feedforward compensation based on B-spline neural net-
work will be used in this paper.
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Fig. 3. B-spline second order functions

III. B-SPLINE NEURAL NETWORKS

A. Network Structure
B-spline neural network (BSN) is a special type of

neural networks that use B-spline functions as basis
functions, [2]. One dimensional n-order B-spline network
consists of set of (n− 1)-order polynomial functions and
hence unknown function is approximated by piecewise
polynomial functions of (n−1)-order. The higher order of
B-spline functions used the better and smoother approx-
imation is obtained with increased network complexity.
It has been proven that B-spline second order functions
(Fig.3) usually gives good results with simple and fast
parameters adaptation. Since the numerical simplicity is
an important criteria for compensator design, B-spline
functions represent an acceptable and reasonable choice.

Axis x, in Fig.3, represents neural network input nodes,
while axis y represents the nodes membership to the poly-
nomial functions, µ ∈ [0, 1]. The limits of the particular
polynomial functions are determined by the node vector:

λ =
�

λ0 λ1 ...λ Nk

�
∈ �Nk−1 . (1)

The membership to i-th B-spline function (i-th polynomial
function) of n-order is calculated according to:

µn
i (x) =

�
x− λi−n

λi−1 − λi−n

�
µn−1

i−1 (x)+

+
�

λi − x

λi − λi−n+1

�
µn−1

i (x).
(2)

For each input signal, the shape and distribution of B-
spline functions are arranged in the way that the sum of
all membership functions equals to one:

∀x ∈ R,
Nk�

i=1

µi(x) = 1. (3)

The output of the B-spline network is the weighted sum
of the outputs of B-spline neurons, given by the following
equation:

y =
Nk�

i=1

µi(x) · wi. (4)

If smoother transient between networks nodes is neces-
sary, then higher order B-spline functions should be used.
However, the drawback is complex computation and more
computer resources needed for algorithm implementation.

B. B-Spline Network Learning
The learning of the BSN network parameters can be

performed either off-line, based on previously collected
set of I/O data, or on-line, during the normal operating
condition. Since the aim of the paper is compensation of
an unknown and unpredictable system’s nonlinearities, the
network parameters need to be adapted on-line. Usually
only BSN weighting coefficients wi are adapted while the
shape and distribution are set off-line based on a-priory
knowledge about the system to be approximated. Such
the approach not only simplifies the learning process but
also allow relatively simple stability analysis.

Generally the adaptation of the BSN weighting coef-
ficients is performed by minimizing the appropriate cost
function. Selected cost function to be minimized during
the learning process, is given by:

J =
1
2

(yd − y)2 . (5)

Using the rule

∆wi = −γ
∂J

∂wi
= γ (yd − y)

∂y

∂wi
(6)

and inserting (4) in (6) yields

∆wi = γ (yd − y)
∂

�Nk

j=1 µj(x) · wj

∂wi
= γ (yd − y) µi(x),

(7)
where ∆wi is adaptation of weighting coefficient for i-th
B-spline function and γ is learning rate.

Instead of using the output error e(t) = r(t)− y(t) as
a measure of control performance it is also possible to
use the output of the feedback controller as performance
measure. Indeed, when a perfect tracking is achieved (i.e.
r(t) = y(t)) the output of the feedback controller uc is
equal to zero while existence of the tracking error will
result in nonzero control signal. Therefore, the adaptation
law for the BSN network parameters, used in this paper,
is given by:

∆wi = γuc

∂
Nk�
j=1

µj(x) · wj

∂wi
= γucµi(x). (8)

During the neural compensator algorithm implemen-
tation, the memory and computational resources of em-
bedded computer is usually limited. For that reason, it
is important to reduce the algorithm complexity and
the number of weighting coefficients of the BSN to be
adapted in each sample time, Fig.4. This type of the
neural network is particularly convenient for implemen-
tation, since the network has only one-layer of B-spline
functions with corresponding weighting coefficients. In
each sampling time only two weighting coefficients are
adapted, so there is no need for complex mathematical
calculations like ones when MLP neural network is used.
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Fig. 4. B-Spline neural network (BSN)

C. Stability of the overall control system
An important issue that often limits implementation of

the neural networks in practical applications is how to
ensure the stability of the overall control system. This
is particularly important when neural network parameters
are adapted in an on-line manner. Classical neural net-
work learning algorithms, such as error backpropagation
algorithm, cannot guarantee stability due to fact that they
consider neural network independently to the rest of the
control system (controller and process).

One way to cope with this problem is to use Lya-
punov theory to derive stable adaptation law for the
neural network parameters. However, the results are very
much dependent on the choice of the Lyapunov function.
Another approach that originates from Iterated Learning
Control (ILC) is based on frequency domain analysis
of the overall control system. Since the control scheme
used in this paper is essentially Learning Feedforward
Control (LFFC) [12], which can be considered as a special
case of ILC, the latter approach is adopted in this paper
for finding the necessary stability conditions. General
stability condition for the LFFC schemes is given by, [12]:

|1− γT (jω)| < 1, (9)

where T (jω) complementary sensitivity function. It is
clear that condition (9) may be satisfied for ω ∈ R+

only if T (ω) is positive real function. However, in
most practical applications this condition is violated for
some frequency band, typically for higher frequencies. In
order to solve this problem Velthuis et al. [11],[12] used
approach based on Fourier analysis of the compensation
signal uff to find minimal width of the B-spline functions
d and maximal value of the learning rate γ that guarantee
overall control system stability. These values depend

C P

BSN

y(t)

uc(t)

uff (t)

+

+
+

−

ṙ(t)

r(t)

H

Fig. 5. Block structure of the state feedback controller with BSN
compensator

on the shape of the negative complementary sensitivity
function −T (jω) and above all by the frequency where
condition (9) ceases to be satisfied. Such the approach,
however, often gives relatively large values for dmin

and consequently significantly limits BSN approximation
capability.

In order to overcome this limitation we have augmented
the original approach by introducing the addition filter
H(s) for BSN network adaptation signal uC , as shown
in Fig. 5:

u∗C = H(s)uC . (10)

General stability condition in that case is slightly different
to one given by equation (10):

|1− γH(jω)T (jω)| < 1 (11)

Since the minimum width of the B-spline functions is now
determined by the shape of the −H(jω)T (jω), additional
filter H(jω) can be considered as loop shaping filter.

Using the procedure proposed in [12] minimal width
of B-spline functions that ensures closed loop stability is
given by:

dmin =
2π

ω1
, (12)

where ω1 is the frequency where phase characteristic of
−H(s)T (s) is equal to:

ϕ1 = acos



−0.0147
|−H(jω)T (jω)|∞

min
ω∈R+| cos ϕ<0

(−H(jω)T (jω))



 .

(13)
Once the width of the B-splines d is obtained, learning
rate γ should satisfy the following condition:

γ ≤ 4Ts

|−H(jω)T (jω)|∞d
, (14)

where | · |∞ is infinity norm representing peak value of
the | − H(jω)T (jω)| while Ts is sample time of the
compensation algorithm.

It is important to note that stability conditions (12), (13)
and (14) are derived for a special case of LFFC, so called
time-indexed LFFC, where the input to BSN network is
not physical system variable (e.g. position, velocity) but
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Fig. 6. Reference velocity and acceleration and BSN network output

the time t. Such the approach assumes that it is possible
to establish unique mapping between the time t and the
physical system variables of interest.

Knowing dmin for the time-indexed LFFC and ref-
erence signal r(t) it is possible to calculate minimal
B-splines width for the case when the inputs to BSN
are reference and/or its derivatives. This can be easily
done by analyzing the worst case, assuming the position
reference in a form of filtered step signal. By choosing the
2nd order model reference filter it is possible to exactly
calculate reference velocity vr(t) and acceleration ar(t),
as shown in Fig. 6. It is clear that peak value of the
acceleration reference occurs at t = 0 (here it is assumed
that step reference start at t = 0) and this value will
define the minimal width of the B-spline functions in
term of physical system variable values (velocity in our
case). Therefore, minimal width of B-splines functions for
velocity driven BSN network can be calculated as follows:

dmin,v =
� dmin

0
ar(t)dt = vr(t)|dmin

0 = vr(dmin). (15)

IV. CONTROLLER AND FRICTION COMPENSATOR
DESIGN

Experimental verification of the B-spline neural net-
work based friction compensator has been performed on
the experimental crane model, Single Pendulum Gantry
(SPG), shown in Fig.1 and described in section II.

The control system structure, used in this paper, with
linear state feedback controller (C) and additional friction
compensator (BSN) is shown in Fig. 5. Linear feedback
controller C is designed for an ideal process, i.e. nonlinear
effects and higher order dynamics are neglected. The
output of the feedback controller uC is considered as a
control performance measure and thus it is used for BSN
on-line learning.

The friction compensator (BSN) is located in the feed-
forward loop and input signal to the B-spline network
is velocity reference, since it is assumed that friction is
velocity dependent.
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A. Linear Controller Design
Linear state feedback controller (C) is designed using

the pole placement approach according to the control
requirements, [5]. These requirements are expressed in
terms of maximum overshoot σm and settling time tm:

σm = 100e

„
− ξπ√

1−ξ2

«

≤ 5% (16)

ts =
4

ξωn
≤ 2.2s (17)

Two closed loop poles p1 and p2 are dominant and they
are chosen to meet control system requirements. Other
two poles p3 and p4 are chosen arbitrary, in order to have
minimal influence on the system behavior. Calculated
closed loop poles are

p1 = −1, 8182 + 1, 9067j
p2 = −1, 8182− 1, 9067j
p3 = −20
p4 = −40

(18)

For linearized model (3) and (4) of the SPG, the following
gain vector is obtained

K = [160.5347 − 210.625 88.0092 23, 4776] (19)

B. Friction Compensator Design
As a first step in compensator design the filter H(s)

need to be chosen. In order to achieve smaller minimal
B-splines width it is necessary to keep phase diagram of
−H(jω)T (jω) between −90◦ and −270◦ in as wide as
possible frequency band. Since phase diagram of −T (jω)
drops below −270◦ for 2.4 < ω < 4.5 (see Fig. 7) it is
necessary to compensate it by introducing the phase lead
correction:

H(s) =
1 + T1s

1 + T2s
, (20)

with T1 = 2 s and T2 = 0.2 s.
Minimal B-spline width for time-indexed LFFC calcu-

lated according (12) and (13) is given by:

dmin = 0.13s (21)
T5-184
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Fig. 8. Position reference and responses of the SPG control systems
with and without BSN compensator

while the maximum learning rate is obtained using equa-
tion (14) and assuming sample rate Ts = 0.001s:

γmax = 0.025. (22)

As a reference model 2nd order filter, given by:

Gm =
ω2

0

s2 + 2ζω0s + ω2
0

, (23)

is used, where ω0 = 2rad/s and ζ =
√

3/2. Using the
equation (15) minimal B-splines width dmin,v for the
velocity driven BSN network is:

dmin,v = 0.35[m/s]. (24)

As a compensator B-spline neural network with 8
2nd order B-spline functions is used. The width of each
particular function is set to d = 0.35, while the learning
rate is set to γ = 0.02. It is apparent that such the
selection of the BSN parameters ensures the stability of
the BSN learning process.

V. EXPERIMENTAL RESULTS

For SPG control, Quanser Q3 ControlPaQ-FW inte-
grated with Matlab 2008b/Simulink Real-time Workshop
toolbox is used, together with Quanser UPM 1503/2405
power supply module.

During experimental verification of the compensation
algorithm two types of the reference signals were used:
(i) step signal filtered through 2nd order reference model
and (ii) sinusoidal signal.

In Fig.8 the reference position and position responses
of the control systems with and without B-spline network
(BSN) are shown. It can be seen that the position error
of the control system with BSN compensator is almost
eliminated after a few reference sequences. At the start,
initial network coefficients are set to zero (assuming no
a-priory knowledge). After that, networks coefficients are
updated through the on-line learning mechanism, gradu-
ally reducing reference tracking error (Fig. 8).
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Fig. 9. Control signals of the SPG control systems with and without
BSN compensator
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Fig. 10. Pendulum angle and cart position of the SPG control systems
with and without BSN compensator

In Fig 9 the control signals for the cases with and
without BSN friction compensator are shown. It is appar-
ent that control system with BSN compensator produces
more active control signal in steady state, i.e. when
cart velocity is relatively low and static friction become
dominant. However, after three periods of the reference
signal control signal become steady which indicates that
BSN network has learned the friction characteristic.

Finally, in Fig.11 sinusoidal position reference tracking
for the control systems with and without BSN compen-
sator are shown. Without BSN compensator substantial
tracking error occurs near peak values of the reference
signal, i.e. at low velocities. This error is significantly
reduced by adding the friction compensator. However,
almost constant tracking error still remained but this error
is not related to the friction effect but to the limitation of
the designed feedback controller.
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VI. CONCLUSION

The effectiveness of the B-spline self-learning network
compensator applied to the gantry crane system for the
friction compensation has been proven. The experiments
made on Single Pendulum Gantry model, show that
position error with friction compensator is practically
eliminated. Additionally, loop shaping filter added in BSN
network learning loop relaxes the stability constraints on
the minimal B-splines width and the maximal learning
rate. Finally, it is important to notice that no a-priori
information about the friction are needed since neural

network parameters are updated in on-line manner.
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