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ABSTRACT 

 

 A lot of effort has been put into researching image 

interpretation, but there is still no universally accepted 

approach to map low-level feature into high level image 

semantic interpretation [1]. In this paper, a method for 

continuous low-level features vector quantization is 

presented so as to define appropriate values for descriptive 

variables. The similarity among different concepts of the 

domain is examined and compared by using the measure of 

similarity which is based on the probabilistic model and the 

measure of distance. Also, an abstract image description 

vector suitable for image analysis is given.  

 Furthermore, formal explicit description of concepts and 

their properties as well as hierarchical relationship among 

concepts in an outdoor image domain will be presented.  

 

 Keywords - image representations, quantization, image 

classification.  

 
1. INTRODUCTION 

 
The main challenge of content-based image retrieval (CBIR) 

systems is to meet the user needs for semantic image 

retrieval. From a user‟s point of view, a CBIR system 

should enable apart retrieval of certain images by query by 

example (QBE) using only low level features directly 

extracted from an image, a textual queries which also 

include the semantic image interpretation. Examples of such 

queries are “find images of wild cats”, “find images of 

outdoor landscape”, etc.  

Moreover, one should consider that user queries can 

consist of image tokens which are expected to be found in 

the wanted image, but usually these are formulated using 

semantic notions of a higher level than object labels, 

according to [1]. The problem of complexity, subjectivity 

and ambiguity of human image interpretation is mentioned 

as a semantic interpretation problem [2]. 

The effort of present CBIR systems is to use, apart from 

low level features like colour, texture and shape, the high 

level features which are the semantic interpretations of 

humans‟ visual perception.  

Up to this point, the explored approaches and attempts to 

integrate semantics mostly relate to object detection, object 

recognition and automatic image annotation [2]. 

Current influential methods which link visual image 

features and corresponding concepts, i.e. denotations and 

concept keywords, are methods of annotation. Image 

analysis is essentially based on low-level features, and 

learning words for annotation is based on techniques of 

machine learning. Low-level features obtained as a result of 

algorithms for feature extraction are not sufficiently 

descriptive for determining image context [1]. By 

combining vectors of features, or some other kinds of 

representation using descriptive variables (abbrev. 

descriptors) appropriate for knowledge representation 

schemes, objects are recognized. 

When objects are identified, they can get symbolic 

annotations, i.e. the name of the concept (class) which they 

belong to. Then, the labels of the concepts recognized in the 

image with the highest probability, like “trees, sky, wolf”, 

are chosen to annotate the image. 

Referent models mentioned in [1, 2] are e.g. CRM 

(Continuous-space Relevance Model) by Lavrenko, et al., 

then models which use Latent Semantic Analysis, as 

published by Monay and Gatica-Pereza, classificators as 

published by Chan in [12] that use SVM (Support Vector 

Machine), image retrieval systems like Alipr 

(http://alipr.com/) or Symplicity [11] etc. For viewing and 

analyzing high level semantics, ontology or description 

logic, as knowledge representation schemes, are often 

pointed out. Some examples are a SCULPTEUR system [9] 

that uses ontology to model contextual information about art 

objects in museum collections and a medical ontology like 

MIAKT (Medical Imaging and Advanced Knowledge 

Technologies, http://www.aktors.org/miakt/) for medical 

problem solving of breast cancer screening and diagnosis, or 

The Digital Anatomist Project, a complete ontology for 

biomedical concepts 

(http://sig.biostr.washington.edu/projects/da/). For solving 

the uncertain reasoning problems fuzzy ontologies or 

ontologies with extension of description logic are proposed 

as in [10]. 

In this paper, a method for continuous low-level features 

vector quantization is presented so as to define appropriate 
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values for descriptive variables. An abstract image description vector suitable for image analysis is given.   

By using the measure of similarity which is based on the 

probabilistic model, the similarity among different classes of 

the domain is examined. Obtained results are compared to 

the measure of similarity which is based on the measure of 

distance.  

Furthermore, formal explicit description of concepts and 

their properties as well as hierarchical relationship among 

concepts in an outdoor image domain will be presented.  

 

2. CONTINUOUS FEATURES VALUE 

APPROXIMATION 

 

Since image consists of image elements (pixels) which have 

no meaning, extracted features will, in a certain way, show 

one of the visual properties of the image or, more precisely, 

of the image segments. In this context, visual image 

properties are the content of the image which is usually 

shown using low level features, like colour, shape, texture, 

but can also be presented as any kind of information which 

can be derived from the image.  

Without modification, a set of data from [3] was used, 

which relates to 400 outdoor images from Corel Stock Photo 

Library. Images include natural objects (animals, parts of 

landscape) and artificial objects.  

In the learning set, images are segmented with 

normalized cut (n-cut) algorithm, so segments do not fully 

correspond to objects.  

Each segmented area was associated with one or more 

keywords, i.e. concept label (class name). Segments from 

images that contain natural objects can be classified into 

animal and landscape classes. In mentioned domain we have 

considered bear, polar bear, bird, fox, wolf, lion, and 

elephant and tiger concepts. For landscape, cloud, sky, 

water, trees, grass, ground, rock, send, mountain and snow 

concepts were considered. The frequency of segments with 

mentioned concepts is shown in Fig. 1. The frequency of 

presented concepts is relatively small; only three concepts 

appear in more than 6% of cases.   

 

 
 

Figure 1. Frequency of natural objects‟ concepts 

Only four concepts of artificial object are used; plane, 

train, tracks and roads. Frequency of these concepts is also 

less than 0.05.  

An important task for image retrieval is to choose 

relevant features shown using one or more corresponding 

feature descriptors, in order to form an abstract image 

description suitable for image retrieval and image analysis 

(so called signature) [1].  In retrieval, it is always wise to 

combine more features in order to generate a more robust 

image description.  

For every segmented region of the above mentioned 

data, a set of 36 feature descriptors that compactly 

characterize each region‟s colour, position, texture, size and 

shape are calculated in [4]. As an alternative, a MPEG-7 

standard format for visual descriptors of still images can 

also be chosen. 

Hereunder, we have chosen 16 of them as relevant and 

sufficient for image descriptors as in [3]. The chosen feature 

descriptors are: size (normalized area of segment), position 

(horizontal and vertical position of barycentre, with their 

standard deviation), shape (convexity, boundary/area ratio, 

coefficient asymmetries of Lab components), and colour 

(luminance, green-red, blue-yellow corresponding to the 

average Lab components and standard deviation of Lab 

components).  

For images from the outdoor domain, the precise 

information on the value of every feature does not play a 

crucial role in determining the class to which a certain 

segment belongs. Therefore, these are approximated with 

corresponding discrete variables in order to simplify the 

model. 

Model simplification is, in this case, based on 

quantization of values which can be assumed by a certain 

feature of the image segment. In this way, the segment is no 

longer described with continuous values but with discrete 

ones or their corresponding linguistic descriptions. 

For instance, in describing that a certain area belongs to 

the class „Water’ from the given domain, the information 

that the area is big, that it is located at the bottom of the 

image and it is mostly blue, is as useful as the numerical 

features that the relative area size is 0.217433, with 

barycentre coordinates (0.769531, 0.735719), light intensity 

82.2608, then -0.72716 in green and -10.6118 in blue colour 

intensity.  

After the quantization, every image segment is described 

using an m-dimensional vector [D1 D2 ... Dm].  

Defined vector component are descriptors as follows: D1  

size, D2 - horizontal position (x), D3 - vertical position (y), D4 

- boundary/area ratio, D5 – convexity, D6 - luminance (L), D7 - 

green-red intensity (a), D8 - blue-yellow intensity (b) and D9 - 

Lab skew coefficients. 



More formally, for the given scheme S = [D1 D2 ... Dm], 

the domain of the descriptor Dom(Di) = Vi, for i 1...m, 

where V =  Vi , then:  

S  V1 × V2 ×… × Vm = {(v1, v2…vm): vi  Vi} and 

function f: S -> V so that f (Di)  Vi. 

In other words, to every vector component Di, i 1...m, 

correspond a descriptive variable with discrete values Vi, 

i 1...m.  

Further on, every value of descriptive variable Di can be 

given a descriptive meaning in order to improve the user 

interaction. For instance, the descriptor of size D1 can be 

associated with values from the set V1 = {low, middle, high} 

or V‟1 = {very low, low, middle, high, very high}. 

 Each value of these descriptive variables is mapped to 

an appropriate range of values of the corresponding low-

level continuous features: 

 

Q (Vi)   { <xik, xik+1> : xik Ri R; i=1..m; k N}. 

 
It is not simple to determine how many values (clusters) 

will a certain descriptive variable have and what is the range 

of continuous features value that will be associated to it. 

Clusters are usually formed in such a manner that the 

intervals Ri of all possible values which a certain feature can 

assume are divided into disjunctive intervals of equal width.   

In [5] the various value ranges for every low-level 

descriptor are chosen so that the resulting intervals are 

equally populated. Also, resulting intervals overlap. In [6] 

some low-level descriptors are grouped and presented with 

Gauss-mixture models. 

In this paper authors have experimented with the 

irregular quantization which does not have the same period 

of quantization in the whole set of values of the data used 

for learning. In order to define the number and width of 

subintervals for possible values which will be associated to 

every descriptive variable, we used k-means algorithm with 

city block measure of distance, and Expectation 

Maximization algorithms with Euclidean measure of 

distance.  

The achieved results are shown in Fig. 2. 
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Figure 2. Clusters of descriptor values 

 

The abscissa shows the descriptors Di, and the ordinate 

shows the number of clusters into which their numerical 

values are partitioned. For instance, the values of features 

which correspond to descriptor D5 are grouped into 3 

groups, so D5 will have 3 discrete values. 
The results of quantization by using the above mentioned 

methods almost match, which shows that grouping is 

performed successfully. 

Examples and text in the remainder of the paper will 

refer to quantization achieved through the k-mean method. 

For example, the range of values of continuous values which 

the feature size can assume is from 0 to 1, considering that 

the size of the segment is normalized. In the learning set, 

which is being used, 90% of features are in the interval from 

0.02 to 0.65.  Descriptive variable ‘size’ has values {s1, s2, 

s3 … s7}. Each of the mentioned values is a representative 

of a cluster of continuous features with the centre in: {0.03, 

0.07, 0.11, 0.16, 0.23, 0.34, 0.51}. 

After the descriptive variables and cluster centres of their 

associated continuous values are defined, each sample is 

shown using these variables. Numerical features of the 

sample have been replaced with the value of the group 

whose centre is the closest to the given value.  

 For instance, for a random sample s, the vector below 

represents values of descriptive variables D1, D2 … D9: 

 

[s7 x5 y5 o2 c2 L2 a1 b3 k8]. 

 

Using the analysis of segments which belong to a certain 

class, i.e. based on the naive density estimation of the 

intersection of descriptive value occurrence and class 

occurrence, values of certain descriptive variables which are 

typical for a certain class have been chosen. For example, 

the attribute value of the class ‘airplane’ for variable D1 is s1 

with 56% of probability, for variable D3 is y3 with 

probability 74%, etc.  

Because there are vast differences within the class to which 

the object belongs to, which include the difference in colour, 

area size the object takes, object‟s affine transformations, 

zoom differences, concept environment, overlapping and 

incomplete concepts, etc., the occurrences (samples) which 

correspond to one class are associated with different values 

of a descriptor.  Therefore, it is foreseen for each of classes 

to have one or more associated values of certain descriptive 

variables, f (Di)  Vi. 

Below, attribute values of class descriptor ‘Airplane’ is 

shown, following the signature described earlier: 

 

({s6, s2}; {x2, x3, x6}; {y3, y4, y1}; {o7, o1}; {c1, c3}; 

{l2, l4}; {a4, a1}; {b1, b4}; {k10, k7}) 

 

Each of the specific value is associated with a degree of 

probability, based on the conditional probability formula:   

 

P (D | Ci) = P (D ∩ Ci) / P (Ci)  (1) 



i.e. its form for the function of multiple independent subsets 

of D (3): 

 

P ( Dk | Ci) =   P (Dk ∩ Ci) / P (Ci) (2) 
    k   k 

where: 

i  Ci  C, C  = {C1, C2 … Cn} is a set of classes;  

k Dk D, D = {D1, D2 … Dm} is a set of descriptors. 

  

The values which have probability lower than the 

threshold are ignored and/or are equally associated to the 

nearest values of descriptors that are higher than the 

threshold. In this experiment the threshold was set to 0.05. 

Each of the attribute values is also associated with a 

degree of reliability like (s6, 0.62), (s2, 0.38) in order to 

model fuzzy facts correctly.  

 
3. THE COMPARISON OF SIMILARITIES AMONG 

CLASSES 

 
In the previously described procedure, the continuous 

statistical marks of every feature were grouped and 

approximated in such a manner that all values from j-th 

cluster are approximated using the middle of the cluster. The 

middle of each cluster is associated with a discrete value of 

descriptor. Furthermore, for every class of the domain, 

descriptor vectors are determined which show the 

corresponding knowledge. By approximating feature values, 

a certain part of information is lost, but the possibility 

emerged to distinguish important features of continuous 

features from the irrelevant ones.   

Below, the similarity among classes is compared using 

the measure of similarity presented in [13], applicable as 

long as there is a probabilistic model. In [14] the similarity 

between A and B is measured by the ratio between the 

amount of information needed to state the commonality of A 

and B and the information needed to fully describe what A 

and B are. By comparing the similarity among classes, it can 

be indirectly shown to what degree the approximation of 

data was successful. Furthermore, features can be detected, 

which are critical for the description of the class itself and 

for its differentiation from other classes. Such features are 

associated with weight in order to make the difference in 

relevant features more influential in the process of class 

comparison than the difference in less important features.    

For the comparison of classes Ci and Cj, i.e. their vectors 

of descriptors Di with discrete or ordinal values and known 

distribution of probability P(Di), we have applied the 

measure of similarity from [14] for words:     

 

sim (Ci ,Cj) = 2× I (Di ∩ Dj) / I (Di) + I(Dj) (3) 

 

where I(D) is the amount of information contained in a set D 

of features. Assuming that features are independent of one 

another and that P (Di) is probability of feature descriptor 

Di, I (D) is calculated as: 

I (D) = -  log P (Di). (4) 

 Di D 

 

When two classes have identical sets of features values, 

their similarity reaches the maximum value of 1. The 

minimum similarity 0 is reached when two classes do not 

have any common feature descriptor. 

The results in figure 3 show, given the probability 

distribution, the similarity among class “Lion” and other 

classes in domain. The abscissa shows class marks, and the 

ordinate shows similarity. Each class is most similar to 

itself, like class “Lion”. Then, by similarity, follow classes 

“Ground” and “Wolf”. Class “Lion” is the least similar to 

class “Sky” and “Water”; sim (lion, water) = 0.0270; 

sim(lion, sky) = 0.0249.  
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Figure 3. Similarity among class “Lion” and other classes in 

domain 

 

Because of the comparison and estimation of 

information loss due to grouping data into clusters and 

quantisation, each class is also described using vectors of 

continuous values. Each component of the vector of a 

certain class is the median of corresponding features of 

samples which belong to the class. The median is chosen as 

the parameter due to its insensitivity to extreme values in the 

given data set. For the comparison of similarity among 

classes described in this manner, we used the measure of 

similarity:   

 

simdist = 1 / ( 1+ dist (A,B)) (5). 

 
The comparison of similarity using the stated measures 

of similarities is shown in Figure 5.  
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Figure 4. The comparison of similarities using different 

measures of similarity 



 
The obtained percentages of similarity differ, but it is 

important that the ratios of similarity among classes match. 

In the mentioned measures, we did not include parameters 

of weight for certain descriptors. By adjusting the weight of 

certain descriptors, it is possible to influence the description 

of the class and increasing the difference among classes.   

After the descriptors that describe classes are defined, 

and the measure of reliability is calculated and adjusted for 

every descriptor value, the knowledge on the domain needs 

to be included, in order to improve the classification of 

unknown segments in a-priori defined classes.    

By connecting domain classes in taxonomy of a tree, 

semantic nets or ontologies, the semantic similarity among 

concepts can be determined, either based on the concept 

probability as in [14], or their distance in the taxonomy [13].  

 
4. A KNOWLEDGE MODEL OF OUTDOOR IMAGE 

CLASSES 

 
The problem outlined in this paper is how to determine a 

precise model for recording knowledge by which an image 

can be described or interpreted. During model creation, 

basic principles of knowledge organization were used, like: 

classification, generalization and hierarchy.  

Fig. 5, by using Unified Modeling Language (UML) 

formalism [7], shows relation among image segments, 

descriptors and a class label to which the segment and/or 

image are associated with. 

 

 
Figure 5. Relations among class and descriptors  

 
These simplified models correspond to our domain and 

experiment, but can be expanded so as to include additional 

descriptors corresponding either to low-level region features 

(e.g., texture), relational descriptors (e.g., on the left of, on 

the right of, lower than, in front of) or to higher-level 

semantics which, in domain-specific applications, could be 

inferred either from the visual information itself or from 

associated information (e.g., annotation).  

Classes chosen for image annotation in the former stage 

are arranged into a corresponding set of semantic concepts. 

Relations, mostly hierarchical and topological relations, are 

defined according to expert knowledge on relations between 

concepts in the domain. 

Furthermore, to improve the image annotation expanding 

the relations among words, particularly with synonymy and 

hierarchy relations among concepts, a lexical database like 

WordNet [8] can be used.  

What level of abstraction will represent a concept also 

depends on the database the image belongs to and user 

interest. Set C of initial classes for annotation can be 

broaden with elements which are obtained by generalizing 

(e.g. Wild-Cat, Vehicles), joining or distributing concepts 

(e.g. Leaves, Branches, Locomotive, Wagon) identified in 

the image. Topological relations can be defined among 

concepts; relations which describe the arrangement and co-

occurrences of concepts on the scene. In this case, we only 

included co-occurrence relation.  

In this way, by including concepts of a higher semantic 

level into the knowledge database, concept organization in a 

natural language is transferred into the database. Further on, 

linking images and concepts broadens image retrieval with 

visual image content to retrieval via text, i.e. keywords 

which describe and define the desired object more precisely.   

  
4. CONCLUSION 

 
The problem of automatic semantic image interpretation is 

complex, even when it relates only to images of similar type 

and the context of a specific domain.  

The first step towards automatic semantic image 

interpretation is the definition of a model which is able to 

precisely, clearly, intuitively and visually show knowledge 

associated to the image interpretation, as illustrated in this 

paper.   

The paper uses UML class diagram to model basic 

relationships between the classes and appropriated 

descriptors according to descriptor‟s vector selected to 

represent an image segment.  

The paper shortly specifies the procedure for 

transformation of continuous values of features into discrete 

ones. The quantization of descriptor values is defined using 

the k-means and EM algorithm so the quantization intervals 

depend on the data. After the quantization and 

approximation of continuous features to discrete, descriptor 

values which are typical for a certain class are determined. 

Furthermore, due to ambiguity and incomplete information, 

it is necessary to adjust and fine-tune the reliability of 

descriptor values or descriptor values itself. 

Furthermore, the impact of transforming numerical into 

descriptive variables on similarities among classes from the 

knowledge base has been analysed. The similarity of classes 



described in discrete values is based on probability, and in 

the case of continuous values on distance. The results of 

similarity among classes obtained by different metrics vary, 

but their ratios match.   

In further work, an analysis should also be conducted on 

how the adjustment of descriptor values and assignment of 

the weight parameters affects the results of classification 

and image annotation.   
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