
Interoperability of open-source VoIP
and multi-agent systems

Marko Skomeršić1, Neven Parat2
1Voice services department, Iskon Internet d.d., Garićgradska 18, 10000 Zagreb, Croatia

marko.skomersic@iskon.hr
2Elektrokem d.o.o., Augusta Šenoe 69, 10360 Sesvete, Croatia

nparat @elektrokem.hr

Abstract – In this paper the interoperability capabilities of
open-source based VoIP (Voice over Internet Protocol) and
multi-agent system will be explored and discussed. It will be
shown how to successfully connect software agents with IP
PBX (IP Private Branch Exchange) and how to make
successful IP PBX monitoring using software agents.
Applications and platforms based on open source, such as
Asterisk IP PBX and JADE (Java Agent Development
Framework) multi-agent platform, will be used in all segments
of the system. This work is the first step in order to create
fully automated VoIP system monitoring platform based on
open source technology which is our final goal. As a proof of
concept we will create and explain a simple multi-agent
system that collects monitoring data from three open-source
IP PBXs.

Keywords - VoIP, Asterisk, IP PBX, JADE agent
platform, open source, IP PBX monitoring

I. INTRODUCTION

Growing popularity of open source based products
such as Asterisk open source IP PBX [1] is a great
motivation to use them in a various VoIP projects.

Open source VoIP solutions are used because of its
numerous advantages compared to proprietary solutions.
For example there is more control of entire system, wider
span of experts who can perform maintenance and
integration, there is no need for licensing fees, and it’s
easier to customize the source code [2]. One of main
advantages of open source - availability of source code free
of charge to all parties that are interested to use it for any
purpose - can also be exploited in finding security issues by
malicious hackers. Most of open source projects don't have
some commercial company or funding behind it which does
not necessarily influence quality of software, but can
prolong development, as it is mostly driven by enthusiasm
and free time of programmers. Today, there is common
opinion that open source products are free. This is not quite
right. The code is free of any charge (with or without some
kind of obligation to the developers depending on the
distribution license), but there are fees for services like
integration, implementation, customization and sometimes
even for documenting the code and the product. So, initial
investment should be quite smaller, but in a long time the
overall price can be even greater than the proprietary
software products. Nowadays there are many companies
that are oriented to the open source market and that number
is constantly growing. Digium Inc. is one example of open

source based company. Digium Inc. is initial creator of the
open source IP PBX called Asterisk.

 Asterisk based VoIP system offers both classical
PBX functionality and advanced VoIP features. It supports
many communication protocols such as SIP (Session
Initiation Protocol), H.323, MGCP, SCCP, E1/T1
PRI/BRI, IAX (Inter Asterisk Exchange protocol), etc.
Asterisk IP PBX uses a modular software architecture
which enables use of only needed modules. The
architecture of dial plan, configurations and other Asterisk
concepts will not be discussed in this paper. That can be
found on the web.

The one of the many benefits of the open source
products is its interoperability with other software products
but there are some issues related to the security, reliability
and availability. In such complex and immense VoIP
systems there is a solution that can reduce or completely
remove the influence of those issues. If we manage to set
up efficient and constant monitoring system, we will be
able to react in time to prevent potential damage.

In comparison with traditional client-server approach
there are three main benefits of AOP (Agent Oriented
Programming) approach. The first one is that mobile agents
solve client/server network bandwidth problem. By moving
a query or transaction from the client to the server, the
repetitive request/response handshake is eliminated.
Second, agents reduce design risk by permitting decisions
about the location of code (client vs. server) to be pushed
toward the end of the development effort, when more is
known about how the application will perform. And third,
agent architecture solve the problems created by
intermittent or unreliable network connections, since agents
can be built to work "off-line" and communicate their
results back when the application is "on-line" [3]. So, the
chosen approach is to use software agents as an automatic
monitoring entity because of their main characterizations
(autonomy, proactivity and an ability to communicate).

AOP is a relatively new software paradigm that brings
concepts from the theories of artificial intelligence into the
mainstream realm of distributed systems. AOP essentially
models an application as a collection of components called
agents that are characterized by, among other things,
autonomy, proactivity and an ability to communicate [4].
There are few software agent platforms which match our
main criteria that the system must be open source based.
Because of its popularity the JADE platform [5] is used.

JADE is a software framework fully implemented in
JAVA [6] programming language under GNU LGPL
software license [7]. It simplifies the implementation of

Fig. 1. Proposed architecture

multi-agent systems through a middle-ware that complies
with the FIPA (Foundation for Intelligent Physical Agents)
specifications [8].

This work will show how we can successfully
integrate the software agents and IP PBX in order to collect
some data from IP PBX and process it. This is only the first
step to our final goal which is to improve reliability and
availability of open source IP PBX using a multi agent
system.

The problem was split into few main sub problems,
each explained in its own chapter. The first sub problem is
how to successfully create software agents using JADE
multi-agent platform which will be able to communicate
with Asterisk IP PBX. This is described in the second
chapter (multi-agent architecture). Second sub problem is
how to communicate with Asterisk IP PBX and which data
we need to collect to make relevant conclusions about IP
PBX load state. This is described in third chapter
(interaction with Asterisk IP PBX).

Fourth chapter (security issues) will introduce reader
with basic security issues in multiagent systems, and
finally, fifth chapter (conclusion and further work)
describes the potential benefits of this kind of architecture
and related further work.

II. SYSTEM ARCHITECTURE

The system consists of two main subsystems. First is

the access IP PBX which is physically placed into the
network DMZ (DeMilitarized Zone - physical or logical
subnetwork that contains an organization's external services
to a larger, untrusted network, usually the Internet in order
to add an additional layer of security to an organization’s
LAN). It is used for VoIP communication with users
outside the internal VoIP network. There are some remote
users that are registered with the access IP PBX, but mainly
it is used for trunking purposes with other IP PBXs outside
internal VoIP network.

Second subsystem is internal VoIP network which
consists of one IP PBX, media gateway, monitoring server
and IP phones.

Booth IP PBXs are connected to the media gateway so they
can call to and receive calls from the existing SOHO
(Small Office/Home Office) network managed by
preinstalled Ericsson MD 110 PBX which is connected to
the PSTN (Public Switched Telephone Network). The
media gateway is needed for converting voice media
provided in one type of network to the format required for
another type of network (i.e. SIP VoIP network to the
ISDN). The complete architecture is shown in figure 1.

Asterisk architecture

Asterisk’s architecture is designed in a modular way
in order to enable maximum flexibility. Specific APIs are
defined around a central PBX core system which handles
the internal interconnection of the PBX, cleanly abstracted
from the specific protocols, codecs and hardware interfaces
from the telephony applications. This allows Asterisk to
use any suitable hardware and technology available now or
in the future to perform essential functions, connecting
hardware and applications. The complete Asterisk IP PBX
software architecture is shown in figure 2.

The essence of Asterisk is PBX Switching system
used for connecting calls between various users and
automated tasks.

Application launcher is used to launch applications
which perform services for users (i.e. voicemail, file
playback, etc.).

Codec translator uses codec modules for the
encoding and decoding of various audio compression
formats used in the telephony industry (i.e. G.711a/µ,
G.723, G.729, etc.).

Scheduler and I/O manager handles low-level task
scheduling and system management for optimal
performance under all load conditions.

There are four loadable module APIs (Application
Programming Interfaces), facilitating hardware and
protocol abstraction. Using this loadable module system,
the Asterisk core does not have to “worry” about details of
how a called is connecting, what codecs are in use, etc.

Channel API handles the type of connection a caller
is arriving on, it can handle VoIP connections, ISDN,
Robbed bit signaling, etc. Dynamic modules are loaded to
handle the lower layer details of these connections.

Application API allows for various task modules to be
run in order to perform various functions.

Codec translator API loads codec modules to support
various audio encoding and decoding formats such as
GSM, G.711a/µ, G.729, etc.

File format API handles the reading and writing of
various file formats for the storage of data in the file
system. There are, also, ODBC (Open DataBase
Connectivity) drivers for interaction with databases.

Fig. 2. Asterisk IP PBX software architecture

For communication with Asterisk IP PBX we will use

Asterisk Management Interface (AMI). The Asterisk
management interface API allows an external application
to query and change Asterisk IP PBX state by sending
actions and listening to responses and events. Basically it is
a simple telnet application which connects to predefined
AMI port.

II. MULTI-AGENT ARCHITECTURE

Multi-agent system consists of one distributed agent
platform (JADE multi-agent platform) and three distributed
containers within main agent platform. For every IP PBX
in the system there is one remote container and there is one
static agent (AsteriskAgent) in each container as shown in
figure 1. AsteriskAgent communicate with Asterisk IP PBX
trough Asterisk Management Interface (AMI) as shown in
figure 3. in order to collect data regarding the IP PBXs
current state. There is one mobile software agent
(ColectorAgent) residing in a main container on a monitor
server which communicates with all other static agents
(AsteriskAgent) residing on remote containers in order to
collect various informations such as current IP PBX load,
number of registered SIP users, number of channels in use,
etc.

After one complete cycle, CollectorAgent brings all
collected data to the monitoring server which process
collected data and present it to the administrator.

CollectorAgent is constantly running its task until it is
stopped by the administrator. This is shown on
CollectorAgent's mobility diagram in figure 4. All of this
collected data can be used to create statistics for future load
projections, maintaince, etc.

Each software agent implements some kind of
behaviors.

The AsteriskAgent has three behaviors. One for
connection with AMI (LoginBehavior) which is basically a
telnet connection setup on an Asterisk manager port (by
default 5038), second behavior which collects monitoring
data from Asterisk and third behavior, used for
communication with CollectorAgent.

Fig. 3. Communication between AMI and
a static software agent (AsteriskAgent)

The CollectorAgent has, also, three behaviors. One
for discovering registered AsteriskAgents and their
addresses, second for communication with AsteriskAgent
and third for delivering collected data.

Fig. 4. CommunicatorAgent cycle mobility diagram

III. I NTERACTION WITH ASTERISK IP PBX

As previously said, AsteriskAgent is used to
communicate with Asterisk IP PBX trough AMI using
asterisk-java package [9] in order to collect relevant data.
When AsteriskAgent starts it registers its services in yellow
pages (DF – Directory facilitator) so it can be found by
CollectorAgent. The source code for registration of service
is shown in fig. 4.

DFAgentDescription

dfd=newDFAgentDescription();
dfd.setName(getAID());
ServiceDescription

sd=new ServiceDescription();
sd.setType("asterisk-show-channels");
sd.setName(getLocalName()+

"-asterisk-action");
dfd.addServices(sd);

Fig. 4. Source code for agent service registration

LoginBehavior is used to log onto Asterisk IP PBX
via AMI. It is started when AsteriskAgent starts. Used
parameters are: IP address/domain name and port of the IP
PBX server, AMI username and AMI password. AMI must
be configured to accept that connection request. This
configuration is in flat file on IP PBX file system called
manager.conf as shown in fig.5.

[HomeAgent]
secret = Marko123
deny = 0.0.0.0/0.0.0.0
permit = 10.2.1.0/255.255.255.0
displayconnects = yes

Fig. 5. Configuration of manager.conf file

Second behavior, called ActionBehavior, is used to

invoke some action on Asterisk IP PBX. These actions can
be all available Asterisk CLI (Command Line Interface)
actions [10] passed to the asterisk as a string parameter.

In our proof of concept we invoke SHOW
CHANNELS action. When invoked, SHOW CHANNELS
action displays the total number of currently used voice
channels and its type. The type of channel can be: Zap
channel mainly used for ISDN interconnections, IAX2
channel which is Asterisk’s trunk channel type, SIP, H.323,
etc. SHOW CHANNELS action also displays a total number
of active calls. Complete output of SHOW CHANNELS
action is shown in figure 6.

Channel Location State Application(Data)
SIP/300 (None) Up BridgedCall(SIP/312)
SIP/312 macro-stdexten Up Dial(SIP/300|20)
SIP/300 (None) Up BridgedCall(SIP/313)
SIP/313 macro-stdexten Up Dial(SIP/300|20)
4 active channels
2 active calls

Fig. 6. SHOW CHANNELS action console output

The received set of informations is parsed in order to
collect only the number of currently active calls. This
number is stored to pass it to the CollectorAgent.
AsteriskAgent can be modified to collect data from IP PBX
in some time interval (i.e. each two seconds) so statistics
can be passed to the CollectorAgent.

For our proof of concept we didn’t implement any GUI
(Graphical User Interface) on a collector agent so it
displays collected data on a console output as shown in a
figure 7.

IP PBXs found: 3
IP PBX 1: <IP ADDRESS 1> ; 0 active calls
IP PBX 2: <IP ADDRESS 2> ; 2 active calls
IP PBX 3: <IP ADDRESS 3> ; 1 active calls

Fig. 7. CollectorAgent console output

IV. SECURITY ISSUES

Traditionally security threats such as masquerading,

eavesdropping, spoofing, service misuse, denial of service,
and tampering of data or manipulation of data are also
applicable for FIPA-based agent systems. These security
threats relate to the confidentiality, integrity or the
availability of the agents and should be considered when
developing an agent system [11].

In our, proof of concept, work there is none of security
techniques implemented and this has been left for further
research and implementation. We propose some solutions
which will greatly improve overall security of proposed
system. Some of this techniques are using PKI (Public Key
Infrastructure) as discussed in [12].

V. CONCLUSION AND FURTHER WORK

This work shows that it is possible to connect open-

source IP PBX with new paradigm of agent oriented
architecture in order to, successfully, create advanced
communication system.

Of course, as all things in a real world, agent based
approach has its strengths and limitations. Main advantages
of AOP are reduced frequency of network use (bandwidth
requirements and repeated interactions), increased
asynchrony between clients and servers so there is no need
for long reliable network connections, increased
distribution and reconfiguration of services which
manifests in overload avoidance and ease adoption to
individual requirements. AOP increases concurrency in the
system which enables task decomposition among multiple
agents so parallel activities can be accomplished. Some
main disadvantages regarding AOP are security issues
consisting of identification, authentication, and protection
from viruses or malicious agents. There is also issue with
transport and migration demands which increase software
complexity [13].

These two different worlds can be applied in various
applications. We can use agents to monitor call load on
each IP PBX and based on results to transfer some calls to
the PBXs which are not overloaded, we can use it to

improve availability of the whole system which is ore final
goal. In order to achieve this we need to setup some virtual
IP PBXs on physically different servers so agents can
power them up or down if some unexpected scenario
occurs (i.e. one IP PBX fails on server A, agent can power
up the same virtual IP PBX on server B).

This is our first work on specific topic, in our further
research we will try to setup a complex system with
prepared virtual IP PBXs (cloned from real ones), central
storage, call detail record, database and registrar server in
order to research some high availability scenarios and
calculate improvement of availability if any.

REFERENCES

[1] Asterisk an open source IP PBX, http://www.asterisk.org,
Digium Inc., 2007.

[2] G. Camarillo, „SIP Demystified“, The McGraw-Hill
Companies, Inc. 2002.

[3] T. Sundsted, “Agents on the move”, JavaWorld.com, 1998.
[4] F. Bellifemine, G. Caire, D. Greenwood, „Developing

multi agent systems with JADE“, John Wiley & Sons, Ltd,
2007.

[5] F. Bellifemine, G. Caire, A. Poggi, G. Rimassa, „JADE a
white paper“, http://jade.tilab.com, October 2007.

[6] JAVA programming language, http://java.sun.com/,
November 2007.

[7] GNU LESSER GENERAL PUBLIC LICENSE, version 3,
 http://www.gnu.org/licenses/lgpl.html
[8] FIPA web site, http://www.fipa.org
[9] Asterisk-java official web site, http://asterisk-java.org/,

November 2007.
[10] Asterisk CLI web site, http://www.voip-info.org/wiki-

Asterisk+CLI, December, 2007.
[11] Siv Hilde Houmb, “Security issues in FIPA agents”,

NTNU, 2002.
[12] Hu, Y.-J., Some thoughts on agent trust and delegation,

Proceedings of the fifth international conference on
autonomous agents, pages 489-496, ACM Press, ISBN 1-
58113-326-X, 2001.

[13] Ignac Lovrek, “Soft mobility, Part I: Mobile software
agents”, FER Zagreb, Department of telecommunications,
February 1999.

