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Abstract

The laboratory demulsification data have been analyzed by the neural network approach. The goal was to predict the demulsification process with the demulsifier component combination not tested experimentally in order to save time and money by speeding up demulsfier formulation. The paper shows how the analysis is performed and presents the promising result: when 6 randomly selected experimental points were left out of the training set, standard deviation of the prediction was 6,5% while leaving out complete training set resulted in standard deviation of the prediction of 16,5%.

Introduction
This paper describes an attempt to predict crude oil demulsification behavior by the application of neural networks. To that end experimental data of demulsification of one specific crude oil type, demulsified  with various demulsifier componet combination, have been collected and the results analyzed by the neural network approach.

The analysis of demulsification process and the prediction of the effectiveness of specific combination of demulsifying components are of significant importance to the ones involved in demulsifier composition. The literature on this subject has two basic characteristics: on one hand, there is a vast number of papers dealing with various aspects of demulsification (1), on the other hand the literature on predicting the most effective combination of the specific demulsifier is, to the best of our knowledge, relatively poor. That fact might be attributed to the significance which adequate and effective demulsifier component composition has to the company, which sells it on the market, or to the complexity of the problem which is determined by an array of various factors. Namely, although lot of specific information can be found in the open or patented literature, the effectiveness of the specific combination of commercial demulsifier connected to the properties of the oil which should be the essence of this work or the ultimate goal, is not revealed in the reports or papers which are published related to this subject.

The variety of components, which are main active ingredient in the commercial demulsifier (that is surface-active agent), is abundant. In addition to that, although the solvent is sometimes considered only as a necessary diluent its influence on the demulsification process is undoubtedly proven. This makes the number of variation even greater so that the development of one satisfactorily efficient demulsifier requires thoughtful strategy. The attempt toward prediction of the activity of specific combination is therefore easily understood.

The literature dealing with this subject, as already mentioned, is (to the best of our knowledge) scarce. The paper by Berger et al. (2) is the only one, which actually puts together the properties of crude oil and demulsifier in order to predict the demulsification. They have used the relationship between the preferred alkane carbon number (PACN) of the demulsifier to the equivalent alkane carbon number (EACN) of the crude oil and the salinity of the emulsified aqueous phase.

According to these authors properly designed demulsifier can be characterized by their Preffered Alkane Carbon Number and this number should be paired to the EACN of the particular crude oil number to help choose the most effective product.

However, the task of determining both numbers is not straightforward. Although this approach, if proven in various cases, might help to restrict the search space it is far from solution of the problem.

Another approach, which is not in the strict sense directed toward demulsifier composition, is concerned with interfacial phenomena of the demulsifier and the crude oil to be demulsified. It does explain certain phenomena and may help in understanding of the process but cannot give any specific answer (3,4,5).

Bearing all this in mind we have taken practical approach in order to develop a reasonably rational algorithm. The fact which are usually given to a demulsifier formulator are:

1. Number of surface-active components

2. Various solvents, and naturally,  

3. Crude oil emulsion from specific oil field, even specific borehole. 

The usual approach is, with natural variations depending upon the knowledge and experience of the formulator, a trial and error procedure. The starting formulations is put together and, based upon experimental results, modifications made and tried again. The number of surface-active agent components and solvents may cause the procedure to become tedious and lengthy task. At this point we have tried to get the help and advantages of neural networks in order to learn the behavior and then help in restricting the set of search space for the best formulation.

Experimental procedure

The fresh oil from oilfield Benicanci in Slavonia has been the object of the experiments. The active ingredients are from ICI, England and the solvents are common solvents used in demulsifier formulations. The BOTTLE TEST (6) is used in determining demulsifier efficiency. The main points of the procedure are: To 100 ml of crude oil 20, 50 or 100 ppm of demulsifier is added, the bottle well shaken and put into the thermostat bath (50 oC). The water separated is estimated and the result presented as percent of the water separated in certain time period. The sample of the results is presented in Table 1.


Neural networks


Artificial neural networks (ANN) are mathematical models derived from the ideas generated in biological neural systems. ANN can be viewed as a connection system, which produces desired output upon stimulation by input. Various networks have been studied and the most popular are: multilayer perceptrons (MLP), Kohonen maps, Hopfield networks (Rumelhart and McClelland, 1989; Ydstie 1990; Psichogios and Ungar,1991; Baughman, 1995). ANN is able to store massive amount of data and association rules for input-output mapping. Their application covers all fields of engineering and science. 


Mathematical model of a neurone is depicted in Fig.1. Each neurone is a nonlinear static-processing unit with several inputs and a single output.


Input signals are modified by multiplication with a corresponding constant Wi, j and a threshold constant is added to produce a total input signal which is than nonlinearly activated or deactivated by the activation function. Various nonlinear activation functions are used, such as Heaviside (flip-flop) function, hyperbolic tangens, and “sigmoid” function given by:
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The output signal from each neurone is calculated from the net input by:
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The MPL neural networks have been in particular of interest to control engineers for their use in adaptive nonlinear control when process models are not available. They are structured as several layers, or planes, each carrying neurones, shown on Fig 2. Signals are passed from the first input layer across hidden layers to the output layer. Progression of signals can be unidirectional from input to output (feedforward MLP) ( Fig. 2), or can have recurrent flows.


The MLP ANN is trained by a set of input-output data. Outputs from ANN are compared to measured output values or targets, and deviation is expressed as a total sum of squared errors (proportional to variance) given by:
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Training of a network is a process of neurone adaptation to minimize the total error E. Selection of ANN structure, i.e. selection of number of hidden layers and number of neurone on hidden layers, is performed experimentally when a series training process for a class of networks are tested. Network models are usually validated by a set of new or “unseen” patterns and by a thorough statistical evaluation of residual errors for the set of trained and untrained patterns. Efficient minimization of E is based on gradient in the space of network parameters (W, (). Change of parameters is calculated in the negative direction of the gradient (steepest descent method):
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The minimization can be batch wise or a “a posteriori”, when all patterns are included in minimization after completion of experiments, or an on-line method is applied when parameters are adapted after each new pattern is available. Gradients are readily calculated by the back propagation method when the derivatives calculated in direction opposite to the signal propagation.  First are calculated derivatives for neurone on the output layer followed by derivatives on the next adjacent inner layer. The derivatives for the output layer and p-th pattern are:
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where h are the signals from the hidden layer. Derivatives at the hidden layer are obtained by:
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In Eq. (5) and (6) is applied the notation by which a scalar function of a vector yields a vector. 


For on-line (pattern by pattern) adaptation, a simple steepest descent method with adjustable momentum is applied.


When all patterns are simultaneously included in training conjugate gradients (Marquardt –Levenberg or Ribiera-Pollack) having second order convergence are very efficient minimization procedures.

Results and discussion

Table 1 presents an excerpt of the results. Seven different demulsifier component combinations (K1-K7) have been tested experimentally. The results of the analysis are presented on the Fig.3-7 and summarized in the Table 2.

The Fig. 3. shows how good NN model may be “forced” to follow  experimental data. Fig.4. displays the same result in a different way. Experimental degrees of separation (DS) are plotted against the ones predicted by NN model.


First, 6 randomly selected experimental points are left out the training set. Prediction appears to be quite good with standard deviation of 6 %, Fig. 5.  When 12 randomly selected experimental points are left out, the prediction gets worse but still satisfactory. With standard deviation of 16,5 %, Fig.6.


The most severe test is presented on the Fig.7.  Intentionally, the largest  complete set of data (K2 combination of demulsifier components, i.e. formulation K2, see Table 1) has been left out and prediction performed by NN model. The standard deviation came out to be 17,5%.

Conclusions

The results presented and discussed in this paper do show that neural network methodology is applicable in this area. The “quality” of the prediction may be discussed, naturally, and more work is necessary to elucidate all the benefits one can get by this approach. In any case, we have shown that the number of experiments can be decreased. Namely, neural network model can learn the demulsification process characteristics and enable to test , with certain statistically expressible confidence, every possible combination of demulsifier components. We believe that this justifies the effort put into developing this type of analysis. 

List of symbols

D
Dosage

DS
Degree of separation

E
sum of squared errors

F
neuron activity function

H
output function of neuron on a hidden layer

I
Index

J
Index

O
output signal from a neuron

P
Index

S
accumulative input signal to a neuron

s1....s4  
weight fraction of solvent

T
training data (experimental)

W
matrix of weighting coefficients

x1....x12 
weight fraction of demulsifier components

Y
neural network output

(
threshold of a neuron

(
gain parameter in minimization procedure
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Fig.1  Schematic representation of a neurone with a sigmoid activation function.

Fig.2. Structure of the NN with 5 neurons on the hidden layer and a single output. The input variables are: t = time, x1....x12 are weight fractions of demulsifier components, s1…s4 are weight fractions of the solvent components, D is a dosage.

Fig.3. Comparison of experimental data (o) of degree of separation with predictions by the neural network model (-). The trainig set of patterns are related to the complete set of data.

Fig.4. Experimental vs.predicted degrees of separation (DS)

Fig.5 Comparison of experimental values of degree of separation (DS – output) with the neural network predictions for a set of 6 randomly selected experimental points (samples). Standard deviation is 6,2 %.

Fig.6 Comparison of experimental values of degree of separation (DS – output) with the neural network predictions for a set of 12 randomly selected experimental points(samples). Standard deviation is 16,5 %.

Fig.7.Prediction of a complete untrained experimental set (combination K2, dosage 100 ppm). Circles are NN models’ predictions and the full line connects  experimental data depicted as full squares.

Table 1. A sample of the training data file. The input training patterns are: t  time, x1…x12 weight fractions of demulsifier componets, s1 … s4 are the weight fractions of the various solvents, D is dossage. The output variable is degree of separation DS. 

Table 2: Standard deviations for  training and test sets
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