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Abstract— This paper describes a modification of authors’
previous work on virtual potential methods for planning and
guidance of autonomous underwater vehicles (AUVs) along
trajectories in R

2 and R
3. The modification replaces the

algebraic sampling procedure of scalar potentials, performed
in the previous algorithm in order to allow for the numerical
approximation of the true local gradient of the potential,
with the direct analytical solution for the local gradient. The
modification also allows for a far more flexible integration of
rotors, allowing fine-tuning by revealing analytical relation-
ships between the stator and rotor components of calculated
acceleration vectors. The modification is critical to the control
of holonomically constrained AUVs with finite dynamics and
significant lags in response to rudder and change of propeller
rpms.

I. INTRODUCTION

Algebraic methods, of which the decentralized control
function control is a family, have long been a preferred
tool of marine control system engineers, in solutions of
optimization, trajectory planning, or direct guidance prob-
lems for various marine vessels [1 – 5]. As the technology,
design and miniaturization of embedded control systems
progresses, leveraging more and more processing power
versus relatively low tact and mediocre memory capacity,
this trend is not about to stall. Some notable advantages
of algebraic methods is that they usually operate at a high
level of abstraction. Although this facilitates solution to
posed control problems with relatively few processor cycles
and even less latency in memory access, the benefit is
offset by a relatively large extent of theoretical research that
needs to be undertaken in order to assure stability, well-
posedness, polynomial complexity of algorithms involved
and other critical considerations that need to be undertaken
before committing production code to an actual vessel. In
favor of algebraic methods, once they have been founded
in sufficiently well understood theory and equipped with
necessary proofs and caveats, they are extremely flexible and
represent a good choice for rapid prototyping.

Due to the peculiar relationship between semantic and
syntactic contents of data in algebraic frameworks (with
relatively high semantic contents in relatively parsimonious
syntactic containers), these methods are also attractive for use
in coordinated and cooperative frameworks of multi-agent
systems.

In line with all of the above, a distributed, cooperative

framework for virtual potential-based guidance of unmanned
vessels has been developed previously in [6 – 8] . The
developed framework is scalable to 2D and 3D applications.
The former is a guidance problem in a 2D plane with 3
degrees of freedom either at some constant depth or altitude
off the bottom, or at the water surface. Alternatively, this
algorithm can be used for the control of three out of the six
degrees of freedom of an AUV cruising along an arbitrary 2D
manifold which is a one-to-one map of a horizontal plane,
for which z is being controlled (varied) by some outside
algorithm, e.g. a a constant-altitude bottom-tracking. The
latter is a guidance problem in a 3D water-space with 6
degrees of freedom.

However, this paper explores the outgrowth of the virtual
potential-based algorithm, based on a scalar field of poten-
tials “living” on the representation of the water-space of
discourse, into the decentralized control-function algorithm
that allows for analytical solution of the gradient of steepest
descent.

In order to allow for a clearer understanding of some of
the relationships involved, and implied connections between
the virtual potentials and decentralized control functions, the
paper focuses on the 2D guidance problem, with a note that
the findings are applicable to a 3D problems, as mentioned
in the Concluding remarks.

The paper proceeds with the preliminary definitions and
overview of the theoretic framework in Section II. The main
body of theory of the decentralized control functions is cov-
ered in Section III. Section IV short-lists the assumptions on
the decoupled linear closed-loop dynamics of the controllable
degrees of freedom of the AUV, based on the results of the
authors’ work on identification by use of self-oscillations in
[9 – 11]. Results of simulations are presented in Section V.
Section VI concludes the paper, pointing to future work and
planned experimentation in the spring/summer of 2010.

II. THE PRELIMINARIES

Therefore, all �x(k), �̃xi(k), �v(k), �a(k) ∈ R2. Also, the
time-index, k will be omitted whenever not critical to under-
standing a mathematical relationship, in order to lighten the
notation. In such a setup, let the knowledge necessary for
trajectory planning be encoded as a set W in (1).

W = {Wi} , i = 1 . . .N (1)



Where N is the total number of features of the water-space
and Wi-s are the individual features, consisting of a single
point, or a convex connected open set of points A i ⊂ R2

contained in an open ε-ball in R
2. If a physical feature, such

as an obstacle, part of geography or a pre-selected no-go-
area is of non-convex shape, it can always be decomposed
into open convex subsets. Such basic features are formally
defined in (2).

Wi = (pi(d), �xi, Si, di(�x, �xi, Si)) (2)

In (2):
- pi(d) : R

+
0 → R, is the isotropic potential distribution

function (pdf) varying only with distance from the i-th
feature. The isotropic pdf maps the exterior of the feature
(since di is only defined on the exterior of a feature) to a
real;
- �xi is the location of the i-th feature, which needs to be
a center of at least one open ε-ball in R2. This allows for
a short-hand “Wi at �xi”. A good candidate for �xi is the
center of the minimum bounding sphere (where the ε-ball
is of minimum radius ε). However, logical choice is such
a �xi that allows for the most parsimonious notation of a
set equations describing the geometry of A i by defining
piecewise or totally its convex hull;
- Si(t), the full measurement of the i-th feature, itself an
NS-tuple of reals (s(i)

1 , s
(i)
2 , · · ·, s(i)

Ns) of cardinality equal to
the number of parameters necessary in addition to �x i to most
sparsely populate the least number of equations defining the
convex hull of Ai. Naturally, Si is a 0-tuple when Ai = {xi},
i.e. when the feature is point-wise;
- di(�x, �xi, Si) : R2\Ai×R2→R

+
0 is a non-negative Euclidean

2D distance from Wi at �xi, to �x ∈ R
2, the position of the

AUV:

di(�x, �xi, Si) = min
�a∈Ai

‖�a(�xi) − �x‖ (3)

Where Ai(�xi) = {�a(�xi)} is the convex hull of the obstacle
centered on �xi ∈ R2, and therefore all �a ∈ Ai(�xi) are
dependent on �xi. Therefore the distance di can be conceived
as taking any two pairs of vectors, with the first, �x ∈ R2 \Ai

describing any point of Euclidean 2-space external to the i-
th obstacle, and the second being the center �x i ∈ R2 of
that obstacle. It is generally the minimum value in the set of
distances of �x to curves constituting the convex hull of A i

(“edges”) and distances to intersections of the same curves
(“vertices”). The determination of whether the closest feature
of the convex hull of the obstacle centered at �x i to the point
�x is a vertex, an edge or a face is dependent on where �x i is
in relation to �x.

A. Feature Classification

The features of interest in the trajectory-planning problem
for an AUV are obstacles, such that the trajectory must not
pass through them, and way-points, such that the trajectory
of the AUV must pass as close as possible, ideally through,
them.

Let both of these distinct classes of features, obstacles and
way-point be described by a potential distribution function:

p(�x(k)) : R
2\Ai→R

+
0 , (4)

Mapping all points in the mission-space to the exclusion
of the interior of the obstacle Ai to some real value of a
potential. Let these pdf-s be uniquely decomposable into
p ≡ pi ◦ di. Here, pi is an isotropic potential distribution
function that maps all points at the same distance from the
feature, {�x ∈ R2, d(�x) = d} to the same pi(d). di(�x) is the
distance between an obstacle or a way-point and the location
of the AUV �x(k) ∈ R

2. This allows for the modeling of
obstacles and way-points within the framework described by
(1 – 3).

III. DECENTRALIZED CONTROL FUNCTIONS

The preceding observations lead to the definition of a class
of pi-s, introduced in (2), P . To allow further simplification
of the trajectory guidance mechanism, this class shall be
explicitly defined by (5 – 7).

P = {pobs(d), pwp(d)} (5)

pobs(d) = exp
(

A+

d

)
− 1, A+ > 0 (6)

pwp(d) =

{
d ≤ r : A−

2r d2 + A−
2 r − A−d0

d > r : A−(d − d0)

A−, r > 0 (7)

With:
- pobs, given in (6) being the form of potential distribution
function used for obstacles;
- pwp, given in (7) being the form of potential distribution
function used for way-points.

Previous considerations finally lead to the possibility of
manipulating the fundamental equation of the virtual poten-
tial methods [12], as follows:

�a = ∇PΣ(�x) = ∇Σ
i

pi(�x)

=
∑

i

∇pi(�x) =
∑

i

∇pi◦ di(�x, �xi, Si) (8)

Directionalizing the distance di by means of (9), (8) can be
surmised into (10):

∀di(�x) = min
�a∈Ai

‖�a − �x‖ :

∃�di = �a − �x, �a = argmin�a∈Ai
‖�a− �x‖ (9)

�a =
∑

i

∂pi

∂d |di · �di

di
(10)

By intervening in the above to lighten the notation, and
denoting ∂pi/∂d with ai, and �di/di with �̂ai (10) is reduced
to (11) below.

�a =
∑

i

ai�̂ai (11)

ai =

⎧⎪⎪⎨
⎪⎪⎩

pi∼pobs : −A+

d2 exp
(

A+

d

)
pi∼pwp, d ≤ r : A−

r d

pi∼pwp, d > r : A−
(12)



With:
- �a being the irrotational acceleration along an ideal con-
servative trajectory;
- ai = ∂pi/∂di is the decentralized acceleration stator-
control function of the i-th obstacle;
- �̂ai being the unit-vector denoting the direction of the
gradient of pi, being (�xi−�x(k))/‖�xi−�x(k)‖ for way-points,
or �̂ai ⊥ Ai, ‖�̂ai‖ = 1, a unit incident normal on the closest
edge, vertex or submanifold of the convex hull of A i.

A. Rotor Modification

The previously described irrotational acceleration, if re-
producible exactly by AUV’s actuators, will guide an AUV
along a trajectory with two basic unintended features:

1) A (non-decaying) limit cycle or a strange attractor
centered on a local minimum of the total potential PΣ,

2) Existence of local minima other than at the location of
the way-point, �xwp ∈ R2.

To take care of the former, a breaking of symmetry of a
vector field �a(�x) implicitly constructed by (11) is required
[citeBar:Rotors. One of the ways of doing so, covered
extensively in [6] is the introduction of rotors (or curls,
in American literature), by design. The introduction demon-
strated in [6], suffers of a certain level of involvement, due
to the algebraic approach of sampling in the potential field,
needing to formulate “slanted tableaus” (pitched surfaces of
potential) rotating or sliding around the edges of A i-s of
obstacles.

In the proposed decentralized function format, the rota-
tional component of the along-trajectory acceleration con-
tributed by the i-th feature can be represented as:

�a rot
i = arot

i · �̂a rot
i (13)

Where:
- arot

i is the decentralized acceleration rotor-control function
of the i-th feature, defined by feature class explicitly, for sake
of simplicity by taking arot

i ≡ ai, i.e. arot
i -s being also of

the form (12);
- �̂a rot

i being the unit vector giving the direction of the
rotational component, defined explicitly by feature class
below.

�̂arot
i =

⎧⎪⎨
⎪⎩

pi∼pobs, sin(ρ) ≤ 0 : [ �̂aT
i | 0 ]T×[ 0 0 1 ]T

pi∼pobs, sin(ρ) > 0 : [ 0 0 1 ]T×[ �̂aT
i | 0 ]T

pi∼pwp : �0
(14)

Where:
- ρ is ∠(�xwp−�xi, �xwp−�x), given in (15), the azimuth of the
AUV w.r.t. the line through the waypoint at �xwp and obstacle
Wi at �xi.

ρ = atan2
(�x − �xwp)�̂j

(�x − �xwp)̂�ı
− atan2

(�xi − �xwp)�̂j

(�xi − �xwp)̂�ı
(15)

Finally, the acceleration along an ideal conservative tra-
jectory can, in terms of the newly developed decentralized

control functions be expressed as:

�aΣ =
N∑

i=1

ai · �̂ai + ai · �̂arot
i =

N∑
i=1

ai(�̂ai + �̂arot
i ) (16)

IV. DYNAMICS

The first of the unintended features mentioned w.r.t. to
the irrotational acceleration along an ideally conservative
trajectory – the appearance of non-attenuated limit cycles
is resolved due to the fact that real AUVs themselves do not
have energetically conservative dynamics. To name a few,
added mass effects, Coloumb and viscous friction, Coriolis
forces, vortex shedding and other compound effects dissipate
energy from an AUV undergoing motion in a waterspace.

In previous work, notably [9 – 11], it is shown how using
a technique of identification by induced self-oscillations in
a closed loop, a non-linear coupled dynamic model of an
AUV can be found. Subsequently an I-PD controller can be
designed [9] to assure robust linear uncoupled behavior of
the two most important AUV’s degrees of freedom controlled
in a closed loop. It can be shown that for most torpedo-
types AUVs, I-PD controllers plus inverse non-linearities
can be designed that allow for the dynamics of surge speed,
v(k) and heading rate of change, ω(k), to be (17) and (18),
respectively.

Gv(s) =
1

T 2
v s2 + 2ζvTvs + 1

(17)

Gω(s) =
1

T 2
ωs2 + 2ζωTωs + 1

(18)

Gv,ω(z) = z−1
z Z {

1
sGv,ω(s)

}
Additionally, both dynamics are allowed to saturate in level
and rate, i.e., there exist:

v = �Z−1 {Gv(z) · Vc(z)} �
a = �Z−1

{
z

z−1Gv(z) · Vc(z)
}
�

ω = �Z−1 {Gω(z) · Ωc(z)} �
α = �Z−1

{
z

z−1Gω(z) · Ωc(z)
}
�

To drive these control loops, the signals vc(k) and ωc(k)
proceed from (16) as follows:

�vc(k) =
T

2
(�aΣ(k) + �a(k − 1)) + �v(k − 1) (19)

�vc(k) ≡ vc∠ϕc(k) :

ϕc(k) = atan2

(�aΣ(k) + �a(k − 1) + 2
T �v(k − 1))�̂j

(�aΣ(k) + �a(k − 1) + 2
T �v(k − 1))̂�ı

(20)

ωc(k) =
2
T

(ϕc(k) − ϕ(k − 1)) − ω(k − 1) (21)

Where ϕ, ω, �a and �v are respectively the measured or
estimated heading, yaw rate, acceleration and velocity of the
AUV, and the quantities subscribed by c are the controller
commands or variables otherwise used in the process of
calculating the commands.



V. SIMULATION RESULTS

To demonstrate the direct applicability of the decentralized
control functions to guidance of AUVs whose dynamics
can be modeled by (17,18), a simulation was performed.
Actual AUV operations are constrained by weather, time of
year, logistics and safety concerns. Simulations alleviate the
concerns (primarily w.r.t. collision avoidance and existence
of non-attenuated, non-convergent behaviors) and guarantee
that the code executing the theoretical consideration in the
previous section, can be bundled into the MOOSDB embed-
ded control architecture of the AUV [14,15].

The simulations assume a finite ideal sensor range of
10m, such that as soon as any obstacle is within 10m of
an agent, the agent is aware of the obstacle and performs
necessary pdf calculations. However, the implementation of
the simulated ranging sensor is such that obstacle masking,
i.e. non-transparency is assured. An agent approaching an
obstacle isn’t able to sense through it. Therefore, if another
farther obstacle exists behind a closer obstacle whose extent
subtends a range of angles wider than the one subtended by
the farther obstacle, the former will not be included in the
calculation of the decentralized control function.

Two batches of simulations were performed, to ascertain
the qualitative ramifications of varying the stator versus
the rotor part of the decentralized control functions of the
obstacles. In both cases, the A+ independent parameter in
(12), but used to form either ai in (11) or arot

i in (13),
was varied in logarithmic increments between the values
(0.04 −−20.00), through values in table II.

The AUV’s dynamics were modeled after (17, 18), and
the coefficients used in both simulation batches are listed in
table I.

TABLE I

PARAMETER VALUES, LINEAR DECOUPLED DYNAMICS OF SURGE

SPEED AND HEADING RATE OF CHANGE

Tv ζv Tω ζω

0.288 0.622 0.341 0.470

A. Variation Of the Stator Repulsive Factor

A set of simulations was performed to ascertain the
criticality of setting the stator repulsive factor, A+

s , i.e. A+ in
(12) when applied to (11), on the clearing of the trajectory
with all obstacles. With the value of A+

s varied, all other
parameters were kept to nominal levels specified in table III.

During the first batch of simulations, A+
r (being the A+

parameter, but for arot
i in (13)) was kept constant at 2.1389

while A+
s was varied according to table II. The resultant

trajectories are displayed in figure 1.

B. Variation Of the Rotor Repulsive Factor

Another set of simulations was performed to inspect the
influence of the rotor repulsive factor, A+

r , i.e. A+ in (13).
As well as in the first experiment, the first priority was the
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Fig. 1. The plot of paths resulting from the variation of A+
r

clearing of the trajectory with all obstacles. With the value of
A+

s varied, all other parameters were kept to nominal levels
specified in table IV.

During the second batch of simulations, A+
s was kept

constant at 2.1389 while A+
r was varied according to table

TABLE II

VARYING VALUES OF PARAMETERS A+
s AND A+

r RESPECTIVELY

Simulation 1 Simulation 2
A+

s (i) A+
r (i)

0.40000 0.40000
0.52895 0.52895
0.69947 0.69947
0.92496 0.92496
1.2232 1.2232
1.6175 1.6175
2.1389 2.1389
2.8284 2.8284
3.7402 3.7402
4.946 4.946
6.5405 6.5405
8.649 8.649
11.437 11.437
15.124 15.124
20.000 20.000

TABLE III

PARAMETER VALUES, STATOR REPULSIVE FACTOR SIMULATION BATCH

A+
r v a ω α

2.1389 3.0 kts 1.5 kts/s 38◦/s 16◦/s2

TABLE IV

PARAMETER VALUES, ROTOR REPULSIVE FACTOR SIMULATION BATCH

A+
s v a ω α

2.1389 3.0 kts 1.5 kts/s 38◦/s 16◦/s2
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Fig. 2. The plot of paths resulting from the variation of A+
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II. The resultant trajectories are displayed in figure 2.

C. Preliminary Study Of Multi-Agent Guidance

Modeling other agents as circular obstacles of unit radius,
and assuming perfect inter-agent awareness, a preliminary
study of a multi-AUV mission was carried out. In the study,
no other intervention in the decentralized control functions
between i-th and j-th agents except the “circular obstacle”
nature of one w.r.t. the other were undertaken (although
results for the numerically sampled virtual potentials were
obtained in [7]). The paths of the trajectories along which
the AUVs were guided are displayed in Figure 3. The
“creeping” effect already discussed in [7] is visible. However,
the “creep” is less dynamic, due to lags incurred by dynamic
modeling of AUVs involved.
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Fig. 3. The paths planned for 4 non-cooperating AUVs simultaneously
traversing a cluttered water-space.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

The results presented represent a significant advance in
the state of the art of the virtual potential-based methods for
trajectory planning previously developed through authors’
research of virtual potentials. The proposed modification
of the earlier method is demonstrably able to cope with
holonomic constraints and non-ideal finite dynamics with
lags in response to rudder and change of main propeller rpm.

B. Future Works

In view of the availability of actual experimental equip-
ment [13], and based on the embedded control system archi-
tecture developed in [14, 15], a series of live water exercises
shall be performed. The planned platform is the Iver 2
AUV, and the planned time-window is the spring/summer
season of 2010. The goal of the exercises shall be to
research all implications of operating in the actual water
column, with influences of currents, wind and waves, and
compare the performance of the algorithm when subjected
to measurement noise and stochastic disturbances.

Important additions to the algorithm before committing to
live water exercises include:

1) A method for non-linear anti-windup, having in mind
the relationships between (ai, a

rot
i ) in (11,13), and

(vc, ωc) in (19–21) assuring that the closed loops of
control of surge speed and heading rate change remain
responsive.

2) A modification of (13) such that there is no rotor action
once a midpoint of a feature is passed, since rotors
compromise the stability of way-points occluded by the
obstacles, i.e. those near obstacles, and on the opposing
side of the obstacle w.r.t. the initial position of the
AUV(s),

3) A provision for backing up. The current framework
assumes that the heading is equivalent to the bearing.
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