
Command Filtered Backstepping Design in MOOS-IvP Helm

Framework for Trajectory Tracking of USVs

Vladimir Djapic2 and Dula Nad1,2

1University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia.
2Work performed while at NATO Undersea Research Centre (NURC), La Spezia, Italy.

2NATO Undersea Research Centre (NURC), La Spezia, Italy.

Abstract— This article describes design and simulation im-
plementation of a nonlinear controller for an underactuated
surface vehicle. The controller is designed using a command fil-
tered backstepping (CFBS) approach. Theoretical background
for controller design is given in the first part of this article.
This nonlinear controller can be used for accurate tracking of
a complex trajectory, for example a circular trajectory. Second
part of the article focuses on implementation in the MOOS-IvP
framework. This framework allows for flexibility in control
and mission planning. Guidance is covered by the MOOS-
IvP implementation of the controller while the COTS autopilot
handles low-level control. The control performance is verified in
simulation which confirms arbitrarily small tracking error. This
paper presents simulation results where external disturbances,
such currents, are also simulated and compensated for.

I. INTRODUCTION

Different approaches for motion control of autonomous

vehicles (land, air, surface, and underwater robots) have been

analyzed in recent past [11], [2].

The literature, generally, distinguishes among two different

motion control problems:

1) path following - where the robot is required to converge

to and follow a path where only spatial convergence is

necessary without any temporal requirement, and

2) path/trajectory tracking - where the robot is required

to track a time parametrized reference with temporal

requirement.

Recently, the concept of path maneuvering was introduced

in order to combine the properties of trajectory tracking

and path following [2]. This problem is solved for the fully

actuated systems and solutions can be found in the nonlinear

control textbooks, such as in [8], pages 540-544. Even though

fully actuated systems are able to independently control the

motion of all their DOFs simultaneously they are impractical

for vehicles moving at speeds above 1.5 - 2 m
s

since they

would usually expend an unnecessary amount of energy

for control action [2]. The authors in [2] have addressed

the subject of straight-line high speed target tracking for

unmanned surface vehicles (USVs) while here, in addition to

straight-line tracking, we show the tracking of the arbitrary,

smooth, complex trajectories with a USV. Thus, we focus

on trajectory tracking which forces the system to follow a

given point as it moves along an operator (or sensor) defined

trajectory. The controller generates yaw rate and velocity

commands. The velocity and yaw rate controller generates

the force and torque commands to achieve the yaw rate and

velocity commands.

Unmanned Surface Vehicles (USVs) are being consid-

ered for the following missions: Mine Countermeasures

(MCM), Anti-Submarine Warfare (ASW), and Maritime Se-

curity (MS). NURC’s USV Mandarina is currently used by

the MCM and Port Protection Programs [10]. For some

searching applications it is a requirement for a vehicle to

accurately follow a specific trajectory, make accurate turns

and continue to follow the next specified trajectory. Many

of these missions require the vehicle to function in complex

Nada cluttered environments.

The researchers at the Mobile Robotics Research Group

at Oxford University, the Computer Science and Artificial

Intelligence Lab and Dept. of Mechanical Eng. at MIT, and

the Naval Undersea Warfare Center in Newport Rhode Island

(NUWC-NPT) have developed the MOOS-IvP Autonomy

Architecture [9], [1]. MOOS stands for “Mission Oriented

Operating Suite”, and IvP stands for “Interval Program-

ming”. This architecture consists of an open-source dis-

tributed autonomy architecture and an approach to behavior

based control of autonomous vehicles that allows reactive

control in complex environments with multiple constraints.

Low-level control tasks such as navigation, depth keeping

and vehicle safety are assigned to the AUV main vehicle

computer, all high-level control inputs are derived from a

separate vehicle payload computer running the MIT MOOS-

IvP system. Our goal is to use the existing MOOS open-

source features and its ability to dynamically react to its

environment in order to increase the functional autonomy of

the existing autonomous vehicles. One such an example is

described in Section IX where an output from a sonar sensor

is used to direct the robot to change its trajectory as the new

mission plan is developed onboard the vehicle in response

to the sensor data. In addition, this architecture enabled us

to implement an advanced nonlinear controller based on

CFBS onboard of the NURC’s Mandarina USV. The program

executing mission planning and control algorithms for stable

trajectory tracking is interfaced with the COTS autopilot

SPECTRE made by H-Scientific Ltd.

The paper is organized as follows. Section II introduces

the problem of trajectory tracking control for a USV. Section

II defines the USV dynamics. Section III outlines the control

law signals. Sections IV, V, VI, and VII present a detailed

2010 American Control Conference
Marriott Waterfront, Baltimore, MD, USA
June 30-July 02, 2010

FrB15.3

978-1-4244-7427-1/10/$26.00 ©2010 AACC 5997

derivation of trajectory tracking control laws. Sections VIII

and IX present the USV and MOOS implementation. The

performance of the control system proposed is illustrated

in simulation in Section X. Finally, Section XI contains

the conclusions and describes some problems that warrant

further research.

II. PROBLEM STATEMENT

The kinematic and dynamic equations for an unmanned

surface vehicle are described as

ẋ = u cos(ψ) − v sin(ψ) (1)

ẏ = u sin(ψ) + v cos(ψ) (2)

ψ̇ = r (3)

u̇ = g(u, r) + F (4)

ṙ = f(u, r) + τ (5)

where x and y are the earth relative position, ψ is the yaw

angle, u and v are the horizontal and lateral velocities in body

frame, r is the yaw rate in body frame, F is the body-frame

control force, τ is the body-frame control moment, g(u, r)
and f(u, r) are friction and other forces acting on the robot.

Since the USV is underactuated the lateral velocity v cannot

be directly controlled but since it can be measured it will

be the input to our control law. For this article, we assume

unit values for the mass and inertia. Accounting for non-unit

values is straightforward.

We are interested in the trajectory tracking problem

where the objective is to force the system output z(t) =
[x(t), y(t)]⊤ ∈ ℜ2 to track a desired ideal output zd(t) =
[xc(t), yc(t)]

⊤ ∈ ℜ2. We use the CFBS approach [5], [4],

[3], [6], [7] assuming that zd and żd are available as inputs

to the control law.

III. CONTROL SIGNAL IMPLEMENTATION

This section summarizes the control law and the stability

properties of the closed loop system. The following equations

describe the control signals

uo
c = uo

xc
cos(ψo

c) + uo
yc

sin(ψo
c) (6)

ψo
c = atan2 (−uo

xc
, uo

yc
) + β (7)

ro
c = −Kψψ̃ + ψ̇c − ψbs (8)

F = −g(u, r) − Kuũ + u̇c − ubs (9)

τ = −f(u, r) − Kr r̃ + ṙc − rbs, (10)

where β, uo
xc

and uo
yc

, ψbs, ubs, and rbs are defined in eqns.

(15), (18), (32), (33), and (34), respectively. The symbols

Kψ , Ku, and Kr represent positive design parameters. In

addition, the control law implements the signals ξx, ξy , and

ξψ using eqns. (22) and (26). Including the three command

filters defined below, the controller has nine states: ξx, ξy ,

ξψ , ψc, ψ̇c, uc, u̇c, rc and ṙc. The control law is derived in

sections IV, V, and VI.

We will use a certain subscript and superscript notation

throughout the article. For example, in addition to the vari-

able u, we introduce the variables uo
c and uc. The symbol

uo
c represents the ideal desired value for u. The symbol uc

represents a filtered version of uo
c . The filter, with bandwidth

determined by a parameter ωn, is defined in Appendix I.

This notation will also be used similarly to define ψo
c , ψc,

ro
c , and rc. Given this notation, the tracking error variables

are defined as

x̃ = x − xc ũ = u − uc

ỹ = y − yc r̃ = r − rc

ψ̃ = ψ − ψc

If ψc = ψo
c , uc = uo

c , and rc = ro
c , then eqns. (6 –

10) would implement a conventional backstepping control

law. However, the conventional backstepping approach would

require analytic expressions for ψ̇o
c , u̇o

c , and ṙo
c , which can

be quite complicated, especially when the designer chooses

Kxy as a function of the state as in Appendix II. The CFBS

approach avoids the analytic derivation of these expressions

by the use of filters. The approach is designed to maintain

the exponential stability properties of the backstepping ap-

proach for a set of compensated tracking errors denoted by

νx, νy, νψ, νu, and νr, and to ensure that the control signals

ψc, uc, and rc (see (21), (25), (29), and (30)) are the same

as those of the conventional backstepping approach to within

an error proportional to 1
ωn

. The closed loop system has the

stability properties stated in Theorems 1 and 2 in [6], [7],

[5], [3]. Theorem 1 shows that the compensated tracking

errors of the 2D CFBS approach have the same properties

as the tracking errors of the standard backstepping approach.

Theorem 2 shows that, by increasing the command filter

natural frequency ωn, the solution to the CFBS closed-loop

system can be made arbitrarily close to the backstepping

solution that relies on analytic derivatives. The proofs of

these Theorems are given in [6], [7], [5], [3].

IV. TRAJECTORY FOLLOWING

The inputs to the position control loop are xc(t), yc(t),
and the derivatives, ẋc, ẏc. We assume that

∥

∥

∥

∥

ẋc

ẏc

∥

∥

∥

∥

≥ ǫ > 0

This section is concerned with the control of [x, y] by

specification of desired values for [u, ψ].

A. Notation Definition

For clarity, we rewrite position dynamics as

[

ẋ

ẏ

]

=

[

ux

uy

]

where
ux = u cψ − v sψ
uy = u sψ + v cψ,

}

(11)

where the symbols cψ and sψ represent cos(ψ) and sin(ψ).
We also defined this same function for the commanded

variables:

uo
xc

= uo
c cψo

c − v sψ0
c

uo
yc

= uo
c sψo

c + v cψ0
c ,

}

(12)

5998

and command filtered variables:

uxc
= uc cψc − v sψc

uyc
= uc sψc + v cψc.

}

(13)

Note that v in eqn. (12) and (13) is not a commanded value,

but is included into the command signal for compensation

of disturbances acting lateral to vehicle movement.

Eqn. (12) can be inverted to give the desired physical

values for uo
c and ψo

c

uo
c = uo

xc
cψo

c + uo
yc

sψo
c

ψo
c = atan2 (−uo

xc
, uo

yc
) + β,

}

(14)

where uo
xc

, uo
yc

are known and β is defined as:

β = arccos
v

∥

∥

∥

∥

[

uo
xc

uo
yc

]∥

∥

∥

∥

(15)

The error signals

ũx = ux − uxc

ũy = uy − uyc
,

}

(16)

will be important in the subsequent analysis.

B. Control Design and Error Analysis

The dynamic equation for x and y can be written as
[

ẋ

ẏ

]

=

[

uo
xc

uo
yc

]

+

[

ũx

ũy

]

+

[

uxc
− uo

xc

uyc
− uo

yc

]

(17)

For the purpose of the control signal design, we select the

signals [uo
xc

, uo
yc

]⊤ as

[

uo
xc

uo
yc

]

=

[

−Kxyx̃ + ẋc

−Kxy ỹ + ẏc

]

(18)

where Kxy > 0 can be time varying. The selection of Kxy

is discussed in Appendix II. With the control signal in eqn.

(18) the x and y position error dynamics are
[

˙̃x
˙̃y

]

=

[

−Kxyx̃

−Kxy ỹ

]

+

[

ũx

ũy

]

+

[

uxc
− uo

xc

uyc
− uo

yc

]

. (19)

The ũx and ũy terms can be manipulated by two very

similar approaches (see Appendix 2 in [7]). In either case

this term can be expressed in the form
[

ũx

ũy

]

=
[

A Bg(ψ̃)
]

[

ũ

ψ̃

]

(20)

Thus, the position error dynamics can be expressed as
[

˙̃x
˙̃y

]

=

[

−Kxyx̃

−Kxy ỹ

]

+
[

A Bg(ψ̃)
]

[

ũ

ψ̃

]

+

[

uxc
− uo

xc

uyc
− uo

yc

]

which is a form suitable for stability analysis.

Define the compensated tracking error signals νx and νy

as
[

νx

νy

]

=

[

x̃ − ξx

ỹ − ξy

]

. (21)

where ξx and ξy are defined as

[

ξ̇x

ξ̇y

]

=

[

−Kxyξx

−Kxyξy

]

+
[

A Bg(ψ̃)
]

[

ξu

ξψ

]

+

[

uxc
− uo

xc

uyc
− uo

yc

]

. (22)

with ξx(0) = 0 and ξy(0) = 0. With these definitions, the

dynamics of the compensated tracking errors are
[

ν̇x

ν̇y

]

=

[

−Kxyνx

−Kxyνy

]

+
[

A Bg(ψ̃)
]

[

νu

νψ

]

(23)

where νu and νψ are defined in eqns. (25) and (29).

V. YAW CONTROL

The objective of this section is to design a controller

to stabilize the dynamic system of eqns. (1) through (3).

Because the position dynamics were already discussed, this

section focuses on selection of ro
c to stabilize the ψ dynamics.

For ψ tracking control, the input is the yaw command ψc(t)
and its derivative ψ̇c(t) which are produced by a command

filter with input ψo
c as discussed in Appendix I.

For yaw control, based on eqn. (3), we define the signal

ro
c = −Kψψ̃ + ψ̇c − ψbs

where Kψ is a positive constant. Using this definition, the

closed-loop tracking error corresponding to eqn. (3) is

ψ̇ = ro
c + (r − rc) + (rc − ro

c)

= −Kψψ̃ + ψ̇c − ψbs + r̃ + (rc − ro
c)

˙̃
ψ = −Kψψ̃ − ψbs + r̃ + (rc − ro

c). (24)

The compensated tracking error signal for the ψ dynamics

is defined as

νψ = ψ̃ − ξψ. (25)

The signal ξψ is defined as

ξ̇ψ = −Kψξψ + (rc − ro
c) + ξr (26)

with ξψ(0) = 0. With these definitions, the dynamic equation

of νψ is

ν̇ψ =
˙̃
ψ − ξ̇ψ

= −Kψνψ − ψbs + νr, (27)

where νr is defined in (30).

VI. VELOCITY AND YAW RATE CONTROL

The objective of this section is to design a controller to sta-

bilize the dynamic system of eqns. (1–5) using backstepping.

This section focuses on selection of F and τ to stabilize the u

and r tracking error dynamics. For u and r tracking control,

the inputs are the horizontal speed and yaw rate commands

uc(t) and rc(t) and their derivatives u̇c(t) and ṙc(t) which

are produced by command filters with input uo
c and ro

c as

discussed in Appendix I.

5999

For tracking control using eqns. (4-5) we select the control

force and the control torque as

F = −g(u, r) − Kuũ + u̇c − ubs

τ = −f(u, r) − Kr r̃ + ṙc − rbs, (28)

where Ku and Kr are positive constants.

With this choice of the control signal the dynamics of the

u and r tracking errors are

˙̃u = −Kuũ − ubs

˙̃r = −Kr r̃ − rbs

The signals ξu and ξr are identically zero; therefore,

νu = ũ (29)

νr = r̃ (30)

and the dynamics of the compensated tracking errors are

ν̇u = −Kuνu − ubs

ν̇r = −Krνr − rbs.

}

(31)

VII. BACKSTEPPING TERMS

The backstepping terms that are inputs to our control law

are defined as

ψbs = g(ψ̃)⊤BT

[

νx

νy

]

(32)

ubs = AT

[

νx

νy

]

(33)

rbs = νψ. (34)

The stability proof is beyond the scope of this conference

paper since a similar proof is shown for a land robot in [7]

and the reader can refer to this paper for the stability analysis.

VIII. UNMANNED SURFACE VEHICLE (USV)

NURC’s Mandarina USV [10] was designed with the max-

imal use of COTS hardware in mind. The prototype vehicle,

a 4.6-meter rubber boat, was build around the SPECTRE

autopilot made by H-Scientific Ltd for the capability of

countering underwater intruders.

Mandarina is equipped with forward and side-looking

multibeam sonar for target following and close observation.

Navigation sensors onboard include a motion reference unit

(MRU) and GPS.

MOOS-IvP infrastructure uses serial communication to

transmit guidance information to SPECTRE.

IX. MOOS-IVP IMPLEMENTATION

The similar controller to the one described in Section III

was previous applied to the second order system [5] and

to the land robot [3]. In this paper we apply the same

control design to the USV described in VIII. Controller

implementation is done via MOOS-IvP.

Frontseat/Backseat control infrastructure is shown in Fig-

ure 1. Guidance and sonar processing is performed on the

backseat computer. Access to actuators from the backseat

is not allowed. Course, course rate and speed control will

Fig. 1. Block diagram of the control system implemented on the Mandarina
USV.

be performed by the frontseat. Due to this limitation, only

equations (6) through (8) are implemented on the backseat

controller.

MOOS processes communicate through a MOOS database

in a publish-subscribe manner. Variables of interest are pub-

lished to this database by processes, while others subscribe

to variables they need. Modular design is achieved this way.

For example, backstepping process uses information about

X and Y vehicle position. X and Y is supplied by a differ-

ent module. We could easily switch between modules that

estimates X and Y from navigation data without resetting

the backstepping process.

Trajectory generator in Figure 1 generates a circular trajec-

tory around a target point. Idea behind the circular trajectory

is keeping the target in the side-looking sonar’s field of view.

This way the target can be mapped from all sides enabling

easier identification. The target point is determined by sonar

processing. An application has been developed (by Alberto

Grati, NURC) that utilizes information from one or more

BlueView P450 multi-beam sonars. Idea behind this is to

detect a potential target through sonar image processing.

Currently an operator identifies the target from a sonar image

and clicks on it to feed-back the target position. It is obvious

that with addition of sonar image processing this could be a

fully autonomous system as described above.

Speed, course or course rate are calculated by the CFBS.

Implementation of the controller is separated in two pro-

cesses as can be seen on Figure 1. Calculated values are

then used by the HelmIvP process, [1]. HelmIvP uses Interval

Programming to determine the best point inside the guidance

domain (speed/course or speed/course rate). HelmIvP pub-

lishes this desired guidance set points into MOOSDB from

where they are sent to the frontseat autopilot. Reason why

we use HelmIvP, instead of directly sending set points to the

frontseat, is because we have multiple vehicle behaviours

that we want to run concurrently.

Parallel to trajectory following behaviour we have an ob-

stacle avoidance behaviour. Suppose we have an obstacle on

our circular path. Without an obstacle avoidance behaviour

we would need to adjust our trajectory generation to avoid

the obstacle. With an obstacle behaviour we need not worry

about adjusting the trajectory. HelmIvP will, based on pri-

orities and objective functions calculated by each behaviour,

6000

0 5 10 15 20 25 30 35 40 45 50
−20

−10

0

10

20

Time (s)

X
 p

o
s
it
io

n
 (

m
)

Tracking X

X

c0

X
c

X

0 5 10 15 20 25 30 35 40 45 50
−15

−10

−5

0

5

Time (s)

Y
 p

o
s
it
io

n
 (

m
)

Tracking Y

Y
c0

Y
c

Y

Fig. 2. X and Y position vs. Time: Red line is the actual vehicle trajectory,
blue line is the command, and the green line is filtered command.

choose valid set points to avoid the target and, when the

danger of collision passes, get back on the desired trajectory.

In section X we show simulation results of our trajectory

tracking behaviour.

X. SIMULATION RESULTS

Simulations were performed in a MOOS framework as

well. We used MOOS for simulation, instead of Matlab,

because the controller is implemented in this framework.

This way we can get better insight how the controller will

function in practice.

Mission objective was to circle around the origin of the

local coordinate system with a cruising speed of 1 m/s, at a

radius of 15 meters. Current of magnitude 0.6 m/s in a 45◦

direction was added as a disturbance.

Parameter Kxy is changed adaptively as described in Ap-

pendix II. The control law parameters were as follows:ωn =
5 rad

s
, ζ = 0.9, k̄ = 0.5, α = 0.75, Kψ = 0.75. Ku and

Kr are not set since only ro
c and uo

c are valid inputs for the

SPECTRE autopilot. IvPHelm and the CFBS controller are

running with sampling frequency 10 Hz.

Result are shown in figures 2 through 6. Figure 2 shows

the position converge to the desired trajectory. When the

vehicle converges to the trajectory is keeps tracking the

command filtered trajectory. Static error in tracking the

desired trajectory can be made arbitrarily small as mentioned

in section III.

On figure 3 yaw angle behaviour and tracking is shown.

We observe that yaw angle converges to the desired value.

Yaw angle convergence is achieved through yaw rate control.

Yaw rate is shown in figure 3. We observe that signals

converge after the vehicle has stabilized on the desired

trajectory. We observe that the vehicle has a hard time

following these signals. This problem occurs because we do

not implement the whole CFBS controller.

0 5 10 15 20 25 30 35 40 45 50
−4

−2

0

2

4

Time (s)

Ψ
 a

n
g
le

 (
ra

d
)

Tracking Ψ

Ψ
c0

Ψ
c

Ψ

0 5 10 15 20 25 30 35 40 45 50
−2

−1.5

−1

−0.5

0

0.5

Time (s)

Y
a
w

 r
a
te

 (
ra

d
/s

)

Rate tracking control

r
c0

r
c

r

Fig. 3. Yaw and Yaw rate vs. Time: Red line is the actual vehicle state,
blue line is the command, and the green line is filtered command.

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

Time (s)

V
e

lo
c
it
y
 (

m
/s

)

U

c0

U

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

Time (s)

K
 g

a
in

 (
1

/s
)

Fig. 4. Speed and variable gain Kxy error vs. Time: Green line is the
estimated vehicle speed, and the blue line is speed command. Kxy is
displayed on the bottom picture.

Position gain Kxy is recalculated in each step to limit

maximum speed command signal and avoid unnecessary

turning in case of trajectory lead point overshoot. Gain

change versus time is displayed in figure 4. Vehicle starting

point was chosen far from the starting point of the trajectory

to demonstrate benefits of adaptive Kxy gain. We limited the

maximum speed value by choosing ū, defined in Appendix

II, appropriately. Kxy is changing while the vehicle is far

from the trajectory lead point. Large position error would

result in a large speed command, therefore Kxy is decreased

to compensate for this and ensure that the command signal

is feasible. Once position errors become smaller Kxy gain

becomes constant.

Under normal operating conditions in land vehicles, lat-

eral forces are small or non-existent. Therefore, they do

not represent a problem. However, in surface crafts forces

6001

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

X position (m)

Y
 p

o
s
it
io

n
 (

m
)

2D tracking stairs

Desired track

Vehicle track

Fig. 5. Trajectory of the vehicle on the x-y plane. The actual vehicle
trajectory (green) starts at the position it was translated in by the currents
while the controller was offline. The commanded trajectory (blue) is a
15.0 m clockwise circle starting at (15, 0).

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

Time (s)

B
e

ta
 a

n
g

le
 (

ra
d

)

Fig. 6. Beta angle. Angle is changing to direct the vehicle into the current
so that lateral movement can be compensated.

caused by currents and wave motions can have a great

impact on vehicle movement. Partly compensating for this

disturbances can yield better and more accurate control over

the vehicle. Lateral disturbances acting on the vehicle have

been integrated into the CFBS controller via the term v.

With estimation of this value we can compensate for lateral

disturbances. In figures 5 and 6 we display simulation results

with this compensation enabled.

Figure 5 show the vehicle converging toward the desired

trajectory. Compensation of lateral forces is achieved by

manipulating vehicle yaw and steering the vehicle to counter

currents. Forces acting perpendicular to movement are can-

celed out. Vehicle is effectively crabbing along the track. Yaw

angle manipulation is achieved by calculating the factor β in

eqn. (7). Factor β versus time is displayed in figure 6.

XI. CONCLUSION

This article has discussed the design and derivation of a

CFBS approach to design a stable translational controller

(i.e., z(t) = [x(t), y(t)]⊤) applicable to a USV. The mission

scenario specifies the position and desired speed commands

which are command filtered to produce inputs (together with

their derivatives) for the translational and yaw controllers.

The commands (uc) and (rc), generated by the translational

and yaw loop, are inputs to the velocity and yaw rate

controllers. The u and r controller determines the appro-

priates actuator force/torque. Simulations have shown that

it is feasible to implement CFBS controller in the MOOS-

IvP structure. MOOS-IvP is becoming popular in surface

and underwater vehicle control. Authors hope that in time

a complete CFBS controller implementation will be possible

on the real vehicle. Several plans had been laid for the

future. Implementing the whole CFBS controller is our first

priority. Testing the range of target detection with a vehicle

mounted sonar is planned for October, 2010. CFBS controller

described here will be used to perform these testing.

APPENDIX I

COMMAND FILTER

The purpose of this appendix is to provide an example and

discussion of a command filter. Advanced control approaches

often assume the availability of a continuous and bounded

desired trajectory yc(t) and its first r derivatives y
(r)
c (t).

The first time that this assumption is encountered it may

seen unreasonable, since a user will often only specify

a command signal yd(t). However, this assumption can

always be satisfied by passing the commanded signal yd(t)
through a single-input, multi-output prefilter. This procedure

is explained in detail in for example [6].

Throughout, this article refers to filtering of a signal xo
c to

produce a bandwidth limited signal xc and its derivative ẋc.

The state space implementation of such a filter is

ẋ1 = x2

ẋ2 = −2ζwnx2 − w2
n (x1 − xo

c)

where xc = x1 and ẋc = x2. Note that if xo
c is bounded,

then xc and ẋc are bounded and continuous. The transfer

function from xo
c to xc is

Xc(s)

Xo
c (s)

= H(s) =
w2

n

s2 + 2ζwns + w2
n

(35)

which has a unity gain at low frequencies, damping ratio ζ

and undamped natural frequency ωn. The error |xo
c(t)−xc(t)|

is small if the bandwidth of xo
c(s) is less than the bandwidth

of H(s). If the bandwidth of xo
c is known and the goal of the

filter is to generate xc and its derivative with |xo
c −xc| small,

then the designer simply chooses ωn sufficiently large.

Note that the signal ẋc is computed by integration, not

differentiation. This helps to decrease the effects of mea-

surement noise; nonetheless, noise will impose a tradeoff in

how large of a value can be selected for ωn.

APPENDIX II

SELECTION OF CONTROL GAIN

Eqn. (18) has the form,
[

uo
xc

uo
yc

]

= vd − KxyE

6002

Desired Trajectory

Desired location

E

Vd

Fig. 7. Trajectory depiction

where

vd =

[

ẋc

ẏc

]

and E =

[

x̃

ỹ

]

The quantity vd is the velocity vector that causes the vehicle

to follow the trajectory given that the vehicle was currently

on the trajectory. The quantity KxyE is the feedback term

that causes the vehicle to converge toward the trajectory.

The definition of (uo
xc

,uo
yc

) from eqn. (18) defines (uo
c ,ψo

c)

as in eqn. (14). This subsection discusses technical details

related to the selection of Kxy in eqn. (18). The gain Kxy

is changed as a function of the control state information to

achieve two objectives. First, the vehicle yaw should never

differ from the trajectory heading by more than 90 degrees.

Second, the norm of the the term KxyE should always be

less than a parameter ū > 0. The purpose of the second

constraint is to ensure that poor initial conditions do not yield

unreasonably large speed commands to the vehicle.From

definition of Kxy(t) we can see that when ‖E‖ is large

enough Kxy is proportional to ū. Based on this relation

we can see that ū can limit position error involvement

in generation of speed command signals, limiting speed

command values.

For the stability analysis, the value of Kxy must be pos-

itive; however, its magnitude can be manipulated to achieve

secondary performance objectives such as those stated above.

Consider the situation depicted in Figure 7 where the inner

product of vd and E is positive (i.e., the robot is ahead of

the current desired trajectory position). Depending on the

value of Kxy , the commanded yaw angle could result in the

vehicle circling to get to the desired location. In particular,

when Kxy‖E‖ > ‖vd‖, the vehicle yaw may be commanded

in a direction opposite to the direction of vd. Typically, this is

not desirable. To prevent this we must ensure that the angle

between vd and vd − KxyE is less than 90 deg:

〈vd, (vd − KxyE)〉 ≥ 0 (36)

‖vd‖
2 ≥ Kxy〈vd, E〉. (37)

There are three possible cases:

1) 〈vd, E〉 > 0 : This is the problematic case that could

result in the vehicle pointing opposite to the desired

velocity if Kxy is too big. The value of Kxy should

be selected such that

Kxy ≤
‖vd‖

2

〈vd, E〉
.

2) 〈vd, E〉 = 0 : In this case, the value of Kxy does not

matter.

3) 〈vd, E〉 < 0 : In this case, any positive value of Kxy

satisfies eqn. (37).

Therefore, the designer specifies positive constants k̄ and

0 < α < 1. The parameter k̄ is the largest allowable position

control feedback gain. At each time instant, the value of Kxy

is selected as

Kxy(t) =

min
(

k̄, ū
‖E‖

)

if 〈vd, E〉 ≤ 0

min
(

α‖vd‖
2

〈vd,E〉 , k̄, ū
‖E‖

)

if 〈vd, E〉 > 0.

This definition of Kxy(t) is a positive, continuous function

of time. In situations such as that in Figure 7, this approach

results in the vehicle driving towards the trajectory with the

tangential component small enough that the trajectory point

will ultimately catch up to the vehicle. In the case where the

vehicle is on the trajectory directly in front of the desired

location, this approach causes the vehicle to drive slower

than the desired point is moving, in effect waiting for the

desired position to catch up.

ACKNOWLEDGMENT

The authors gratefully acknowledge the NATO Undersea

Research Centre (NURC) for funding Mr. Dula Nad under

the Visiting Researcher Programme (VRP). Any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the author(s) and do not necessarily

reflect the views of the NURC.

REFERENCES

[1] M. R. Benjamin, H. Schmidt, and J. Leonard. A Guide to the IvP

Helm for Autonomous Vehicle Control, December 2007.
[2] M. Breivik, V.E. Hovstein, and T.I. Fossen. Straight-line target tracking

for unmanned surface vehicles. Modeling, Identification and Control,
2008.

[3] V. Djapic, J. A. Farrell, and W. Dong. Hybrid control design applied
in land vehicle behavior based switching controller. In Proceedings

of the 2008 IEEE Multi-conference on Systems and Control, 2008.
[4] V. Djapic, J. A. Farrell, and W. Dong. Land vehicle control using

command filtered backstepping approach. In Proceedings of the

American Control Conference, 2008.
[5] V. Djapic, J. A. Farrell, and W. Dong. Unifying behavior-based control

design and hybrid stability theory. In Proceedings of the 2008 IEEE

Multi-conference on Systems and Control, 2008.
[6] J. A. Farrell, M. Polycarpou, M. Sharma, and W. Dong. Command

filtered backstepping. IEEE Transactions on Automatic Control, 2007.
[7] J. A. Farrell, M. Polycarpou, M. Sharma, and W. Dong. Command

filtered backstepping. In Proceeding of the IEEE American Control

Conference, 2008.
[8] H. K. Khalil. Nonlinear Systems. Prentice-Hall, New Jersey, 3 edition,

2002.
[9] Paul Newman. Introduction to Programming with MOOS, December

2007.
[10] T.J. Pastore. An unmanned surface vessel for subsurface threats in

harbours. In Proceedings of the AUVSI’s Unmanned Systems Europe

2009, 2009.
[11] D. Soetanto, L. Lapierre, and A. Pascoal. Adaptive, non-singular path-

following control of dynamic wheeled robots. In Proceedings of the

42th IEEE Conference on Decision and Control, 2003.

6003

