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Abstract

Segmentation of computed tomography (CT) head images is an important step in
quantitative analysis of human spontaneous intracerebral brain hemorrhage (ICH). A
new multiresolution probabilistic approach for segmentation of CT head images
containing ICH region is presented in this work. In the proposed method, the
segmentation problem is viewed as a pixel labeling problem. In this particular
application the labels are: background, skull, brain tissue, and ICH. The proposed
method is based on the Maximum A-Posteriori (MAP) estimation of the unknown
pixel labels (i.e. the segmented image). A Markov random field (MRF) model has
been used for the posterior distribution. The MAP estimation of the segmented image
has been determined using the simulated annealing (SA) algorithm. The
multiresolution approach has been applied in order to speed up the SA algorithm.
Experimental results have demonstrated good results and proved the usability of the
method.
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1. Introduction

One of the most important steps in procedures for medical image analysis is
segmentation. In particular, segmentation of computed tomography (CT) head images
is an important step in quantitative analysis of human spontaneous intracerebral brain
hemorrhage (ICH). An accurate segmentation of ICH is required for image-based
measurement of the ICH volume. In general, the most difficult step in image-based
measurement systems is segmentation of the region of interest. Once the region is
determined it is easy to compute the desired measurement value, e.g. the volume.

A number of techniques have been applied to the problem of CT head image
segmentation including clustering algorithms (Bezdek 1993, Loncaric 1996, Loncaric
1996/2), neural networks (Chiou 1995, Ozkan 1993, Amartur 1992), morphological
methods (Loncaric 1995, Thomas 1991), and knowledge-based methods (Li 1993). An
overview of stochastic image analysis methods can be found in (Dubes 1989).

In this work we describe a multiresolution stochastic method for segmentation of CT
head images based on simulated annealing (SA). The paper is organized as follows. An
overview of SA algorithm for image segmentation is given in Section 2. A description
of the proposed multiresolution segmentation method is given in Section 3. Results and
discussion are provided in Section 4. Finally, a conclusion is given in Section 5.



2.  Simulated annealing algorithm for image segmentation

In this approach, the image segmentation problem is viewed as the pixel labeling
problem. To define the pixel labeling problem, consider a set of objects (image pixels)
and a set of object labels (pixel labels) L={l
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} (Dubes, 1989). In image

segmentation, the labels denote the pattern classes in the image. The pixel labeling
problem consists in estimating the true pixel labeling x={x
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}. The stochastic

formulation of the problem is as follows. The image is viewed as a random field, i.e. as
a two-dimensional sequence of random variables. The realization of the random field is
our image to be segmented, and is denoted Y={Y
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}, where Y

t
 is the feature

vector associated with the t-th pixel. Information about neighborhood influence
(context) enters the labeling problem through a Markov Random Field (MRF)
statistical dependence among the neighboring pixels. Given  se observed feature
vectors, Y=y, and the contextual information as an MRF, P(X=x), the pixel labeling
problem is to find the 'optimal' estimate of the true labeling x. The Maximum A-
Posteriori (MAP) method estimates x by maximizing the posterior probability of X=x,
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given Y=y. In order to find a MAP estimate we have to  minimize a complicated
function of M variables, where M is number of pixels in the image.

Simulated annealing is a method of function optimization that tries to avoid the pitfalls
present in other methods for optimizing functions of many variables. There are no
assumptions about the smoothness of functions to be optimized, but the process of
optimization is computationally demanding The SA algorithm is as follows (Dubes,
1989):

1.  Choose an initial temperature T.
2.  Initialize x by choosing x

t
 as the label x

t
 that maximizes P(Y
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t
) for each pixel

t.
3. Perturb x into z by randomly choosing site t and setting its label to a random value

from {0, 1, ..., G-1}.
∆ = −U z y U x y( | ) ( | )

If ∆>0 then replace x
t
 by z else replace x by z with probability e

∆/T
.

4.  Repeat (3) N
iter

 times.

5.  Replace T by f(T) where f is the monotonically decreasing function.
6.  Repeat steps (3)-(5) until frozen

In the above algorithm, P(.|.) is a conditional probability density function of the gray
levels in the image for a specified label. The probability density function is
approximated with a Gaussian function of the form

P Y y X x e
yt at( | )

( )= = =
− − 2

2



G is the number of labels in the image, and U(.|.) is the energy function that defines the
energy of a single pixel. The energy U consists of two parts, the first part describes
how well the pixel’s label fits its gray value, and the second part describes how
compatible the pixel is with its neighborhood in terms of its gray value. The first part
can simply be calculated using the expression 1-P(.|.),  where P(.|.) is the probability
density function. The neighborhood influence is calculated by checking the 4-
neighborhood (up, down, left, right), to see weather the pixel’s label matches with the
surroundings. If not, the energy U is increased by k-times a constant factor, k being the
number of pixels in the neighborhood which do not match the viewed pixel label.

The choice of a cooling function f, the initial temperature T, and the number of
iterations is done experimentally. The temperature must be lowered slowly to prevent
entrapment of the algorithm in the local minima. There is a number of ways to lower
the temperature, and in this work we have used:

f T T( ) , ,= ⋅ ∈ 〈 〉α α 0 1

3.  Multiresolution segmentation using SA

The problem in the practical realization of the SA algorithm is that even for a
moderately sized image, e.g. 256 x 256 the number of variables (i.e. pixels to be
labeled) in the optimization space is 65,536. This number is even larger in case of
higher resolution images. This is the reason for the large computational complexity of
the algorithm leading to a long execution times. To overcome this difficulty and speed
up the algorithm we have developed a multiresolution image analysis approach. The
general idea is to reduce the number of variables to be optimized and thus reduce the
computational burden. The proposed multiresolution SA algorithm is as follows:

1. Let S be the original image at resolution NxN
2. Let {S0, S1, …, Sk-1} be the multiresolution pyramid of  k levels, where S0=S,

obtained by binary subsampling the original image S.
3. Perform the SA segmentation on the image of the lowest resolution Sk-1.
4. for  z=k-2, …, 0 do {multiresolution pyramid levels}
5. Obtain temporary image T by interpolating image Sz-1 by a factor of 2.
6. Clear list L
7.    for  each pixel in T
8.         Let p(l) be an array of probabilities,  p(l)=P(Yt=yt|Xt=l), l=0, …,G-1
9.         if p(pixel’s label currently in T) is not equal to max p(l)
10.       then add four pixels, obtained by expansion of pixel at lower resolution to list

L. The four pixels in question are those expanded from the lower resolution
and created from the same pixel as the one being checked

11.  endfor
12.  Perform SA segmentation of the image Sz using T as initial image and only test

pixels from the list L.
13. endfor

In step 5 we conduct interpolation of the lower resolution image by pixel replication



Each pixel at the lower resolution is expanded to four pixels at the higher resolution
which are labeled with the same label as in the previous level. Expansion is done by
placing the pixel’s label at site (x,y) to pixels, of the higher resolution image, at sites
(2x,2y), (2x+1,2y), (2x,2y+1) and (2x+1,2y+1).  In step 6 we clear the list L. This list
contains a number of pixel sites in the form (x,y). These are sites that need to be
checked in the next iteration of the SA algorithm, and the only pixels we work with
during the segmentation. Labels placed in step 5 do not necessarily represent the best
labeling, so it is necessary to perform a check of the each newly assigned label. The
check is based on how the pixel’s gray level fits the probability density function, of the
gray levels, of the three types of regions present in the image (Steps 7-10). If the label
inherited from the previous level is not the best, the entire cluster of four pixels is
placed on the list for reassessment. The entire cluster is placed on the list so that the
pixel’s neighborhood is also reassessed. Each checked pixel is given its optimal label
based on its gray level.
The segmented image and a list of pixels for reassessment created in this way is given
in the step 12 to the SA algorithm.

4. Results and Discussion

The conducted experiments included CT images of resolution of 512x512. The
multiresolution algorithm used four multiresolution levels starting at resolution 64x64
to 512x512. The choice of cooling function in the SA was a linear function with a
constant factor of 0.975. Initial temperature was set to 50 and number of iterations to
one quarter of M (the total number of pixels at current resolution).

The SA algorithm is relatively fast at the lowest resolution. At higher resolution, only a
small portion of pixels is reassessed. The final effect of all this is that we get the same
quality of segmentation but up to five times faster. The typical execution times are 11
minutes for the conventional SA algorithm, and about 3 minutes for multiresolution SA
algorithm.

Figure 1 Segmented
image

Figure 2Original image



5. Conclusion

The multiresolution SA method proposed in this work has shown good results when
applied to the problem of segmentation of  CT images. The method has shown to be
computationally efficient compared to the conventional SA algorithm implementation.
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