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Abstract—Guidewire segmentation is the first step in producing
automated tracking system to aid the surgeon during interven-
tions. Most of the currently proposed methods for guidewire
detection do not take into account X-ray imaging model and thus
perform sub-optimally. We describe a simple imaging model and
show how line detection technique based on the eigneanalysis of
the Hessian matrix can be adapted to the model. Such adaptation
improves detection results and allows application for a wider
range of input images. Furthermore, we show how to choose
an optimal set of parameters for the detection thus making the
method fully automated.
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I. INTRODUCTION

Minimally invasive endovascular intervention is the pre-
ferred treatment method for various vascular diseases. During
such intervention guidewires are introduced into the cardio-
vascular system and must be navigated to a point of interest,
usually a pathology. Accurate positioning and guidance of the
guidewire is important and is one of the prerequisites for the
successful procedure. The first step in constructing an auto-
matic guide wire tracking system is guidewire segmentation.

We assume that X-ray imaging modality yields a 2D image
where the guidewire is visible as a thin dark line. The actual
imaging geometry is not of interest as the problem we discuss
is limited to 2D segmentation. So we seek to segment the
guidewire in a fluoroscopic image where it appears as a thin
almost invisible line (Fig. 1). For this task any of the existing
and well understood line or ridge detectors can be chosen.

Robust almost optimal line and ridge detectors are described
by Steger [1] and Lindeberg [2]. Both are based on the analysis
of the eigenvalues and eigenvectors of the Hessian matrix
at preselected scale(s). Those approaches were extended to
biomedical imaging applications in several studies: by Frangi
et al. in [3] who define a vesselness measure that is based on
the eigenvalues of the Hessian matrix to be used for extraction
of line-like or tube-like structures, and by Baert et al. [4]
and Walsum et al. [5] who apply it to the guidewire tracking
problem. Other line detection approaches are based on families
of rotated and steerable filters, but those are slightly more
computationally expensive while the results are comparable to
the Hessian based methods. A comparison of methods is given
by Bismuth et al. [6] where the Hessian based method is found
to be overall the fastest one while yielding results comparable
to other techniques.

Fig. 1: A fluoroscopic input image. Guidewire can be seen in
the lower right part of the image as a thin black line making
one loop and then continuing toward the center of the image.

However, most of the aforementioned research does not
take into account the physics of X-ray imaging. Unlike optical
imaging where reflective radiation is measured, in X-ray imag-
ing transmitted radiation is measured. This affects obtained
image in a sense that every object on the ray path contributes
to the observed intensity. For guidewire detection this results
in a varying contrast along the line thus requiring that any
applied line detection technique be made locally adaptive.
Here, we present a new approach to guidewire detection, which
is locally adaptive and based on the underlying physics of X-
ray imaging.

This article is organized as follows: in Section II we describe
simple X-ray imaging model, in Section III we review the
Hessian eigneanalysis line segmentation methods and show
how they can be adopted to the multiplicative imaging model.
Results and discussion are given in Sections IV and V. We
conclude in Section VI.

II. SIMPLE X-RAY IMAGING MODEL

Before discussing the adaptation strategy of the line segmen-
tation algorithm a brief review of the X-ray imaging modality
will be presented. The image formation model presented below
is simplified, but is sufficient for developing a robust and fast
guidewire segmentation algorithm.

X-rays produced by the radiation source are directed onto
the detector with the patient placed in between. If a homoge-
neous isotropic object is placed on the ray path produced and
measured radiation intensities can be related as I = I0e

−µd,
where µ is linear attenuation coefficient and d is thickness of



the material [7]. A material with thickness d and coefficient µ
changes observed intensity by a multiplicative factor of e−µd.

When the patient is observed we should allow for multiple
attenuation coefficients so

I = I0 exp
(
−
∑
i

µidi

)
(1)

Equation (1) holds for pixels where the guidewire is absent,
where −

∑
i µidi is the total attenuation coefficient associ-

ated with the patient (or background). However, when the
guidewire is present we have additional multiplicative factor
so

I = I0 exp
(
−
∑
i

µidi
)
exp
(
−µgwdgw

)
, (2)

where the µgw is the attenuation coefficient associated with the
guidewire. Let γ be the multiplicative term exp

(
−µgwdgw

)
.

Equation (2) presents a model for the image acquisition under
the assumption that the guidewire is thin when compared to
the total tissue thickness, i.e. dgw �

∑
i di.

III. GUIDEWIRE SEGMENTATION

As the imaging model is multiplicative line detection tech-
niques must be adopted to the model. We focus solely on the
Hessian matrix eigneanalysis based techniques as they have
proven to be one of the most robust ones [6].

A. Hessian Matrix Eigenanalysis

For line enhancement filtering, as described in [1], [2], the
second derivatives are needed. Convolution with the Gaussian
is almost always combined with the second derivative oper-
ation in order to tune the filter response to the specific line
width and to reduce undesirable effects caused by noise.

To find the Hessian matrix H for image I(i, j) at scale σ
we compute

H
[
Gσ(i, j) ∗∗ I(i, j)

]
= H

[
Gσ(i, j)

]
∗∗ I(i, j), (3)

where Gσ(i, j) = 1
σi

√
2π

exp(− i2

2σ2
i
) 1
σj

√
2π

exp(− j2

2σ2
j
). From

(3) we obtain 2× 2 Hessian matrix for each pixel.
Justification for the line detection procedure is given by

noting that (3) can be regarded as template matching. For
the dark guidewire on bright background (usual setup) the
convolution result in the center of the guidewire would be
positive. Otherwise, for white guidewire on dark background,
it would be negative.

The result of (3) for discrete image is again 2×2 matrix H =[
Lxx Lxy

Lyx Lyy

]
, where Lxx, Lxy and Lyy are results of convolution

with the sampled Gaussian (or first or second derivative) at
scale σ. Eigenvalues of the matrix H are analyzed to extract
the principal directions in which the second order structure
can be decomposed. Such analysis yields the directions of the
smallest curvature (along the ridge) and extracts two invariant
orthonormal directions (determined up to scaling if the matrix
has full rank) when the image is mapped by the Hessian matrix
that can be though of as an ellipse aligned along the line like
structure [3], [2]. If the eigenvalues λk are ordered so |λ2| >

(a) Input image (b) Input image

(c) Non-adaptive vesselness (d) Non-adaptive vesselness

(e) Adaptive vesselness (f) Adaptive vesselness

Fig. 2: Example of detection results for simulated input with
uniform (a) and non-uniform (b) background. (c) and (d) show
vesselness maps obtained with globally set parameters. (e) and
(f) are locally adapted vesselness maps.

|λ1| an elongated line like structure would be associated with
the elongated ellipse characterized by |λ2| � |λ1|.

Eigenanalysis is usually done at different scales σ. For
guidewire tracking the choice of σ does not present a problem
as the wire diameter is known in advance thus making analysis
at a fixed scale corresponding to the diameter.

B. Line Model

Steger [1] discusses 1D model bar-shaped line profile as the
simple line model for reflective images. For 1D case intensity
profile I(x) of a line with width w and contrast h is given by

I(x) =

{
h, |x| < w

2

0, otherwise
. (4)

For 2D case profile (4) is extended so I(i, j) is equal to 1D
profile when evaluated along the direction perpendicular to
the local line orientation while the 1D profile is repeated in



orthogonal direction. The optimal scale for this model is σ =
w

2
√
3

[1].
Model (4) is not directly applicable to X-ray imaging as it

is not multiplicative. Line contrast h is now not an absolute
value, but a relative one. The multiplicative factor associated
with the wire is γ so line contrast becomes relative value
depending on the background intensity b(i, j). 1D profile along
the direction orthogonal to the line direction is now

I(x) =

{
γb(x), |x| < w

2

b(x), otherwise
. (5)

Under the assumption of relatively constant background (the
background must have stable values in the square patch of
the size 3σ around the line center point) maximal possible
eigenvalue value associated with this model is Lxx,max =

b(i, j)(1− γ) 2
√
3

σ
√
2π
e−3/2. As we cannot measure the original

background intensity b(i, j) we replace b(i, j) by I(i, j)/γ,
where I(i, j) is measured intensity, so

Lxx,max = I(i, j)
1− γ
γ

2
√
3

σ
√
2π
e−3/2. (6)

The line position in the image is obtained by thresholding the
larger eigenvalue. The threshold must be selected based on the
value of (6).

C. Adapting The Vesselness Measure

To classify pixels as belonging to the guidewire the ves-
selness map is computed. Vesselness is a function that maps
extracted features into the probability like estimate enabling
easier interpretation [3]. It is computed as

V(σ) = exp
(
−λ

2
1

λ22

1

2α2

)(
1− exp

(
−λ

2
1 + λ22
2β2

))
(7)

where α and β are parameters that control the sensitivity. If
we want to detect only dark lines the measure can be set to
zero for λ2 < 0.

As the maximal absolute expected eigenvalue is determined
by (6) the optimal parameters α and β for the vesselness map
computation can be chosen. Those parameters must be chosen
independently for each input pixel thus making the method
locally adaptive.

Parameter α is dependent on the guidewire attenuation
coefficient as it controls the contribution of the ratio λ1

λ2
.

Furthermore, the ratio is independent of the input image
amplitude scaling. As |λ2| > |λ1| the ratio is always less then
1 with α ∈ 〈0, 1

2 ln 2 〉. For the choice of α = 1
2 ln 2 the response

for a perfect blob-like structure (ratio is one) is exactly the
minimal possible value of the term. The chosen α should be
closer to 1

2 ln 2 then zero, as lower values for α tend to make
short but locally highly curved lines impossible to detect. The
limit value of 1

2 ln 2 is optimal so term exp(− 1
2α2 (

λ1

λ2
)2) can

attain values in the interval [ 12 , 1].
Parameter β is controlling the contribution of the sum of

squares λ21+λ
2
2. For the line-like structures the sum of squares

will be approximately λ22, with the value of |λ2| given by (6).

To choose the value of parameter β we must know the scale
σ and the expected attenuation γ. Once those are known (6)
yields required β. For example, if for attenuation factor of γ
we want the second term in (7) to obtain value x we choose

β(x) = I(i, j)
1− γ
γ

2
√
3

σ
√
2π
e−3/2

1√
−2 ln(1− x)

.

Such choice of β guarantees detection of all line-like structures
with smaller attenuation γ, so to choose β we must know the
lowest attenuation coefficient we want to detect.

Based on the discussion so far if we want to detect the
guidewire with the diameter d and attenuation γ the optimal
parameters for the vesselness map are σ = w

2
√
3

, α = 1
2 ln 2

and β = I(i, j) 1−γγ
2
√
3

σ
√
2π
e−3/2 1√

−2 ln(4)
.

IV. RESULTS

For quantitative evaluation of the proposed detection method
we use synthetic images.
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Fig. 3: ROC curves for various guidewire attenuation factors.

To generate the synthetic images we use the multiplicative
model where ideal background value b(i, j) is multiplied by
factor c that is a combination of the wire attenuation γ and the
pixel area covered by the simulated wire. To make evaluation
more realistic we degrade the synthetic images with image
dependent Poissonian noise with the intensity set to cb(i, j).
The resulting pixel values are quantized to 8 bits.

As the constant background is not a realistic assumption we
evaluate the method on images showing a circular guidewire
where the background linearly changes from 0 to 255 (Fig. 2b).
Such background clearly illustrates effects we can expect when
the method is used on real-world images.

To quantitatively evaluate the proposed method we compute
the ROC curves (Fig. 3) for the proposed adaptive line detector
(Fig. 3a) and for the standard non-adaptive line detector
(Fig. 3b), for a wide range of attenuation coefficients γ. Note



Fig. 4: Input x-ray image.

Fig. 5: Non-adaptive vesselness map.

that the starting γ of 0.95 corresponds to contrast-to-noise ratio
(CNR) of about 0.6. Note the shift of the ROC curves.

To show qualitative difference on real-world images we
give one example. Typical x-ray image for neuroendovascluar
intervention is shown in Fig. 4. Guidewire is visible and
extends starting from the right side toward left bottom of the
image. Fig. 5 shows non-adaptive vesselness while fig. 6 shows
adaptive vesselness with annotated areas of interest. Note there
is no reduction in brightness for anatomical landmark (A), but
with slight drawback being increased vesselness value for local
line-like structures located in darker areas of the image (B).
Overall background clutter is significantly reduced (C).

Fig. 6: Adaptive vesselness map with three areas of interest
shown: A) reduced intensity decrease; B) stronger detection
for local-line like structures on dark background; C) better
suppression of background noise.

V. DISCUSSION

The proposed adaptive line detector extends the usability of
the guidewire detection techniques. By comparing images in
Fig. 2 for uniform (first column) and non-uniform (second
column) backgrounds the vesselness map is more accurate
when parameter β is locally adapted. Furthermore, by com-
paring images 2d and 2f it is clear that adaptive method can
detect the guidewire more reliably in the case of varying
contrast (compare the detection results on the left side as the
background slowly descends towards zero). This is the most
important effect of local adaptation as during the interventional
procedures the guidewire will be superimposed on various
anatomical landmarks that often affect the absolute contrast
value thus making detection with a fixed (non-adaptive) set of
parameters unfeasible.

VI. CONCLUSION

We have presented a new method for adaptive line detection
that is specifically formulated for a multiplicative imaging
model such as X-ray imaging. This has improved the seg-
mentation results, especially when the guidewire is occluded
by various anatomical landmarks such as bones.

In the field of biomedical imaging image data to be analyzed
is almost always obtained in controlled conditions with imag-
ing models and acquisition protocols known in advance. This
fact should be of greater interest to researchers in the field of
biomedical image processing and analysis as it usually enables
construction of strict imaging model that can then be applied
to enhance or adapt established methods thus making them
better suited to the task at hand.
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