
A KNOWLEDGE-BASE GENERATING FUZZY-NEURAL CONTROLLER

Ivan Petrović, Kristijan Maček, Nedjeljko Perić

Department of Control and Computer Engineering in Automation
Faculty of Electrical Engineering and Computing, University of Zagreb

Unska 3, 10000 Zagreb, Croatia

Abstract: - This paper presents a modification to the Kandadai and Tien's learning
algorithm for tuning a fuzzy-neural controller that is able to automatically generate a
knowledge base. Tuning is based on reinforcements from a dynamical system, thus
giving a pseudosupervised learning scheme using error backpropagation. Originally, a
weak reinforcement in the form of a binary failure signal was assumed which proved to
be insufficient in terms of steady-state error. Therefore, a continuous reinforcement
signal is applied enabling the system to correct the error as well as decreasing the
overall control effort in the learning phase. Copyright  2000 IFAC

Keywords: expert systems, intelligent control, fuzzy logic, neural networks.

1. INTRODUCTION

Conventional controllers managing complex plants
require some means of analytical modeling. However,
in many practical systems the unavailability of
quantitative data in terms of input/output relations
makes knowledge-based controllers an interesting
alternative. In this case, the analytical models are
supplemented with a set of linguistic rules emulating
the performance of a skilled human operator.
Furthermore, such a fuzzy inference system can be
integrated with neural networks, giving an adaptive
structure with learning capabilities.

Thus, a possible architecture is the generalized
approximate reasoning-based intelligent controller
(GARIC) proposed by Berenji and Khedkar (1992),
permitting the transformation of the network node
weights into a linguistic rule base. Furthermore,
Kandadai and Tien (1997) were able to modify the
structure using Lin and Lee's approach (1996) to
obtain a controller which would automatically
generate its knowledge-base.

The problem statement assumed that the training data
are very rough and coarse in form of a reinforcement
signal, which is a scalar. This implied using a
reinforcement learning scheme in contrast to
supervised learning, where training data are available
at each time step. Given that the reinforcement signal
may be available at a time long after a sequence of
actions has occurred, prediction capabilities were
developed applying Sutton's temporal difference

methods (1988). In general, multi-step prediction of
reinforcement signal was required.

According to Kandadai and Tien (1997),
reinforcement was a binary signal indicating whether
or not the system has reached the failure state, where
the controlled process was the cart-pole system.
Thereafter, a hierarchical controller architecture was
developed consisting of subcontrollers servicing
specific subtasks. It was shown that the controller
architecture was able to generate an extractable
knowledge-base.

However, when applying the learning strategy to one
subcontroller only, it was found that the proposed
binary failure signal was not informative enough to
compensate for the steady-state error. In this paper a
continuous reinforcement signal is introduced
leading to the single-step prediction case.
Modifications of Kandadai and Tien's learning
algorithm (1997) are made to ensure convergence
and robustness. Finally, an application of the
proposed architecture to the cart-pole balancing
system is presented, taking in consideration some
real-world problems such as friction in the bearings
and measurement noise.

2. CONTROLLER ARCHITECTURE

The controller architecture proposed by Kandadai
and Tien (1997) was based on the GARIC
architecture. The main principles were elaborated on

a structure assuming that the plant model was known.
However, it was subsequently shown that the need for
a plant model could be eliminated. Whereas in the
former case the structure was applied to a hierarchical
controller, in the latter case only one subcontroller is
considered. The controller consists of four main
units: action evaluation network (AEN), action
selection network (ASN), action search unit (ASU)
and decision making unit (DMU) as shown in Fig. 1.

Plant

AEN

ASUASN

AEN weights

D
M

U

ASN weights

error backpropagation

force - F , F1 2

reinforcement signal - r , r1 2

internal
reinforcement

- r*

state variables - sv , sv1 2

state estimates
- v , v1 2

F

 F , F1 2

Fig. 1. A knowledge-base generating fuzzy-neural

controller.

2.1 Action Evaluation Network (AEN)

This neural network is the same as in the GARIC
architecture and is reproduced here. The AEN
network receives the state variable values sv and the
reinforcement signal r which it uses to generate an
evaluation v of the system state. The approximate
interval of values of v is [-1,0], where the value of -1
represents the failure state, while 0 represents the
reference state. The structure of the AEN network is
shown in Fig. 2 where A, B, C represent the weight
banks of the neural network (Berenji and Khedkar,
1992).

The state score v is combined with the reinforcement
signal r to give the internal reinforcement r * . Based
on Sutton’s temporal difference methods (1988), the
expression given in (Berenji and Khedkar, 1992) is as
follows:

r t r t v t v t* = + − −γ 1 0 1≤ <γ (1)

where t-1 and t are successive iterations and γ is the
discount rate. Since here it is assumed that the
reinforcement signal r is available at each iteration,
multi-step prediction in (1) degrades to single-step
prediction of the reinforcement signal:

x2

input layer hidden layer output layer

C

xn

y1

y2

yk

v

Plant
State Variables State score

weight bank A weight bank C

weight bank B

B

A

Fig. 2. Action evaluation network (AEN).

 r t r t v t* = − −1 . (2)

Internal reinforcement r * actually represents the
prediction error of the AEN with respect to the
reinforcement signal r.

2.2 Action Selection Network (ASN)

This structure enables the fuzzy inference scheme to
be incorporated in a neural network, thus offering the
advantage of a straightforward adaptation. Here the
ASN network is a variation of the GARIC Action
Selection Network (Berenji and Khedkar, 1992) in
which all possible fuzzy rules are implemented
(Kandadai and Tien, 1997). The structure is
presented in Fig. 3.

x1

µ1

µ3

µ4

µ2

A1

A4 R4 C4

A3 R3 C3

A2 R2 C2

R1 C1

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

State
variables

Rule
Antecedent Labels

Rules Rule
Consequent Labels

Output
Node

F

x2

Fig. 3. Action selection network (ASN).

Since the ASN determines the output action values,
the aim is to adjust the link weights of the network so
as to maximize the expectation of the reinforcement
signal r, which gives an evaluation of past actions

chosen. The gradient information ∂
∂

r
F

, which is

required if the pseudosupervised learning scheme is
to be applied to the ASN, may only be estimated
because the reinforcement signal r depends heavily

on the dynamics of the plant as well as on the
previous actions chosen. Furthermore, it was shown
by Kandadai and Tien (1997) that only weights in
rule consequent labels need to be modified.

2.3 Action Search Unit (ASU)

Given the current state of the plant, the ASN suggests
an output action F which is considered to be the
expected value of some ideal action ′′F which, if
applied to the plant, would result in moving to an
ideal next state. Since action ′′F is not known to the
learning system, there must be some uncertainty
introduced in choosing the appropriate output action.
This is achieved through stochastic exploration. A
possible approach was analyzed in (Gullapalli, 1990)
using multiparameter distributions. Based on this
idea, Berenji and Khedkar (1992) and Kandadai and
Tien (1997) determined the magnitude of deviation
σ of the actual action ′F applied to the plant with
respect to the suggested value F by using an
exponential function with internal reinforcement r *
as an indicator of state score improvement. In this
paper, the difference between two successive state
scores v is used, leading to the following relation:

 σ α α[] exp()t v t= −1 2∆ (3)

where ∆v t v t v t= − −1 and α 1 ,α 2 are positive
constants. If the system exhibited an improvement in
the plant state score (i.e. positive increase) over the
previous time step, then the uncertainty in choosing
the output action ′F should be smaller at the current
time step or vice versa in the case of aggravation of
the plant state score.

2.4 Decision Making Unit (DMU)

Given the present state of the plant, this unit
determines the series of actions that should be applied
to the plant for it to follow an ideal trajectory of the
state variables based on the maximum state
improvement. The selection of the actual action ′F
applied to the plant in relation to the suggested value
F depends on the learning strategy for the ASN, as
described in Subsection 3.2.

3. LEARNING MECHANISMS

3.1 Learning in AEN

As mentioned in Subsection 2.1, the internal
reinforcement r * represents the measure error of the

AEN, which is used to modify the weight coefficients
ai , bi , ci , of weight banks A, B, C (Fig. 2)
according to the error backpropagation algorithm
(Rumelhart, et. al., 1986), which is modified as
outlined in (Barto, et. al., 1983).

3.2 Learning in ASN

In order to extract the learning scheme for adjusting
the weights of the ASN when the plant model was not
known, the following assumptions were made in
(Kandadai and Tien, 1997):

1) The ideal action ′′F is assumed to be greater than
or lesser than the action F suggested by the ASN.

2) The time step is sufficiently small, so that the
plant states at two successive iterations are close
enough to cause the ASN to suggest
approximately the same expected action F.

According to Assumption 1, the ASU estimates the
ideal action ′′F by stochastically generating two
actions F + and F − each of which is greater than
and lesser than the ideal action ′′F . Assumption 2
implies that at any two successive iterations a and b
the ASN gives approximately equal expected
actions F F Fa b≈ ≈ . The ASU then uses Fa to
generate F + and, at the next iteration, it uses Fb to
generate F − . Therefore, the DMU receives F + at
iteration a, and F − at iteration b, and so on. It
applies whichever action F + or F − it receives from
the ASU. When F + is applied to the plant at
iteration a, the plant moves to a state with a state
score v+ at iteration b. Thereafter, when F − is
applied at iteration b, the plant moves to a state with a
state score v− at the next iteration a. The DMU then
has to decide which action F + or F − is closer to

′′F . Since it is possible that both F + and F − can
cause an improvement in the state score, the DMU
chooses the action which resulted in the greatest
improvement. The learning rule to adjust the
parameters p of the ASN is then according to
(Kandadai and Tien, 1997):

 ∆ ∆ ∆ ∆p F v F
p

= ∂
∂

η () (4)

where η is the learning rate, ∂
∂
F
p

 the sensitivity

function and ∆ ∆ ∆F v() a heuristic learning signal:

 ∆ ∆ ∆ ∆ ∆F v F F v v() ()()= − − =+ − + −

1 2

 = − − − − =+ − + − − +() () ()F F v v v v1 2 2 1 3 2

 = − − −+ − + − −())F F v v v1 2 2 1 32 (5)

where indices 1,2,3 represent three successive time
steps.

The proposed learning scheme was applied to the
multistep-prediction case described in (1) where the
reinforcement signal r was of the form:

 r t
failure state
else

=
−RST

UVW
1

0
. (6)

Failure state in (6) represents any state of the plant
outside the predetermined range of controlled state
variables.

The original algorithm proved to be sufficient in the
case of a hierarchical controller where global
optimization was to be achieved through
subcontrollers servicing specific sets of state
variables. However, when only one subcontroller was
applied to a specific set of state variables, a
significant steady-state error was observed due to the
fact that the binary failure signal implies that any
state of the plant inside the predetermined range is
"good enough". Therefore, a more informative
reinforcement signal r is introduced:

 r t
failure state

x
x

else=
−

−

R
S|
T|

U
V|
W|

1

max

 (7)

where x represents the state variable whose value
determines whether or not the system reached the
failure state. Since in this case the reinforcement
signal r is available at each time step, single-step
prediction is applied as described in expression (2).
In contrast to multi-step prediction in (1), which gives
an approximately exponential decay of state scores v
if the failure state is not reached, here the state score
v permanently acquires values in the interval [-1,0].

Thus, if the learning algorithm according to (5) were
implemented, this would gradually lead to a
divergence of the ASN parameters because the state
score difference ∆ ∆()v does not approach zero as in
the case of multi-step prediction, which results in a
permanent reward of the best action chosen at each
time step. Therefore, a modification to (5) is
proposed. Instead of applying F + at iteration a with
the state score of the plant v1 , the expected action F
itself is applied. If this action results in an
improvement of the state score v2 , the same action is
also applied at iteration b; otherwise, the ASU
stochastically generates an action ′F , which can be
greater than or lesser than the expected action F.
After that, ′F is applied to the plant, causing the
plant to move to a state with a state score v3 . In the

case when F F F1 2= = the action difference ∆F is
zero, therefore no parameter modification takes
place. Otherwise, the learning rule is as follows:

 ∆ ∆ ∆ ∆p F v F
p

= ∂
∂

η
σ
() (8)

where

∆ ∆ ∆F v F F v v v v() () ()= − − − − =1 2 2 1 3 2b g

 = − − −F F v v v1 2 2 1 32b g) . (9)

In relation (5) parameter modification was achieved
through a reward-punishment scheme (Barto, et.al.,
1983), whereas in (9) only a punishment scheme was
applied. Likewise in contrast to (4), the action
difference ∆F is now normalized through deviation
σ , which provides a more stable algorithm in the
case when the parameters of the ASU, which
determine the magnitude of deviation σ , are varied.
The flowchart of both learning algorithms is
presented in Fig. 4.

stohastic exploration
through ASU - F+

state score
 improvement

 v >v ?2 1

 AEN weight modification

 AEN weight modification

state evaluation sv , sv , sv
through AEN - v , v , v

1 2 3
1 2 3

state evaluation sv , sv
through AEN - v , v

1 2
1 2

 ASN weight modification

applying action
to the plant- F = F’2

applying action to
the plant - F =F =F2 1

applying action
 to the plant - F =F1

failure
state?

end of trial new
trial?

state score evaluation
through AEN- v1

system
initialization

end of
experiment

Proces
initialization

YESNO

YES

NONO
YES

expected action value
through ASN - F

applying action
 to the plant - F =F+

1

stohastic exploration
through ASU - F’

applying action
 to the plant - F =F-

1

stohastic exploration
through ASU - F-

Fig. 4. Flowchart of the modified learning algorithm

(solid line) and of the original learning algorithm
(dashed line).

The experiment starts with system initialization and
consists of trials, each of which finishes when a
failure state occurs. Depending on the type of
learning algorithm, different actions are chosen
(branch conditions).

4. SIMULATION RESULTS

The control architecture based on multi-step
prediction and Kandadai and Tien's learning
algorithm (CA1) as well as the proposed control
architecture with single step prediction (CA2) have
been implemented in Matlab/SIMULINK and tested
through simulation experiments. The control problem
is balancing of the cart-pole system shown in Fig. 5.

θ

F

Fig. 5. Cart-pole system.

It is assumed that only the pole position is controlled,
whereas the cart is allowed to move on an infinite
track. This implies that only state variables θ and θ
are taken into consideration.

In case when CA1 is used, the reinforcement signal r
is of the form:

 r t
else

=
− >RST

UVW
1

0
θ θ max (10)

whereas in the case when CA2 is used, it is of the
form:

 r t
else

=
− >

−

R
S|
T|

U
V|
W|

1 θ θ
θ

θ

max

max

 (11)

where θ max = 15 is chosen. The number of fuzzy
rules in both experiments is 7 rules for θ and 5 rules
for θ .

The simulation results obtained with CA1 and CA2
are shown in Fig. 6 and Fig. 7, respectively. It can be
seen that both controllers stabilize the system;
however, CA1 with a steady-state error ofθ ≈ 15. and
CA2 without a steady-state error. The steady-state
error that appears when CA1 is used is due to the
binary nature of the reinforcement signal r, which
indicates that any angle θ θ≤ max is satisfactory.
Consequently, the state score v may become zero
before the optimal state is reached (θ = 0), whereas

it should have some negative value indicating that the
present state of the plant is not optimal (in this case
θ ≈ 15.). In addition, the response of the output
force ′F in the case of CA1 (Fig. 6) shows that the
stochastic exploration is persistent, resulting in a
much higher control effort rate and faster aging of the
actuator of the control system than in the case of
CA2.

Fig. 8 shows the results obtained with CA2 in the
case when friction in the bearings and measurement
noise are taken into consideration. The measurement
noise is simulated as white noise. It can be seen that
the system is stabilized in a narrow range around the
reference state.

5. CONCLUSIONS

The learning algorithm proposed in (Kandadai and
Tien, 1997) for generating the knowledge-base of the
fuzzy-neural hierarchical controller proved to be
insufficient when considering only one subcontroller
servicing a specific set of state variables, mainly due
to a significant steady-state error. This was the
consequence of assuming a binary reinforcement
signal leading to the multi-step prediction case.

Therefore, a more informative, continuous
reinforcement signal was introduced, leading to the
single-step prediction case which also required a
modification of the learning algorithm. The modified
algorithm showed to be far more accurate in terms of
the state-state error. The learning rate was increased
together with the robustness of the algorithm to
parameter changes. Likewise, the overall energy
consumption of the system due to stochastic
exploration was decreased because the exploration
takes place only when the plant moves to a worse
state.

The method introduced was tested in a simulation
experiment where the process concerned was the cart-
pole system. The controller was able to stabilize the
pole in a very narrow range around the reference
point. Furthermore, some real-world problems, such
as friction in the bearings and noise measurement
were successfully compensated.

REFERENCES

Barto, A.G., Sutton, R.S., Anderson, C.W. (1983).

Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE
Transactions on Sys., Man.,Cybern., SMC-13,
pp. 834-846.

Berenji, H.R., Khedkar, P. (1992). Learning and
tuning fuzzy logic controllers through
reinforcements. IEEE Transactions on Neural
Networks, 3, No.5, pp.724-740.

Gullapalli, V. (1990). A stochastic reinforcement
learning algorithm for learning real-valued
functions. Neural networks, 3, pp.671-692.

Kandadai, R.M., Tien, J.M. (1997). A knowledge-
base generating hierarchical fuzzy-neural
controller. IEEE Transactions on Neural
Networks, 8, No.6, pp.1531-1543.

Lin, C.T., Lee, C.S.G. (1996). Neural fuzzy systems –
a neuro-fuzzy synergism to intelligent systems.
Prentice Hall P T R.

Rumelhart, D.E., Hinton, G.E., Williams, R.J. (1986).
Learning internal representations by error
backpropagation.Parallel distributed
processing, 1, pp. 318-362, MIT Press,
Cambridge MA.

Sutton, R.S. (1988). Learning to predict by the
methods of temporal differences. Machine
Learning, 3, pp.9-44.

ACKNOWLEDGEMENT

The authors would like to thank to the Ministry of
Science and Technology of Republic of Croatia and
to the companies Siemens-Croatia and Pliva-Croatia
for financial support of this project.

0 50 100 150 200
-1

0

1

2

3

4

5

θ

0 50 100 150 200
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

θ

0 50 100 150 200
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2v

0 50 100 150 200
-4

-2

0

2

4

iterations (1 iteration = 0.02sec)

′F

Fig. 6. Simulation results on the
cart-pole balancing system
obtained with CA1.

0 50 100 150 200 250 300
-2

0

2

4

6

8

10

12

14

16

θ

0 50 100 150 200 250 300
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

θ

0 50 100 150 200 250 300
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0v

0 50 100 150 200 250 300
-3

-2

-1

0

1

2

3

4

5

6

iterations (1 iteration = 0.02sec)

′F

Fig.7. Simulation results on the

cart-pole balancing system
obtained with CA2.

0 50 100 150 200
-12

-10

-8

-6

-4

-2

0

2

θ

0 50 100 150 200
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

θ

0 50 100 150 200
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0v

0 50 100 150 200
-5

0

5

iterations (1 iteration = 0.02sec)

′F

Fig. 8. Simulation results on the
cart-pole balancing system
obtained with CA2 in the
presence of friction in the
bearings and measurement
noise.

