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Abstract: - This paper presents a modification to the Kandadai and Tien's learning 
algorithm for tuning a fuzzy-neural controller that is able to automatically generate a 
knowledge base. Tuning is based on reinforcements from a dynamical system, thus 
giving a pseudosupervised learning scheme using error backpropagation. Originally, a 
weak reinforcement  in the form of a binary failure signal was assumed which proved to 
be insufficient in terms of steady-state error. Therefore, a continuous reinforcement 
signal is applied enabling the system to correct the error as well as decreasing the 
overall  control effort in the learning phase. Copyright  2000 IFAC 
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1. INTRODUCTION 
 
Conventional controllers managing complex plants 
require some means of analytical modeling. However, 
in many practical systems the unavailability of 
quantitative data in terms of input/output relations 
makes knowledge-based controllers an interesting 
alternative. In this case, the analytical models are 
supplemented with a set of linguistic rules  emulating 
the performance of a skilled human operator. 
Furthermore, such a fuzzy inference system can be 
integrated with neural networks, giving an adaptive 
structure with learning capabilities. 
 
Thus, a possible architecture is the generalized 
approximate reasoning-based intelligent controller 
(GARIC) proposed by Berenji and Khedkar (1992), 
permitting the transformation of the network node 
weights into a linguistic rule base. Furthermore, 
Kandadai and Tien (1997) were able to modify the 
structure using Lin and Lee's approach (1996) to 
obtain a controller which would automatically 
generate its knowledge-base. 
 
The problem statement assumed that the training data 
are very rough and coarse in form of a reinforcement 
signal, which is a scalar. This implied using a 
reinforcement learning scheme in contrast to 
supervised learning, where training data are available 
at each time step. Given that the reinforcement signal 
may  be available at a time long after a sequence of 
actions has occurred, prediction capabilities were 
developed applying Sutton's temporal difference 

methods (1988). In general, multi-step prediction of 
reinforcement signal was required. 
 
According to Kandadai and Tien (1997), 
reinforcement was a binary signal indicating whether 
or not the system has reached the failure state, where 
the controlled process was the cart-pole system. 
Thereafter, a hierarchical controller architecture was 
developed consisting of subcontrollers servicing 
specific subtasks. It was shown that the controller 
architecture was able to generate an extractable 
knowledge-base. 
 
However, when applying the  learning strategy to one 
subcontroller only,  it was  found that the proposed  
binary failure signal was not informative enough to 
compensate for the  steady-state error. In this paper a 
continuous reinforcement signal  is introduced 
leading to the  single-step prediction case. 
Modifications of Kandadai and Tien's   learning 
algorithm (1997) are  made to ensure convergence 
and robustness. Finally, an application of the 
proposed architecture to the cart-pole balancing 
system is presented, taking in consideration some 
real-world problems such as friction in the bearings 
and measurement noise. 
 
 

2. CONTROLLER ARCHITECTURE 
 
The controller architecture proposed by Kandadai 
and Tien (1997) was  based on the GARIC 
architecture. The main principles were elaborated on 



 

a structure assuming that the plant model was known. 
However, it was subsequently shown that the need for 
a plant model could be eliminated. Whereas in the 
former case the structure was applied to a hierarchical 
controller, in the latter case only one subcontroller is  
considered. The controller consists of four main 
units: action evaluation network (AEN), action 
selection network (ASN), action search unit (ASU) 
and decision making unit (DMU) as shown in Fig. 1. 
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Fig. 1. A knowledge-base generating fuzzy-neural 

controller. 
 
 
2.1  Action Evaluation Network (AEN) 
 
This neural network is the same as in the GARIC 
architecture and is reproduced here. The AEN 
network receives the state variable values sv and the 
reinforcement signal r which it uses to generate an 
evaluation v of the system state. The approximate 
interval of values of v is [-1,0], where the value of -1 
represents the failure state, while 0 represents the 
reference state. The structure of the AEN network is 
shown in Fig. 2 where A, B, C represent the weight 
banks of the neural network (Berenji and Khedkar, 
1992). 
 
The state score v is combined with the reinforcement 
signal r to give the internal reinforcement r * . Based 
on Sutton’s temporal difference methods (1988), the 
expression given in (Berenji and Khedkar, 1992) is as 
follows: 
 

r t r t v t v t* = + − −γ 1        0 1≤ <γ        (1) 
  

where  t-1 and t are successive iterations and γ is the 
discount rate. Since here it is assumed that the 
reinforcement signal r is available at each iteration, 
multi-step prediction in (1) degrades to single-step 
prediction of the reinforcement signal: 
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Fig. 2. Action evaluation network (AEN). 
 

  r t r t v t* = − −1 .   (2) 
 
Internal reinforcement r *  actually represents the 
prediction error of the AEN with respect to the 
reinforcement signal r. 
 
 
2.2  Action Selection Network (ASN) 
 
This structure enables the fuzzy inference scheme to 
be incorporated in a neural network, thus offering the 
advantage of a straightforward adaptation. Here the 
ASN network is a variation of the GARIC Action 
Selection Network (Berenji and Khedkar, 1992) in 
which all possible fuzzy rules are implemented 
(Kandadai and Tien, 1997). The structure is 
presented in Fig. 3. 
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Fig. 3. Action selection network  (ASN). 
 
Since the ASN determines the output action values, 
the aim is to adjust the link weights of the network so 
as to maximize the expectation of the reinforcement 
signal r, which gives an evaluation of past actions 

chosen. The gradient information ∂
∂

r
F

, which is 

required if the pseudosupervised learning scheme is 
to be applied to the ASN, may only be estimated 
because the reinforcement signal r depends heavily 



 

on the dynamics of the plant as well as on the 
previous actions chosen. Furthermore, it was shown 
by Kandadai and Tien (1997) that only weights in 
rule consequent labels need to be modified. 
 
 
2.3  Action Search Unit (ASU) 
 
Given the current state of the plant, the ASN suggests 
an output action F which is considered to be the 
expected value of some ideal action ′′F  which, if 
applied to the plant, would result in moving to an 
ideal next state. Since  action ′′F  is not known to the 
learning system, there must be some uncertainty 
introduced in choosing the appropriate output action. 
This is achieved through stochastic exploration. A 
possible approach was analyzed in (Gullapalli, 1990) 
using multiparameter distributions. Based on this 
idea, Berenji and Khedkar (1992) and  Kandadai and 
Tien (1997) determined the magnitude of deviation 
σ  of the actual action ′F  applied to the plant with 
respect to the suggested value F by using an 
exponential function with internal reinforcement r *  
as an indicator of state score improvement. In this 
paper, the difference between two successive state 
scores v is used, leading to the following relation: 
 
  σ α α[ ] exp( )t v t= −1 2∆  (3) 
 
where ∆v t v t v t= − −1  and α 1 ,α 2  are positive 
constants. If the system exhibited an improvement in 
the plant state score (i.e. positive increase) over the 
previous time step, then the uncertainty in choosing 
the output action ′F  should be smaller at the current 
time step or vice versa in the case of aggravation of 
the plant state score. 
 
 
2.4  Decision Making Unit (DMU) 
 
Given the present state of the plant, this unit 
determines the series of actions that should be applied 
to the plant for it to follow an ideal trajectory of the 
state variables based on the maximum state 
improvement. The selection of the actual action ′F  
applied to the plant in relation to the suggested value 
F  depends on the learning strategy for the ASN, as 
described in Subsection 3.2. 
 
 

3. LEARNING MECHANISMS 
 

 
3.1  Learning in AEN 
 
As mentioned in Subsection 2.1, the internal 
reinforcement r *  represents the measure error of the 

AEN, which is used to modify the weight coefficients 
ai , bi , ci , of weight banks A, B, C (Fig. 2) 
according to the error backpropagation algorithm 
(Rumelhart, et. al., 1986), which is modified as 
outlined in (Barto, et. al., 1983). 
 
 
3.2  Learning in ASN 
 
In order to extract the learning scheme for adjusting 
the weights of the ASN when the plant model was not 
known, the following assumptions were made in 
(Kandadai and Tien, 1997): 

1) The ideal action ′′F  is assumed to be greater than 
or lesser than the action F suggested by the ASN. 

2) The time step is sufficiently small, so that the 
plant states at two successive iterations are close 
enough to cause the ASN to suggest 
approximately the same expected action F. 

 
According to Assumption 1, the ASU  estimates the 
ideal action ′′F  by stochastically generating two 
actions F +  and F −  each of which is greater than 
and lesser than the ideal action ′′F . Assumption 2 
implies that at any two successive iterations a and b 
the ASN gives approximately equal expected 
actions F F Fa b≈ ≈ . The ASU then uses Fa  to 
generate F +  and, at the next iteration, it uses Fb  to 
generate F − . Therefore, the DMU receives F +  at 
iteration a, and F −  at iteration b, and so on. It 
applies whichever action F +  or  F −  it receives from 
the ASU. When F +  is applied to the plant at 
iteration a, the plant moves to a state with a state 
score v+ at iteration b. Thereafter, when F −  is 
applied at iteration b, the plant moves to a state with a 
state score v−  at the next iteration a. The DMU then 
has to decide which action F +  or F −  is closer to 

′′F . Since it is possible that both F + and F − can 
cause an improvement in the state score, the DMU 
chooses the action which resulted in the greatest  
improvement. The learning rule to adjust the 
parameters p of the ASN is then according to 
(Kandadai and Tien, 1997): 
 

  ∆ ∆ ∆ ∆p F v F
p

= ∂
∂

η ( )  (4) 

 

where η is the learning rate, ∂
∂
F
p

 the sensitivity 

function and ∆ ∆ ∆F v( ) a heuristic learning signal: 
 
    ∆ ∆ ∆ ∆ ∆F v F F v v( ) ( )( )= − − =+ − + −

1 2  

               = − − − − =+ − + − − +( ) ( ) ( )F F v v v v1 2 2 1 3 2  

     = − − −+ − + − −( ) )F F v v v1 2 2 1 32  (5) 



 

where  indices 1,2,3 represent three successive time 
steps. 
 
The proposed learning scheme was applied to the 
multistep-prediction case described in (1) where the 
reinforcement signal r was of the form: 
 

  r t
failure state
else

=
−RST

UVW
1

0
. (6) 

 
Failure state in (6) represents any state of the plant 
outside the predetermined range of controlled state 
variables. 
 
The original algorithm proved to be sufficient in the 
case of a hierarchical controller where global 
optimization was to be achieved through 
subcontrollers servicing specific sets of state 
variables. However, when only one subcontroller was 
applied to a specific set of state variables, a 
significant steady-state error was observed due to the 
fact that the binary failure signal implies that any 
state of the plant inside the predetermined range is 
"good enough". Therefore, a more informative 
reinforcement signal r is introduced: 
 

  r t
failure state

x
x

else=
−

−

R
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W|
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 (7) 

 
where x represents the state variable whose value 
determines whether or not the system reached the 
failure state. Since in this case the reinforcement 
signal r is available at each time step, single-step 
prediction is applied as described in expression (2). 
In contrast to multi-step prediction in (1), which gives 
an approximately exponential decay of state scores v 
if the failure state is not reached, here the state score 
v permanently acquires values in the interval [-1,0].  
 
Thus, if the learning algorithm according to (5) were 
implemented, this would gradually lead to a 
divergence of the ASN parameters because the state 
score difference ∆ ∆( )v does not approach zero as in 
the case of multi-step prediction, which results in  a  
permanent reward of the best action chosen at each 
time step. Therefore, a modification to (5) is 
proposed. Instead of applying  F +  at iteration a with 
the state score of the plant v1  , the expected action F 
itself is applied. If  this action results in an 
improvement of the state score v2 , the same action is 
also applied at iteration b; otherwise, the ASU 
stochastically generates an action ′F , which can be 
greater than or lesser than the  expected action F.  
After that, ′F  is applied to the plant, causing the 
plant to move to a state with a state score v3 . In the 

case when F F F1 2= =  the action difference ∆F  is 
zero, therefore no parameter modification takes 
place. Otherwise, the learning rule is as follows: 
 

  ∆ ∆ ∆ ∆p F v F
p

= ∂
∂

η
σ
( )  (8) 

where 
 

∆ ∆ ∆F v F F v v v v( ) ( ) ( )= − − − − =1 2 2 1 3 2b g  

       = − − −F F v v v1 2 2 1 32b g ) . (9) 
 
In relation (5) parameter modification was achieved 
through a reward-punishment scheme (Barto, et.al., 
1983), whereas in (9) only a punishment scheme was 
applied. Likewise in contrast to (4), the action 
difference ∆F  is now normalized through deviation 
σ , which provides a more stable algorithm in the 
case when the parameters of the ASU, which 
determine the magnitude of deviation σ , are varied. 
The flowchart of both learning algorithms is 
presented in Fig. 4. 
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Fig. 4.  Flowchart of the modified learning algorithm 

(solid line) and of the original learning algorithm 
(dashed line). 

 
The experiment starts with system initialization and 
consists of trials, each of which finishes when a 
failure state occurs. Depending on the type of 
learning algorithm, different actions are chosen 
(branch conditions). 
 



 

4. SIMULATION RESULTS 
 
The control architecture based on multi-step 
prediction and Kandadai and Tien's learning 
algorithm (CA1) as well as the proposed control 
architecture with single step prediction (CA2) have 
been implemented in Matlab/SIMULINK and tested 
through simulation experiments. The control problem 
is balancing of the cart-pole system shown in Fig. 5.  
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Fig. 5. Cart-pole system. 
 
It is assumed that only the pole position is controlled, 
whereas the cart is allowed to move on an infinite 
track. This implies that only state variables θ  and θ  
are taken into consideration. 
 
In case when CA1 is used, the reinforcement signal r 
is of the form: 
 

  r t
else

=
− >RST

UVW
1

0
θ θ max  (10) 

 
whereas in the case when CA2 is used, it is of the 
form: 
 

  r t
else

=
− >

−

R
S|
T|

U
V|
W|

1 θ θ
θ

θ

max

max

 (11) 

 
where θ max = 15  is chosen. The number of fuzzy 
rules in both experiments is 7 rules for θ  and 5 rules 
for θ . 
 
The simulation results obtained with CA1 and CA2 
are shown in Fig. 6 and Fig. 7, respectively. It can be 
seen that both controllers stabilize the system; 
however, CA1 with a steady-state error ofθ ≈ 15. and 
CA2 without a steady-state error. The steady-state 
error that appears when CA1 is used is due to the 
binary nature of the reinforcement signal r, which 
indicates that any angle θ θ≤ max  is satisfactory. 
Consequently, the state score v may become zero 
before the optimal state is reached (θ = 0 ), whereas 

it should have some negative value indicating that the 
present state of the plant is not optimal (in this case 
θ ≈ 15. ).  In addition, the response of the output 
force ′F  in the case of  CA1 (Fig. 6) shows that the 
stochastic exploration is persistent, resulting in a 
much higher control effort rate and faster aging of the 
actuator of the control system than in the case of 
CA2. 
 
Fig. 8 shows the results obtained with CA2 in the 
case when friction in the bearings and measurement 
noise are taken into consideration. The measurement 
noise is simulated as white noise. It can be seen that 
the system is stabilized in a narrow range around the 
reference state.  
 
 

5. CONCLUSIONS 
 

The learning algorithm proposed in (Kandadai and 
Tien, 1997) for generating the knowledge-base  of the 
fuzzy-neural hierarchical controller proved to be 
insufficient when considering only one subcontroller 
servicing a specific set of state variables, mainly due 
to a significant steady-state error. This was the 
consequence of assuming a binary reinforcement 
signal leading to the multi-step prediction case. 
 
Therefore, a more informative, continuous 
reinforcement signal was introduced, leading to  the 
single-step prediction case which also required a 
modification of the learning algorithm. The modified 
algorithm showed to be far more accurate in terms of 
the state-state error. The learning rate was increased 
together with the robustness of the algorithm to 
parameter changes. Likewise, the overall energy 
consumption of the system due to stochastic 
exploration was decreased because the exploration 
takes place only when the plant moves to a worse 
state. 
 
The method introduced was tested in a simulation 
experiment where the process concerned was the cart-
pole system. The controller was able to stabilize the 
pole in a very narrow range around the reference 
point.  Furthermore, some real-world problems, such 
as friction in the bearings and noise measurement 
were successfully compensated. 
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Fig. 6.  Simulation results on the 
cart-pole balancing system 
obtained with CA1. 
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Fig.7.  Simulation results on the 

cart-pole balancing system 
obtained with CA2. 
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Fig. 8. Simulation results on the 
cart-pole balancing system 
obtained with CA2 in the 
presence of friction in the 
bearings and measurement 
noise. 

 


